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Abstract
Fast-loading web pages are key for a positive user experience. Un-
fortunately, a large number of users suffer from page load times of
many seconds, especially for pages with many embedded objects.
Most of this time is spent fetching the page and its objects over the
Internet.
This paper investigates the impact of optimizations that improve

the delivery of content from edge servers at the Yahoo! Content
Delivery Network (CDN) to the end users. To this end, we an-
alyze packet traces of 12.3M TCP connections originating from
users across the world and terminating at the Yahoo! CDN. Us-
ing these traces, we characterize key user-connection metrics at the
network, transport, and the application layers. We observe high
Round Trip Times (RTTs) and inflated number of round trips per
page download (RTT multipliers). Due to inefficiencies in TCP’s
slow start and the HTTP protocol, we found several opportunities to
reduce the RTTmultiplier, e.g. increasing TCP’s Initial Congestion
Window (ICW), using TCPAppropriate Byte Counting (ABC), and
using HTTP pipelining.
Using live workloads, we experimentally study the micro effects

of these optimizations on network connectivity, e.g. packet loss
rate. To evaluate the macro effects of these optimizations on the
overall page load time, we use realistic synthetic workloads in a
closed laboratory environment. We find that compounding HTTP
pipelining with increasing the ICW size can lead to reduction in
page load times by up to 80%. We also find that no one configu-
ration fits all users, e.g. increasing the TCP ICW to a certain size
may help some users while hurting others.

Categories and Subject Descriptors
C.4 [Performance of Systems]: measurement techniques, perfor-
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1. INTRODUCTION
For web sites to maintain high user satisfaction, their web pages

need to load quickly. However, web pages are becoming more con-
tent rich over the past few years. They include many embedded
images, scripts, and style sheets. Consequently, page load times
are getting higher. As we will see in Section 4.1.2, many users can
experience tens of seconds of load time for popular web pages like
Yahoo!’s front page.
Our measurements and previous research show that virtually all

of this time is spent in the network stack downloading the web page
and its embedded objects [14, 20, 25]. Two main factors contribute
to the long download time. The first is the network RTT from the
user to the web server. Second, a page download typically takes
tens of round trips to download the web page data and all its em-
bedded objects. The number of round trips involved is called RTT
multiplier.
Long network RTTs can be due to a combination of long Internet

routes, route misconfigurations, and long queuing delays at routers
along the packets’ path. To alleviate this problem, CDNs are de-
ployed across the globe by companies like Akamai, Facebook, Mi-
crosoft, Google, and Yahoo! These CDNs bring content closer to
users across the world, hence reducing their network RTTs. How-
ever, this study and previous work by Krishnan et al. [16] have
shown that even with globally deployed CDNs, many users expe-
rience hundreds of milliseconds RTTs. To alleviate this high RTT
problem, Krishnan et al. proposed a tool, WhyHigh, that attempts
to identify routing misconfigurations leading to inflated network
RTTs. This helps fix these misconfigurations and reduce round trip
times.
Inflated RTT multipliers are mainly due to inefficiencies during

TCP slow start and in the HTTP protocol. TCP slow start probes
the available link capacity by exponentially growing the transfer
rate per RTT until a packet is lost (or the slow-start threshold is
reached). This probing is fairly conservative, as it starts from a
modest ICW, with a default value of three in most networks. Hence,
it wastes many network round trips before the full available net-
work bandwidth is utilized. Similarly, HTTP is used inefficiently
in practice as it requests a single object at a time wasting a net-
work round trip per object. For a page with tens of small embedded
objects, this is very wasteful.
Two key optimizations were proposed by the IETF and indus-

