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Abstract

Handling flash crowds poses a difficult task for web services. Con-

tent distribution networks (CDNs), hierarchical web caches, and

peer-to-peer networks have all been proposed as mechanisms for

mitigating the effects of these sudden spikes in traffic to under-

provisioned origin sites. Other than a few anecdotal examples of

isolated events to a single server, however, no large-scale analysis of

flash-crowd behavior has been published to date.

In this paper, we characterize and quantify the behavior of thou-

sands of flash crowds on CoralCDN, an open content distribution

network running at several hundred POPs. Our analysis considers

over four years of CDN traffic, comprising more than 33 billion

HTTP requests. We draw conclusions in several areas, including

(i) the potential benefits of cooperative vs. independent caching

by CDN nodes, (ii) the efficacy of elastic redirection and resource

provisioning, and (iii) the ecosystem of portals, aggregators, and

social networks that drive traffic to third-party websites.

Categories and Subject Descriptors: C.4 [Performance
of Systems]: Measurement Techniques

General Terms: Measurement, Performance

Keywords: content distribution networks, flash crowds

1. INTRODUCTION

Volatile request rates complicate the delivery of Internet services.

Most websites experience significant diurnal fluctuations in request

volume. Over shorter time scales, traffic may fluctuate due to the

changing popularity of content or localized events. The most severe

(and least predictable) type of volatility are flash crowds, which occur

when services see sudden, large, and often unforeseen increases in

request rates. Flash crowds are infamous for overwhelming even

well-provisioned services, causing HTTP clients to timeout when

trying to access starved server resources.
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To insure themselves against the risk of a flash crowd, sites can

outsource static content distribution to CDNs such as Akamai, which

distribute traffic surges over a global network of content caches. This

strategy, however, does not generally address dynamically generated

content, where CPU cycles are required to construct user-customized

pages. To fill this gap, services are increasingly using cloud infras-

tructure (such as Amazon EC2) to scale dynamic content creation

in a similar fashion. Provisioning new resources in the cloud, while

not instantaneous, can be done orders-of-magnitude more quickly

than purchasing and installing new hardware.

While flash crowds have long been used as anecdotal motivation

for elastic-computing platforms, little research exists characteriz-

ing such events in an operational CDN. To address this limitation,

this paper analyzes flash crowds based on four years of data from

CoralCDN [4, 5], an open CDN comprised of globally cooperat-

ing proxies. Using data from thousands of flash crowds detected

amongst hundreds of thousands of domains, it answers several ques-

tions about the nature of flash crowds, both from the perspective of

an online service and from that of a large content distributer.

This paper uses flash-crowd data to shed light on three broad

aspects of online service delivery.

Cooperative Caching. In the best case, websites use a global

network of caches to prevent origin overload during flash crowds.

Whether distributed caches benefit from cooperation, as opposed to

each cache fetching content individually from the origin, depends

on the rate of requests and their distribution over caches. Section 3

evaluates the benefits of cooperative caching for real crowds.

Request Redirection and Elastic Provisioning. When unprece-

dented surges of traffic hit a service, it is often necessary to provision

new resources or re-allocate existing ones to handle the requests. Ser-

vices that operate on cloud infrastructure, for instance, might want to

spin up additional virtualized instances to further spread load. Large

content distributors with a fixed infrastructure may wish to allocate a

greater portion or number of their caches to a particular customer [6].

Peer-to-peer systems may wish to build distribution trees to replicate

content quickly [5, 10, 13]. In Section 4, we analyze how much time

these parties might have to adapt their computing footprint in the

face of flash crowds.

Source Attribution. Third-party portals such as Slashdot are

often thought to be the primary drivers of flash crowds. These sites

operate as centralized “bulletin boards,” sharing a small set of links

amongst large numbers of simultaneous viewers. In Section 5, we

briefly consider how often these portals play a role in flash crowds

and assess whether decentralized, peer-to-peer link sharing (such as

Facebook or Twitter updates) creates equivalent request surges.