try [7, 11]: First, TCP should start probing from a larger ICW size.
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Dukkipati et al. [11] argue for using an ICW of 10 segments. Us-
ing traffic measurements from Google’s users, they argue that this
would reduce object load time with virtually no downside. Sec-
ond, TCP should open up the congestion window size at a higher
rate per round trip. TCP slow start increases the congestion win-
dow by one for every acknowledgment received. However, delayed
acknowledgments, which are pervasively deployed in the Internet,
make the receiver send an acknowledgment for every other packet
received. This causes TCP congestion window to increase by a fac-
tor of 1.5 instead of 2 per network round trip during slow-start. To
remedy this problem, ABC [3, 5], was introduced to increase the
window based on the number of bytes acknowledged instead of the
number of acknowledgments received.
HTTP pipelining [12] was introduced to optimize HTTP down-

loads reducing the number of round trips. It allows for sending
HTTP requests for new objects, while responses from earlier re-
quests have not yet been recieved. As seen in Figure 1, HTTP
pipelining saves RTTs reducing overall web page load time. Un-
fortunately, HTTP pipelining is not available by default in major
web browsers. For example, Internet Explorer, the dominant web
browser, does not support it. 1 And while Firefox supports it, it is
disabled by default.
This paper is concerned with the delivery of content from edge

servers from the Yahoo! CDN to the users. To this end, we collect
packet traces of 12.3 million TCP connections from users of Ya-
hoo! across the world. Using these traces, we present an in-depth
cross-layer study of different factors affecting web page load times.
Then, we study different cross-layer optimizations and their inter-
play aimed at reducing the RTT multiplier. Specifically, we study
varying the ICW size, TCP ABC, and HTTP pipelining using live
and realistically-inspired synthetic workloads.
The contributions of this paper are three fold:

1. Characterize the connections from users’ to the Yahoo! CDN
web servers at the IP, TCP, and HTTP layers.

2. Study TCP optimizations to reduce web page load times –
most notably changing the ICW. We find that many users
benefit significantly (up to 38%) from increasing the ICW
size. However, in contrast to previous work, we show that no
one size for the ICW fits all the users as increasing the ICW
for some users can increase packet loss hurting the overall
page load time. Moreover, we show that, in some cases,
increasing the ICW size can be unfair to other flows in the
network. We believe that currently this result is especially
important given the efforts at IETF to increase TCP’s ICW
size to the fixed size of 10 [10].

3. Study and quantify the performance gains from HTTP
pipelining using realistic workloads. In addition, quantify
the gains when HTTP pipelining is used in conjunction with
optimum ICW size. These gains can reach 80% reduction in
the page load time.

The rest of this paper is organized as follows. Section 2 presents
the background and previous related work. Section 3 characterizes
the traffic observed at the Yahoo! CDN. Section 4 presents our
study of different optimizations to reduce the RTT multiplier to
reduce the web page load time. Section 5 discusses our findings.
Section 6 concludes the paper.
1The main reason Microsoft gives is that pipelining is not univer-
sally implemented, e.g. head-of-line blocking with buggy proxy
servers.
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Figure 1: Non pipelined vs. pipelined HTTP connection. The
client arrows indicate GET requests.

2. BACKGROUND AND RELATED WORK
In this section, we explain how content delivery networks work.

We also present some of the related work aimed at optimizing con-
tent delivery at CDNs, more specifically optimizations to the net-
work stack.

2.1 Content Delivery Networks
CDNs are usually built as a network of geographically diverse

sites. Each site hosts a cluster of servers caching content and deliv-
ering it to users. The geographical diversity serves two purposes.
First, it brings content closer to the users reducing network latency.
Second, it provides redundancy to tolerate failures of individual
sites.
In a nutshell, a CDN typically works as shown in Figure 2. When

the user tries to fetch an object from a particular URL, it first per-
forms a DNS lookup. The DNS server returns the IP address of a
server near the user. The user then contacts the server to fetch the
object. If the server has the object locally, it serves it to the user
from its cache. Otherwise, the server contacts a back-end server,
usually over a fast private network, to fetch the object into its cache
and then serve it to the user.
There are multiple CDNs deployed worldwide. Some compa-

nies run and use their own private CDNs like Google, Facebook,
and Yahoo!. Others use third party CDNs like Akamai [19] and
CoralCDN [13].
In this paper, we study the delivery aspect of the Yahoo! CDN.