Before performing such analysis, we first describe our CoralCDN

data set and provide the working definition of a flash crowd that we

use throughout our analysis.
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1.1 4 Years of Data from CoralCDN

CoralCDN is a open, cooperative content distribution network, de-

signed to proxy content requests for heavily loaded services. It

operates on a set of globally distributed machines that act as caching

proxies. Users fall broadly into three categorical use cases. First,

HTTP clients can explicitly access a piece of content through Coral-

CDN by “Coralizing” an existing URL (appending nyud.net to

any URL’s domain). This is a popular practice for links posted on

major portals, as the Coralized link helps prevent the origin server

from becoming overwhelmed by referred traffic. Second, some sites

persistently use these URLs for their embedded content, so that static

files are transparently requested via CoralCDN. Third, some sites

use HTTP redirects to offload traffic to CoralCDN during periods of

heavy load. When possible, we distinguish between these scenarios.

CoralCDN proxies persistently log data for each HTTP request

they service. The logs include the URL being accessed, any HTTP

referrers, the client IP address, and several other request attributes.

The results in this paper are drawn from four years of aggre-

gated CoralCDN logs, from 2007 to early 2011. These logs cover

33,354,760,349 individual HTTP requests and represent a complete

(not sampled) trace of all CoralCDN traffic during this period. That

said, a small number of logs are missing due to periodic failures of

CoralCDN proxies and its logging subsystem [4].

CoralCDN sees a biased cut of HTTP traffic, and in some cases,

this limits our exploration of the data. Since websites might use

CoralCDN intermittently, for instance, we cannot readily perform

longitudinal analysis across individual domains, e.g., to characterize

the frequency and scale of flash crowds that an average domain

would experience over the course of a year. We leave such analysis

to future work and carefully limit the scope of our inference.

2. DEFINING FLASH CROWDS

While the term “flash crowd” is in widespread use, prior work has

generally not defined what constitutes such a crowd (systems pro-

posals can be qualitative, and previous measurement studies [8] only

had traces of one or two such crowds). To detect crowds in such a

large dataset, we were pressed to craft a working mathematical defi-

nition of “flash crowd.” We present this definition both to describe

our own methodology and to standardize future research efforts.

2.1 Defining Flash Crowds

We define a flash crowd as a period over which request rates for a

particular fully-qualified domain name are increasing exponentially.

Call rti the average per-minute request rate over a particular time

period ti. We say a domain is experiencing a flash crowd if

rti > 2i
· rt0 , ∀i ∈ [0, k]

and

max
i

rti > m ∧ max
i

rti > n · ravg

where constant m is a minimum per-minute request rate, and the

constant n specifies how much more the maximum sustained rate

must be than the service’s average rate. Effectively, this requires that

the crowd has occurred over a modest number of periods (at least k)

and resulted in a larger terminal rate (m) that is many times the mean

(n). Choices of k, m, and n are subjective, although in this study, we

use k = 3, m = 500 reqs/min, and n = 15. The use of such constants

may seem ad-hoc, but they are necessary in any derivative-based

definition in order to filter out small fluctuations. We continue to add

subsequent periods until we have seen τ periods (τ = 3) for which

rt j
· 2−1

< rt j+1
< rt j

· 2

Many unique URLs may belong to the same crowd, e.g., they

represent embedded content in a web page. However, because they

may be served by different origin servers or CDNs, we conserva-

tively consider requests to different fully-qualified domains (e.g.,

a.example.com and b.example.com) as belonging to distinct crowds.

2.2 Request Rate Epochs and Crowd Speed

Thus far, we have not specified the granularity at which we measure

request rates. Adjusting the epoch period for request rate calculations

affects the type of crowd we detect. At shorter epochs, such as 60

seconds, we detect crowds that increase very rapidly but have a

limited duration. For instance, if rt0 were to be just 1 req/min, a

crowd lasting 30 minutes must have a terminal request rate rt30
of

more than one billion requests per minute to satisfy this definition.

On the other hand, crowd detection with longer epochs will present

a less extreme growth rate.

In this study, we consider crowds using six different epoch pe-

riods: 1, 2, 5, 10, 30, and 60 minutes. (Crowds detected using

shorter epochs provide less time for a service to react to its increased

demand, a problem explored in Section 4.) Using these definitions,

we identify 3,553 crowds in the CoralCDN trace. Of these, 1,052

crowds originate from fewer than 10 client IP addresses each; man-

ual inspection of some of these traces uncovered various undesired

uses, such as attempted password cracking. Crowds of this nature

likely would not occur in a closed, commercial CDN, given their

increased security protections. Consequently, with the exception of

Figure 3, our subsequent analysis filters out these crowds and only

considers the remaining 2,501.

3. FLASH CROWD CACHEABILITY

3.1 Caching Challenges

During flash crowds, a CDN often acts as an intermediary between a

large distributed base of clients and a small number of origin servers;

ensuring efficient communication with both of these parties poses

distinct challenges. On the demand side, CDNs need to proportion-

ately distribute thousands of simultaneous requests across a network

of caches. Simultaneously, a CDN must judiciously fetch content

from the origin server(s), being careful to avoid simply relaying the

brunt of the load to the origin.

How large are the flash crowds that CoralCDN observes and how

amenable are they to caching? At the minimum, each unique URL

must be fetched at least once from the origin. Crowds with many

unique URLs—for example, due to different URLs representing

distinct dynamic content—can incur greater origin load. Figure 1

plots the flash crowds analyzed in this study, comparing the number

of unique URLs per crowd (given on the x-axis) with their peak

request rate to CoralCDN (given on the y-axis). If a crowd is identi-

fied under more than one epoch size (per Section 2.2), we record it

multiple times in this analysis. The upper right quadrant of the figure

represents crowds that are both massive in scale and distributed over

large numbers of URLs.
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Figure 1: Size and cacheability of 2,501 flash crowds.
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Figure 2: AS-level clustering of client requests. Each line plots

a CDF of the number of ASes with clients that generate X% of

crowds’ requests.

3.2 Comparison of Caching Strategies

To minimize origin load and decrease client perceived latency, CDNs

cache content widely across their networks. While they may em-

ploy a variety of caching strategies, one fundamental choice is the

degree to which caches coordinate in fetching origin content. Coral-

CDN uses cooperative caching, where proxies discover and fetch

content from other caching proxies, before requesting content from

the origin. CoralCDN uses a distributed hash table for global con-

tent discovery, while earlier cooperative approaches were based on

more static cache hierarchies [2]. In contrast, many commercial

CDNs, including Akamai [9, 14], primarily use non-cooperative

caching, where each remote proxy (or proxy cluster) independently

fetches content from the origin site. A continuum of caching strategy

exists with varying degrees of cache coordination. For clarity of

comparison, however, we restrict our analysis to these two extremes.

Cooperative caching yields strictly fewer requests to the origin

server than non-cooperative approaches, since all but the first request

for each URL are served from cache. At the same time, cooperation

increases system complexity and adds coordination overhead. In this

section, we evaluate the performance benefit of cooperative caching

in observed crowds. We also identify factors which influence how

much benefit cooperative caching will provide to a particular crowd.

First, the client distribution over proxies plays an important role.

When clients are concentrated at a small number of proxies (perhaps

due to their locality), relatively few distinct caches fetch content

from the origin, diminishing the benefits of cooperation. On the

other hand, crowds distributed over large numbers of caches pose

a higher risk of overloading the origin if caches do not cooperate.
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Figure 3: Number of proxies and clients involved in each flash

crowd. Guide lines plot the curves for 1, 10, 100, and 1000

clients per proxy.

Our crowd traces support the latter scenario—clients are distributed

across many network locations—suggesting that cooperation could

be helpful. To illustrate, Figure 2 shows the clustering of clients

based on network topology. While 20% of crowds have half of their

requests originate from clients within a single Autonomous System

(AS), crowds commonly involve hundreds of ASes. Similarly, many

CoralCDN proxies are involved in serving a crowd, as shown in

Figure 3, and requests are well distributed over them. This unfiltered

figure shows all 3,553 crowds, including those with only a few

clients, likely malicious, accessing large numbers of proxies.

The concentration of a crowd’s URLs can also affect its coop-

erative cacheability. To characterize this less intuitive factor, we

calculate the number of requests seen by each crowd’s origin under

both non-cooperative and ideal cooperative caching (under the latter,

the origin sees a single hit per URL). In this analysis, we make the

simplifying assumption that caches do not evict a crowds’ content

during its lifetime. CoralCDN typically operates at around 300

servers world-wide (spread over around 150 POPs), and the arrival

of clients to each server was drawn directly from actual crowd traces.

Since the distribution of requests amongst caches determines cache

locality, using real request traces is necessary for correct evaluation.