At a high level, the Yahoo! CDN operates as described above.

2.2 Round Trip Times
Krishnan et al. [16] studied the network round trip latencies in

the Google CDN. They reported that latencies are generally high
and that 40% have round trip times higher than 400ms. They ar-
gued that adding more CDN sites is not always the best solution
as this high latency is sometimes due to queuing delays and routing
misconfigurations. They then introduced a new tool,WhyHigh, that
tries to identify prefixes suffering from inflated latencies. Finally,
this tool attempts to diagnose the causes for this inflated latency by
using multiple active measurements, using different tools like ping
and traceroute, and correlating inflated subnet latencies to common
AS paths for example.
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In this paper, we also studied round trip latencies, and also found
latencies to be high (on the order of a few hundred milliseconds
in the developing world). However, the latency distributions we
observed were significantly lower than those reported in [16].

2.3 Optimizing the Network Stack
Previous work have argued for increasing TCP’s initial window

size [7, 10, 11]. Dukkipati et al. [11] recently argued for increas-
ing the window size to 10 segments in order to decrease page load
time. They argued that this reduces page load time with virtually
no downside. In contrast, although we find that many users bene-
fit from larger initial window size in this study, we also observe a
subset of users who suffer due to increased packet loss.
Qianet al. [23], have studied the Internet backbone traffic and

shown that up to 15% of large-flows already violate the ICW limit
set by the spec (min(4 ∗ MSS,max(2 ∗ MSS, 4380), which
equals 3 for a Maximum Segment Size (MSS) of 1460) [7]), and
values up to 9KB have been observed in the wild.
Allman [4] studied traffic to and from a single web server. He

characterized different settings of the protocols used (TCP and
HTTP) by this traffic. For example, he studied the deployment of
TCP features like selective acknowledgments. Like other studies,
Allman too reported long RTTs for studied connections. This study
is over 10 years old though and only studied 751K connections at a
single web server at a single geographic location. Moreover, unlike
this paper, Allman only relied on passive measurements and did
not try to measure different performance metrics in response to
changing different protocol settings.
To allow for increasing the ICW while not hurting users with

poor connectivity, Chu [10] et al. argued that users with poor con-
nectivity can can advertise a smaller receive window sizes. In the-
ory this can fix the problem. However, in practice, modifying the
network stacks of existing users with poor connectivity to dynam-
ically detect their network conditions and consequently adjusting
their corresponding receive window sizes is challenging.
A different line of research proposed multiplexing several small

streams on top of TCP to reduce web page load time, e.g. SPDY [2]
and Stream Control Transmission Protocol [24]. However, both
protocols are still experimental and not used at a large scale in the
web. In contrast, we aim to optimize existing protocols to achieve
best possible performance without breaking backward compatibil-
ity.
On the HTTP and application layer front, Leighton [17] advo-

cates several optimizations such as pre-fetching embedded content,
pre-caching popular objects at the edge, and using compression and
delta-encoding of popular web pages. The argument being that, in
contrast to a decade ago when the last-mile connection to the user
was likely the bottleneck, themiddle-mile’s capacity growth has not
kept pace and become the new bottleneck, and that these techniques
would all contribute to alleviating web traffic on the backbone and
faster page loads.

3. STUDYING YAHOO! CDN TRAFFIC
In this section, we present our study of the traffic characteristics

at the Yahoo! CDN edge servers. Specifically, we wanted to ana-
lyze and dissect network connections on multiple levels to answer
questions as follows:

• Routing Layer (IP): What is the distribution of RTTs? Are
some ISPs suffering from exceptionally high RTT to the
nearest CDN node?