Figure 4 demonstrates that content dynamism (the number of

unique URLs) has a significant impact on the relative benefits of

cache cooperation. The top graph plots the fraction of cache hits

under cooperative and non-cooperative strategies, as a function of

URL distribution. The lower graph plots the difference in these

numbers, highlighting the normalized reduction in origin load under

cooperation. Its shape reveals an interesting pattern: In crowds

with a small number of unique URL’s, cooperative caching provides

relatively little incremental benefit, since each cache retrieves the

critical set of URLs from the origin in a small number of hits. On

the other extreme, crowds with mostly unique URLs—typically

dynamic content differentiated for each client—receive no additional

benefit from cooperative caching. Such crowds are fundamentally

uncacheable, since no URL is ever repeated.

The lower graph in Figure 4 reveals a “sweet spot” for cooperative

caching. In this region, cooperation has the potential to decrease

origin load substantially, often by more than half the size of the

crowd itself. These results suggest that the decision to introduce

cooperation in CDNs should depend on the types of crowds that a

CDN expects to handle. If it is somehow known a priori that crowds

will be concentrated over just a small number of unique objects, then

cooperation is likely unnecessary. Figure 5 illustrates these results

in CDF form: about 30% of crowds see less than a 10% reduction
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Figure 5: Origin load reduction from cooperation, as a fraction

of total requests, for crowds defined by different epoch lengths.

in origin load, while 20% see between a 20% and 55% reduction

in origin load. Further, slower-building flash crowds saw greater

benefits from cooperative caching.

4. ELASTIC RESOURCE ALLOCATION

During flash crowds, services need to allocate additional resources

to meet surging HTTP traffic. The nature of such allocation depends

on whether the crowd is composed of static or dynamic content.

Crowds for a small number of unique URLs are easily served

from cache. As a result, the primary resource allocation challenge

falls to the CDN, which must direct clients to its wide-area proxies

handling the requested domain (typically during DNS resolution).

CDNs may also (re)allocate additional cache resources to particular

crowds or popular content; to do so, they must observe that existing

proxies are getting overloaded [6].
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Figure 6: Complementary CDF of the largest request rate in-

crease between successive minutes, for sets of crowds defined

by different epoch lengths.

The situation is more complex when crowds are for dynamic or

otherwise uncacheable content. In the face of flash crowds, poorly

provisioned services can use fall-back mechanisms to reduce server

functionality (for instance, disabling php execution on a web server).

This approach reduces the computational load per request, but at

the cost of losing personalization, analytics, or other beneficial

services. It also fails to guarantee availability, since servers may be

overwhelmed even under reduced functionality.

A second option is to push the problem of scaling computation

(rather than the normal communication) to the CDN. This approach

is supported by a set of “edge computing” APIs, which allow partial

distribution of application logic to remote cache sites [3]. Unfor-

tunately, not only does such a solution constrain application devel-

opers to a particular set of (non-standardized) service APIs, but it

also fails to address the common situation where application logic

requires back-end communication with a coordinating, more central-

ized database (which also must scale rapidly during crowds).

Only recently has a general-purpose solution arisen to the prob-

lem of scaling a dynamic application. The introduction of elastic

computing platforms, such as Amazon’s EC2, enables web services

to spin-up new resources on demand in multiple global datacenters.

Simultaneously, a litany of scalable back-end datastores—such as

MongoDB, Cassandra, and HBase—scale quickly with the addi-

tion of new hardware resources (which also can be allocated in a

virtualized environment).

Whether the resource allocation is delegated to a CDN or per-

formed in-house using elastic-computing resources, the responsible

service must have adequate time to react: Can such resource allo-

cation be performed fast enough in the face of flash crowds? This

section analyzes the rate of flash crowds and evaluates the efficacy

of dynamic resource allocation.

4.1 Measuring Rate Increases

Figure 6 presents the complementary CDF of the maximal minute-

over-minute increase in request rate observed during each crowd. A

separate CCDF is plotted for each epoch time.

We observe that a handful of crowds experience extremely large

surges in request rates, increasing by tens of thousand of requests

in successive minutes. Further investigation determined that such

volatility is caused by a particular usage scenario: such sites use

HTTP 302 redirects to relay traffic to CoralCDN only during ex-

tremely loaded periods. Such elastic load shedding presents an
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Figure 7: Surging request rates caused by intermittent 302 redi-

rection from The Boston Herald.

attractive proposition for resource-constrained websites: the ability

to use third-party content distribution only when local resources are

oversubscribed. However, it also eliminates the traditional request

build-up that can serve as an “early warning sign” for CDNs.

As an example of such rapid increases, Figure 7 plots the number

of requests per minute to CoralCDN during a flash crowd expe-

rienced by The Boston Herald over roughly one hour. The three

distinct traffic surges (grey background regions) occur just after

the website switches on redirection, likely in response to a local

load-shedding policy. As a result, CoralCDN sees thrashing and

unpredictable request rates.

While instantaneous flash crowds to CoralCDN are still a small

fraction of its total use, they still point to the important concept

of resource elasticity. Under such scenarios, it can be difficult for

CDNs and origins to respond quickly to dramatic load increases.

4.2 Effectiveness of Elastic Scaling

Crowds for static or dynamic content require distinct resource al-

location mechanisms. Using cloud-computing platforms such as

Amazon EC2, origin sites can “spin up” new virtual nodes to handle

increased demand for dynamic or uncacheable content. Alternatively,

CDNs can satisfy request spikes for static content by adapting the

set of proxies handling a particular domain, possibly within seconds.

In either case, the service must measure resource utilization and

determine when to allocate new resources to address flash crowds.

To examine whether either environment can adapt rapidly enough,

we simulated dynamic resource allocation strategies against the

crowd traces. In our experiments, we assume that each proxy or

compute node can handle a fixed request rate. We further consider a

desired utilization ratio across all nodes. Production services often

target an average utilization ratio that is well below 100% to ensure

that spare capacity exists during unpredicted fluctuations in demand.

Lower utilization provides a better hedge against rate increases, at

the price of higher operational cost.

In our simulation, a service begins with a sufficient number of

nodes to handle 5% of the crowd’s peak load at the desired utilization.

After each 10-second interval, during which time the request rate

can increase, the service initializes zero or more new nodes to bring

its utilization below the desired target. There is a delay of d seconds

before a new node can service requests (d = 10, 60, 600). In this

experiment, a service never decreases its number of active nodes.

Our main considerations are how often this simple strategy leaves

the service oversubscribed (that is, more than 100% utilized) and how

sensitive any oversubscription is to the speed of resource allocation.
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lization) periods when resources are dynamically scaled during

flash crowds. Plots differ by the spin-up delay d needed to bring

resources online, each evaluating several target utilizations.
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Figure 9: CDF of spin-up times for EC2 virtual instances.

Figure 8 plots a CDF of the number of oversubscribed 10-second

intervals during each experiment (for each of the 2,501 crowds) for

various target utilizations (10%, 20%, and 50%). We find that sub-

minute resource allocation is required to prevent oversubscription

in most flash crowds. For instance, if allocating new VMs requires

ten minutes, 66% of all crowds experience at least one period of

oversubscription, even under the most conservative target of 10%

utilization. While this experiment is highly simplified, it motivates

the need for further study on the effectiveness of resource allocation

policies in the face of load volatility.

To characterize the delay for allocating new resources in the

cloud, we profiled Amazon EC2. Our experiment measured the time

required to spin-up a new VM, repeating the process in three different

datacenter locations each hour over the course of one day (August

31, 2011). Figure 9 plots the CDF of spin-up times observed on

EC2: The majority of instances became available within 1-2 minutes.

Given these delays, avoiding dropped requests for the majority of

observed crowds requires the most aggressive provisioning strategy.
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Referer # Crowds Referer # Crowds

digg.com 123 facebook.com 10
reddit.com 20 duggmirror.com 8

stumbleupon.com 15 duggback.com 5
google.com 11 twitter.com 4

Figure 10: Domains that are common referrers for crowds.

5. SOURCE ATTRIBUTION

While flash crowds may seem unpredictable and random to service

providers, they are often explained by human factors. The “Slashdot

Effect,” for instance, refers to the spike in popularity witnessed by

sites linked to by the Slashdot website. Increasingly, social networks

are facilitating the viral sharing of links between acquaintances,

which can lead to explosive growth in content popularity. This sec-

tion qualifies the role of third-party portals in creating flash crowds.