Internet

Edge
Caching Server

'()&
)$%*$%&

'()&
)$%*$%&
Backend
Server

Edge
Caching Server

Edge
Caching Server

1

Edge

2

&&
d 3

DNS
Server

Figure 2: An HTTP request to a CDN. First, the DNS resolves
the server’s name to a nearby edge server. Then, the client
sends the request to the nearby caching edge server. On a cache
miss, the edge server contacts the back end servers to fetch the
missing content and then deliver it to the user.

• Transport Layer (TCP): What level of packet retransmission
rates do different users experience? What is the distribution
of bytes transfered per connection? What is the distribution
of the connection lifetime?

• Application Layer (HTTP): How many web objects are
fetched per TCP connection? What is the distribution of the
sizes of objects fetched?

3.1 Methodology
For this study, we used 1-hour long tcpdump traces collected

from edge servers in the Yahoo! CDN across the world. We se-
lected an edge server at each of the following sites: Chicago, Ger-
many, Singapore, and India. These sites were chosen to span dif-
ferent important regions of the world with diverse connection char-
acteristics. We have verified that the traffic characteristics at one
server are representative of its corresponding site. We did this
by collecting traces from different servers at the same site and
comparing their characteristics and verifying they are virtually the
same. Consequently, we only report results from one server per
site. These servers run Linux with 2.6 kernels. Moreover, these
servers were configured with default kernel settings for the TCP
stack. The packet traces were collected at 1 p.m. local time, which
previous studies at Yahoo! have shown to be traditionally the peak
load time on these servers. We have also verified that traffic at other
times of the day has qualitatively similar characteristics.
We used a combination of of tcpsplit [6] and tcptrace [21] to

analyze every TCP connection we captured (12.3M connections).
This provided a detailed report on a multitude of key connection
characteristics; connection duration, number of bytes transferred,
average roundtrip time estimates, retransmitted packets, etc. In ad-
dition, we used the HTTP module in tcptrace to parse HTTP layer
information such as request arrival, response initiation, and com-
pletion timestamps, objects requests and their sizes, etc. Finally,
we used Yahoo!’s proprietary internal data sets for geo-locations,
connection speeds, and subnet prefixes in conjunction with infor-
mation extracted from the traces to complete this study.
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Figure 3: Average RTT distribution across the four Yahoo!
CDN nodes.

3.2 Results

3.2.1 RTT Characterization
In this section, we study the RTTs experienced by different users

at the four sites.
Figure 3 shows the RTT distributions for the 4 sites. We note that

the distributions for the Chicago and the Germany sites are consid-
erably better than the Singapore and the India sites. As reported
by previous work [16], we note that RTTs are generally high even
though CDN nodes are geographically distributed to be close to
the users. However, in contrast to [16], which showed that 40% of
the user connections had greater than 400ms RTT, in our workload,
only 10% of the user connections experience 400ms or more RTT.
Figures 4 and 5 breakdown the data by the users’ source network

(this applied clustering is similar to studies such as [15], which
grouped web-clients based on source network, among other fac-
tors). They show the median, 10th, and 90th percentiles of RTT and
packet retransmission rates of users’ connections per source subnet
for their corresponding sites. They also show the connection counts
per subnet. Both figures only show the top-100 subnets with respect
to the number of connections arriving from each subnet. Since both
the Germany and the Chicago sites had similar connectivity char-
acteristics, we chose to show one example of them only – Chicago.
Similarly, we chose the Singapore site as an example of the other
two sites. In both figures, we note that there is a wide range of
RTTs with some subnets having connections experiencing multi-
second RTT. Also, we notice a wide range of packet retransmission
rates with some subnets having connections experiencing over 50%
packet retransmission rate.
Figure 6 shows the RTT distribution of the 8-most frequent states

connecting to the Chicago node. We note that even though these
states are very close geographically to Chicago, big fraction of their
connections experience hundreds of milliseconds RTT (This could
be due to many reasons including long queueing delays). Hence,
one can conclude that adding more CDN sites with geographical
proximity to the users does not guarantee to significantly reduce