5.1 Causal Inference for Source Attribution

We determine the cause of flash crowds through HTTP Referer

headers. The Referer header, when present, indicates that a user has

arrived at a particular URL by means of a link from another URL, or

that the URL represents content embedded in a parent webpage. In

many cases, a complex web of referrers arises when a user accesses

a web page, fetches embedded content, and then further browses

the trending website. We use the set of pair-wise referral links to

reverse-engineer a user’s HTTP session (with referral links that form

a directed acyclic graph). This allows us to attribute their subsequent

traffic to as small a set of originating referrers as possible.

5.2 Effects of Portals, Networks, and Tweets

Figure 10 lists referring domains that contributed heavily and fre-

quently to flash crowds. We consider a domain as a heavy referrer if

it originates more than a third of a crowd’s requests. Well-known

Internet portals, (in)famous for causing flash crowds, top this list.

These findings confirm the perception that online portals are a com-

mon source for flash crowds. The term “Slashdot Effect” may be

a slight misnomer, however: While Coralized URLs were posted

on the Slashdot homepage several times during the trace, very few

generated sufficient traffic to meet our crowd threshold. Still, these

findings are predisposed by user behavior: CoralCDN appears to be

more commonly used by digg readers than those of Slashdot.

Perhaps more surprising is the presence of crowds referred from

Facebook and other social networking sites. Unlike centralized

content portals, these sites disseminate links through social connec-

tions, spreading virally via pairwise, decentralized exchange. A link

posted on Twitter is shared with direct followers, then re-tweeted and

propagated through the social graph, for instance. Recent work [11]

has considered the role of user location in predictively caching con-

tent for such crowds. We confirm that project’s hypothesis that

social-network activity can generate meaningful flash crowds.

A handful of crowds arose with even less explicit coordination:

those whose primary referrer was search traffic from sites such as

Google, Yahoo!, and Bing. These crowds relied on no central portal

or coordinating website, instead growing through some type of out-

of-band communication, e.g., e-mail, word of mouth, etc. Still,

through the “zeitgeist,” search engines generated exponential traffic

increases to particular websites, and ultimately to CoralCDN.
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Figure 11: Referral traces from third parties. Each plots a dis-

tinct crowd, but timing of each surge (grey regions) are aligned.

To illustrate the traffic patterns from a few example crowds, Fig-

ure 11 plots the requests rates from a variety of referring websites,

including social media sites and content portals.

6. RELATED WORK

Several research projects have focused on mitigating the effects

of flash crowds. A number of papers explore the use of peer-to-

peer protocols to cooperatively address traffic surges [5, 10, 12, 13].

Work on request redirection in traditional CDNs has also considered

flash crowds, reallocating demand among back-end proxies during

periods of high load [6]. Still other work has focused on detecting

and pruning flash crowds within local networks, before traffic ever

reaches a bombarded service [1, 7]. None of these studies consider

traces or offer analysis of real flash crowds observed across the

wide area. A notable exception is Jung et al. [8], which draws

conclusions from a small number of flash crowds against a single

web server. That study focuses on distinguishing flash crowd traffic

from denial-of-service attacks, a topic we only briefly address in

this paper. Very recent work has considered using social network

information, such as user location, to determine cache policy during

flash crowds [11]. That work restricts its analysis to user-level

observations of twitter crowds, however, and it lacks information

about the true network location of users and caches. Our analysis

is complementary, profiling the actual distribution of users amongst

caches in an operational CDN and characterizing cache locality

during real crowds.

7. CONCLUSIONS

This paper finds that flash crowds, even when conservatively defined,

are quite commonplace in a popular, open CDN. We initiate the study

of flash-crowd dynamics using logs of several thousand such crowds.

Our measurements show that crowds vary in their amenability to

effective caching, and that cooperation between caching proxies min-

imizes origin load for some crowds, but not all. Further, we find that

some crowds can grow too quickly for dynamic resource allocation

to keep up with demand; cloud-based approaches of spinning up

new VM instances can sometimes fare poorly in preventing oversub-

scription. Finally, we confirm anecdotal evidence that third-party

portals contribute to substantial numbers of crowds, and document

that the sharing of links through social media and the uncoordinated

use of search engines lead to flash crowd formation as well.
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Summary Review Documentation for 

“Going Viral: Flash Crowds in an Open CDN” 
Authors: P. Wendell, M. Freedman 

 
Reviewer #1 
Strengths: Very interesting topic. Talk of flash crowds can be 
found all over the area of content distribution but surprisingly it is 
almost always anecdotal whereas there is very little systematic 
work on characterizing them. 
The connection to elastic (cloud based) scaling is very relevant 
and interesting. 
The fact that flash crowds can also arise in an epidemic, OSN-
based, manner is also very interesting and rather unexpected. 
 
Weaknesses: The comparison between cooperative and non-
cooperative caching is rather dull and misleading.  
Fails to cite and compare against related work on early detection 
of social cascades, e.g. Salvatore Scellato, Cecilia Mascolo, Mirco 
Musolesi, Jon Crowcroft “Track Globally, Deliver Locally: 
Improving Content Delivery Networks by Tracking Geographic 
Social Cascades”, Proc. of 20th International World Wide Web 
Conference (WWW 2011), Hyderabad, India. March 2011. You 
also need to explain the novelty with respect to [3]. 

Comments to Authors: Very interesting and timely work.  

Main concern: You NEED to comment and put your work in 
context with respect to the papers mentioned above. Your work is 
not the only measurement work in the area.  

Some additional suggestions: 

Sec. 3.2 “Comparison of Caching Strategies” is rather boring 
compared with the rest of the paper. I would say that the matter is 
also a bit exaggerated since the difference between cooperative 
and non-cooperative caching is rather trivial in terms of the load 
reaching the origin server. The maximum difference in number of 
requests hitting the origin server cannot exceed the size of the 
caching group. Since the number of hits of a flash crowd is in the 
order of thousands per minute whereas for most CDNs the number 
of servers/PoPs is in the order of hundreds, it does not really 
matter if you get |size of caching group| fewer requests at the 
origin server. The comparison makes sense for long tail content 
where individual items see a few requests but is totally secondary 
for flush crowds. The “flash crowds” that see some difference are 
indeed the smallest ones. The paper totally bloats its importance 
in my opinion. 

I wish you could nail down a little bit more the elastic scaling 
section. For instance, run an example in EC2 and automate the 
purchase process. Report the metrics under real VM purchasing 
delays.  

 

Reviewer #2 
Strengths: - The problem of identifying and mitigating flash 
crowds in CDNs is timely. 
- To the best of my knowledge this is the first paper that formally 
defines flash crowds. 
- The authors use large scale measurements of an operational 
CDN to identify and characterize flash crowds. This can be a good 
reference paper. 
- The conclusions of this paper are very important for the design 
and dimensioning of CDNs. 
- The paper is well written and easy to follow. 
 
Weaknesses: None. 
 
Comments to Authors: In Section 3.2, you may want to refer to 
the following paper: S. Triukose, Z. Al-Qudah, and M. 
Rabinovich, “Content Delivery Networks: Protection or Threat?”, 
in ESORICS, 2009. In this paper the authors show that it is easy 
to take advantage of the hierarchical cache structure in order to 
attack the original server by utilizing CDN nodes. Thus, a 
collaborative scheme is not only robust to flash crowds, but to 
DDoS as well.  
 
Can you correlate the time zone of the AS and the time-of-day 
that flash crowd is observed? Can you verify that the majority of 
flash crowds take place on the peak time of the time zone of ASes 
with the highest population of users?  Do you see that users that 
belong to ASes in different time zones are participating in a 
follow-up flash crowd? 
 
It would be nice if you comment on the delay penalty that end 
users pay due to flash crowd. Is it the case that users from US are 
re-directed to Europe or Asia during flash crowds using your 
collaborating caching scheme? 
 
As a second reference for the Akamai architecture, you may want 
to this the following reference: “The Akamai Network: A 
Platform for High-Performance Internet Applications” ACM 
SIGOPS Operating Systems Review, Vol. 44, No.3, July 2010.  
 
A minor comment when working with CoralCDN: It seems that 
applications that depend on location information may have 
problems. For example when you are browsing 
http://www.google.com.nyud.net/ in France you may be redirected 
to the front page of Czech Google. It seems that collaborative 
caching may mitigate flash crowds but can also be unfriendly to 
location-based services. 
 
 
Reviewer #3 
Strengths: This is a solid measurement paper with interesting 
results. 

556



Weaknesses: I wish the paper would have gone down one step 
deeper, for example use some specific examples to more vividly 
describe the creation and impact of flash crowds.  The current 
paper only has rather aggregated curves. 