RTT by State

Figure 6: RTTs of top 8most-frequent user origin states. Show-
ing the median, 10th and 90th percentiles.

their RTTs. This is consistent with observations and conclusions
made by previous work [16].
Figure 7 shows the RTT distribution by connection type. Note

that Broadband represents connections having high speed, yet their
connection type is unknown. Also, note that mobile connections
have significantly high RTT. Given the growth of mobile networks,
improving the RTT multiplier for these connections becomes more
pressing so that mobile users can have acceptable web page load
times.
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Figure 4: Median, 10th and 90th percentile RTTs, by user prefix, retransmission rate, and connection count to Yahoo! CDN node in
Chicago.
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Figure 5: Median, 10th and 90th percentile RTTs, by user prefix, retransmission rate, and connection count to Yahoo! CDN node in
Singapore.
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Figure 8: Bytes transferred per TCP connection.

3.2.2 TCP Connection Characterization
In this section we study different characteristics of users’ TCP

connections to the Yahoo! CDN.
Figure 8 shows the distribution of the total number of bytes trans-

ferred to the user per connection. We see that about 90% of connec-
tions download less than 64KB of data. Note that TCP Reno, the
default TCP flavor at many operating systems including Linux, has
64KB as the default value for TCP’s initial ssthresh (Slow Start
Threshold). One important consequence of this is that 90% of
the connections, barring loss, would never enter TCP’s congestion
avoidance phase and the transfer is done entirely in the slow-start
phase.
Figure 9 shows the distribution of connection duration at the four

servers. The different knees in the graphs correspond to the server’s
connection timeout setting, which reflects differences in the local
server configurations. Note that this does not correspond to active
transfer times; due to the typical size of objects requested, and the
small number of objects in a persistent connection, as we will see
in Section 3.2.3, a typical connection is idle most of the time.
To study packet loss for these connections, we use a metric that

is measurable from the packet traces we collected, i.e. retransmis-
sion rate. This retransmission rate is an upper bound on the packet
loss rate. Since most users use selective acknowledgments, retrans-
missions establish a tight upper bound. Figure 10 shows the dis-
tribution of packet retransmission rates per connection. Note that,
in India for example, over 70% of the connections see no retrans-
missions; however, over 17% of connections have retransmit rates
above 10%. Similarly, in Figures 4 and 5, we see that some sub-
nets experience very little retransmissions, while others experience
substantial retransmission rates that sometimes reach 50%. As we
see in Section 4.1.2, overall page load time is extremely sensitive
to the packet-loss rate, especially during connection setup, where a
SYN timeout is on the order of seconds. This is compounded for
networks where RTTs are significantly higher, and it is not uncom-
mon to see total page load time in the range of 10-120 seconds for
the Yahoo! frontpage.
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Figure 9: TCP connection duration.
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Figure 10: Packet retransmission rate.

3.2.3 HTTP Workload Characterization
In this section we study different properties of the downloaded

web objects at the Yahoo! CDN. We can see the distribution of
requested object sizes in Figure 11, which shows around 90% of
objects are smaller than 25KB (17 segments). Figure 12 shows
the distribution of the number of HTTP requests per connection to
see the effect of persistent connections. The mean is only about
2.4 requests per connection, with the majority of connections re-
questing only one object. The reason for having a small number of
requests per connection in spite of typical web pages having tens of
objects is because web browsers typically use multiple concurrent
TCP connections per domain per web page. Putting together Fig-
ures 11 and 12 tells us that even when requesting multiple objects
back-to-back, objects are so small and so few that a typical connec-
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tion does not have enough time to take advantage of opening up the
congestion window. Hence, most of the time is spent ramping up
in slow-start.
In Figure 13, we show the distribution of the time between HTTP

requests within the same connection (so-called “think-time”). We
observed that the overall majority, about 80% of back-to-back re-
quests, occur in under one second, and therefore unlikely to be the
result of user-clicks, but rather the browser fetching objects.
Linux 2.6 kernels also provide a setting called tcp_slow_start_-

after_idle, which resets the congestion window to the ICW and
moves TCP back to the slow-start phase if there is no data to send
after a given idle period, defined as one retransmission timeout
(RTO). This is on by default. In Figure 13, we also plot the dis-
tribution of the difference between the inter-request time and our
estimate of of the RTO, calculated using the standard Jacobson es-
timator: RTO = RTTaverage + 4 ∗ RTTvariance. We find that
approximately 10% of back-to-back object requests are seperated
by more than one RTO. All these users have to go through slow
start again when downloading the following object spending ex-
pensive network round trips to probe the network for bandwidth
again.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Object Size (KB)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Requested Object Size

 

 

Average
Chicago
Germany
India
Singapore

Figure 11: HTTP object size distribution.

Figure 14 shows the distribution of the fraction of the total num-
ber of bytes downloaded via objects with certain sizes. For exam-
ple, we note that 50% of the total bytes downloaded come from
objects with sizes of 60KB or greater. Looking at Figure 11, we
note that less than 5% of the web objects downloaded have sizes of
60 KB or more. Hence, one can conclude that less than 5% of the
web objects downloaded account for 50% of the bytes downloaded.

4. IMPACT OF DIFFERENT OPTIMIZA-
TIONS ONWEB PAGE LOAD TIME

In Section 3, we saw that RTTs are generally high. They are even
higher for the up-and-coming segment of users – mobile users. For
CDN operators, little can be done about this to significantly change
the picture. This means that the bigger opportunity to reduce the
web page load time lies in reducing the RTT multiplier. In this
section, we study different optimizations to reduce this multiplier.
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Figure 12: HTTP requests per connection.

Two of these optimizations attempt to reduce the number of round
trips during TCP slow start.
The first optimization is increasing TCP ICW size, which at-

tempts to make TCP slow start begin transmitting data at a rate
closer to the maximum available bandwidth. Hence, it can use
fewer round trips to reach optimal window size that achieves the
maximum transmission rate. Section 4.1 studies the effects of us-
ing larger ICW sizes.
The second optimization is opening up the congestion window at

a higher rate during slow start. TCP slow start increases the conges-
tion window by one for every acknowledgment received. However,
delayed acknowledgments, which is pervasively deployed in the In-
ternet, makes the receiver send an acknowledgment for every other
packet received. This causes TCP congestion window to increase
by a factor of 1.5 instead of 2 (as originally intended) per round
trip. To remedy this problem, Appropriate Bytes Counting (ABC)
was introduced. ABC increases the window based on the number
of bytes acknowledged instead of just counting the number of ac-
knowledgments received. In Section 4.2, we study the effectiveness
of ABC in reducing page load time.
Finally, in Section 4.3 we study the effectiveness of HTTP

pipelining in reducing the RTT multiplier. Moreover, we study its
interplay with increasing the ICW size.
For these different optimizations, we experimentally evaluated

their effectiveness using live traffic from real users. Moreover, we
used macro benchmarks to evaluate their overall effects on web
page load times in a closed laboratory environment. In these macro
benchmarks, we constructed our synthetic workloads based on
measurements from the live traces.

4.1 Initial Congestion Window (ICW)
We have seen that the vast majority of Yahoo! CDN connections

transfer very few, and very small objects, which means that TCP
spends most of its time in the slow-start phase. For this reason,
improving the efficiency of this phase is crucial. When a new TCP
connection starts probing for available bandwidth, the Linux TCP
implementation follows RFC 3390 [7], which specifies an ICW of
3 segments for networks having a MSS of 1460 bytes, which is the
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Figure 13: Inter-request time and retransmission timeout
(RTO).

most common MSS. By increasing this ICW, small objects stand
to be transferred in fewer RTTs, which when compounded across
all objects on a page can cut down the total page load time signifi-
cantly.
Obviously, TCP at the server end would not send more unac-

knowledged data than is allowed by the client’s advertised receive
window so as not to overflow the client’s receive buffer (The re-
ceive window is dynamically allocated on most operating systems
and advertised throughout the connection). Luckily, on popular op-
erating systems (except Linux which has a much smaller receive
window), the initial receive window is quite large (64KB-256KB),
which would allow for utilizing a larger ICW. According to [11],
more than 90% of user connections have receive windows large
enough to utilize an ICW of 10. Hence, increasing TCP’s ICW can
be beneficial.