Comments to Authors: One problem I had with reading this 
paper is that I”m not familiar with CoralCDN, to know exactly 
how it works or who are its user communities.  

I also have a slightly different opinion regarding the role of 
cooperative vs. independent caching by CDN nodes.  The paper 
argued that CDN nodes collaboration would be needed to help 
reduce origin server workload. However deployed CDN systems 
can use URL hashing to assure that the requests for the same data 
go to the same nodes, achieve the goal without the overhead of 
collaboration.  

Reviewer #4 
Strengths: Nice paper, which presents a formal definition of flash 
crowds and examines their effect on caching and a case-study 
showing whether cloud services can help. Interesting to see that 
social network activity leads to significant flash crowds. 

Weaknesses: Only minor problems with the paper. 

Comments to Authors: I enjoyed reading the paper, and I would 
actually like to see more from the analysis, especially regarding 
the sources of flash crowds.  

The paper is also well written. 

You introduce a number of hard constants in your model, which 
seem to come out of nowhere. It would be nice to present some 
intuition first on why these are the right numbers (e.g., number of 
reqs/min as a lower threshold). 

I really have no context on what type of users CoralCDN serves. 
Some description here would help. 

Regarding the analysis of the sources, it would be interesting to 
see the relative intensity across different types of flash crowds and 
their characteristics. For example, I would like to see similar 
figures to 1-3, but conditioning on the source of the flash crowd. 

Reviewer #5 
Strengths: - The CoralCDN dataset collected over a 4 years time-
period. 
- Interesting observations on the effect of flash crowds for 
designing and operating CDNs.	
  	
  
	
  
Weaknesses: - The definition of flash crowd is meant to be 
formal, but looks very ad hoc.  
- The work is quite preliminary, but this is OK for a short paper. 

Comments to Authors: It is nice to have a formal definition of 
flash crowds, but this definition looks quite ad hoc to me. First, 

why are k = 3 (minutes, I guess) enough, the exponential rate of 
increase  during these 3 minutes at least 2 (and nothing else), on 
which duration is the max taken when comparing it m = 500 and 
15*average_rate?  

I do not understand how you obtain the 3 curves superimposed on 
the cloud of points in Figure 3. An explanation would help. 

	
  
Response from the Authors 

We thank the reviewers for their careful consideration.  We 
identify three primary topics expressed in these reviews: (i) 
commentary on the caching observations in the paper, (ii) issues 
with the definition of “flash crowd” used to detect crowds, and 
(iii) confusion about CoralCDN’s design and user population.  

Reviewers #1 and #3 offered distinct criticisms of the caching 
section. In the first case, the reviewer asserted that the number of 
origin requests was limited to the size of caching group, which is 
small enough to be inconsequential even in the worst case. In fact, 
those requests are bounded by (the size of caching group * 
number of unique URLs), hence the important of content 
dynamism discussed in section 3. In the second case, the reviewer 
suggested that simply designating a small number of caches 
responsible for a particular crowd could prevent origin overload. 
This is not always a desired solution: some of today’s CDNs run 
on tens of thousands of servers located in thousands of networks, 
specifically so that content is cached near to geographically 
disparate clients. 

Reviewers #4 and #5 took issue with the paper’s formal definition 
of a flash crowd. These reviewers pointed to the use of some 
constant terms as somewhat ad-hoc.  Our intent in defining a 
“flash crowd” was to provide a reasonable working definition for 
our analysis and future projects.  We couldn’t find any 
quantitative definition of flash crowds in prior work (likely 
because they considered a single or small number of events), and 
we needed some way to classify crowds from amongst the 4 years 
of traces we analyzed.  That said, we altered the text to better 
frame this definition and explained its constants in some more 
detail.  

Several reviewers requested more information about the details of 
particular crowds and about CoralCDN. Our intention in writing 
this paper was to describe aggregate data on crowds, rather than 
in-depth analysis of any particular crowd (readily available in 
prior work). Thus, given space constraints, we have not elected to 
include detailed or anecdotal discussions of particular crowds.  
We have also added a little more information about CoralCDN in 
the text, although readers wanting more information about 
CoralCDN can consult its two referenced papers, which describe 
its design and operation in depth. 

Finally, a few reviewers referred us to recent related work; we 
added references to these publications where appropriate 
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