4.1.1 Evaluation Using Live Traffic
To test the effects of increasing the ICW size, we chose one of

our CDN sites – Singapore. We chose it due to the diversity of
its connections qualities as seen in Figure 5. There, we varied this
setting and captured traces for each ICW size.
We show in Figure 15 the distribution of object transfer time

normalized by the connection’s average RTT. This normalization
allows us to compare transfer times of objects over connections
having different RTTs. We observe a reduction of 32% in object
transfer time overall at the 80th percentile when going from an
ICW of 3 to 16. However, increasing the ICW sees diminishing
returns beyond that point. Because the effects of increasing the
ICW would be more evident during the beginning of a TCP con-
nection, we show in Figure 16 the same metric for the first HTTP
request only, where the improvement is a 38% reduction in transfer
time. Subsequent HTTP requests benefit less as the TCP window
is usually opened up at the first request. Note that in both Fig-
ures 15 and 16 there is a fraction of the objects that are down-
loaded in under one average RTT. The reason for this is that the
average RTT is measured across all round trips measured in the
lifetime of a connection. By examining the traces, we observed
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Figure 14: Percentage of overall bytes transferred across all
objects vs. object size.

that sometimes round trip times vary significantly within a single
connection. Hence, within a single connection an RTT can be less
than the connection’s average RTT.
A potential side effect of increasing the ICW is an increase in

retransmission rates, which we did observe as shown in Figure 17.
Note that while over 70% of connections see no retransmissions,
increasing the ICW from 3 to 16 increases the retransmit rate from
17% to 25% for about 10% of connections. As we will see later in
this section, this will have a significant impact on the overall page
load time as it is highly sensitive to packet-loss.
To study the effects of increasing the ICW size on the tail of the

distribution of object transfer times on a per-subnet basis, we show
in Figure 18 the 80th percentile of the average object transfer times
per network prefix. In this figure, for each subnet, 7 data points,
corresponding to 7 different ICW sizes, are presented. Each point
represents the average object transfer time normalized by the av-
erage RTT. In the figure, we can observe that most subnets benefit
from increasing the ICW and see dramatically lower object trans-
fer times. We also note that for these 20% of the objects, maximum
benefit is achieved at an ICW of 16. After that, for ICW of 32, ob-
ject transfer time goes higher. In contrast, other objects are not hurt
by larger ICW sizes as seen in Figure 15. Note that we chose the
80th percentile to show that a significant portion of the connections
in the tail of the distribution can suffer from using larger ICW size.

4.1.2 Studying Page Load time
While the previous section studied traces of individual HTTP

requests in the wild, we also wanted to capture the effects of tun-
ing the TCP ICW size on the overall page load time. Since a full
web page encompasses many objects, any straggling object down-
load will delay the overall web page download time, especially if
this straggling download is for the HTML file. Studying whole
page load times in the wild is very difficult though. This is because
when using packet traces, there is no notion of a full page down-
load as the objects in a page likely span multiple connections that
are difficult to tie together in a postmortem analysis. Moreover,
these objects are often at different servers. Hence, no one server
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Figure 18: The 80th percentile of object transfer times in RTTs per network prefix for the top 100 prefixes, for different ICW sizes.
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Figure 15: Overall object transfer time in RTTs.

trace can contain full page downloads. For this reason, this sec-
tion studies the overall page load time in a controlled environment
in the lab using real workloads and realistic network conditions.
These simulated network conditions (latency and packet loss rates)
are based on connections’ profiles from previous sections. These
network conditions represent links’ latecy and congestion due to
cross traffic in the internet.

Experimental Setup
We captured a snapshot of the Yahoo! front page, by far the most
popular Yahoo! web page, and fairly representative of the measured
traffic workload. We hosted this page and its resources locally such
that all object requests are directed to a local server.
In this setup, the client browser is 3.6.9 Firefox running on Mac

OS X 10.5.8. Apart from disabling caching, all other browser and
TCP settings are set to their default. Most notably, delayed ACKs
are enabled, and for Firefox, six maximum simultaneous connec-
tions per domain were used.
The server is a guest VM on the same machine, running CentOS

4.8 release with an updated 2.6.29.5 linux kernel and the apache
2.0.52 web server. We used the ipfw command to setup dummynet
pipes in order to control the perceived RTT and packet-loss rates
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Figure 16: First-object transfer time in RTTs.

from and to the server. During the experiments, no hardware re-
source was saturated, which guaranteed that request latencies were
only due induced RTTs and packet loss. The web page had 30
objects distributed across two domains. Thus, we created two IP
aliases at the server representing the two domains.
We had the client repeatedly request the front page. The embed-

ded links , which represented the static content on the page, namely
images, Javascript, and stylesheets, were replaced to point to IP
aliases on the local server. Firefox fetched 30 objects distributed
across two domains via six concurrent connections per domain re-
sulted in an average of 2.5 objects per connection, very close to the
average number of objects per connection measured in live traces
shown in Figure 12.
We wanted to measure the total page load time, which we define

as the time difference between the first packet of the first HTTP
request and the final ACK of the last object fetched (Page render-
ing time is negligible compared to the download time). We cap-
tured the tcpdump trace of the request at the client, and reported the
page load time between the first outgoing request and the last ob-
ject ACK. For every parameter combination we reported, we gave
the geometric mean of five requests for the Yahoo! front page.
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Figure 17: Packet retransmit rate.

Results
Figure 19 shows the total page load time for different values of
RTT and different values of ICW sizes. We find that the relative
reductions in page load times were relatively consistent; ranging
from 27%-38% when going from an ICW of 3 to 16.
When taking packet loss into account, we show in Figure 20 the

different page load times for different loss rates and different ICW
sizes and an RTT of 100ms (the median for Singapore). We find
that page load times and their variance appear to be superlinear and
very sensitive to packet loss; increasing the loss rate from 5% to
10% increases page load time by 63% for an ICW of 3.
However, as seen in Figure 17, increasing the ICW can increase

packet loss, especially for users with congested links. This raises
important questions. First, can increasing the ICW hurt the overall
page load time for some connections? Second, if the answer to the
previous question is yes, is there a single optimum value for ICW
with respect to page load time that fits all connections?
To study whether there are cases where increasing the ICW size

can hurt the overall web page load time, we need to consider users
that would suffer from increased packet loss due to increasing the
ICW. For such users, we need to estimate the increase in packet loss
due to the increase in ICW. Then, based on the estimated packet
loss and the corresponding ICW, we should measure the corre-
sponding page load time. To this end, we use a user connection
in the 90% percentile of retransmission rate in Figure 17 as an ex-
ample. We assume that the measured retransmission rate is equal to
packet loss rate. Moreover, we assume that increasing the ICW size
for this connection will follow the same increases in retransmission
rates observed for the 90th percentile connection in Figure 17. The
pairs of the ICW sizes and the corresponding packet loss rates are
listed in the first two columns of Table 1. Finally, we assumed
that this connection has the median RTT for the Singapore site –
100ms. We measured the page load times using the experiment
described above for every ICW size and its corresponding packet
loss rate listed at Table 1 and recorded it in the table at the third
column. We note that for the 90th percentile connections (with re-
spect to packet retransmission rates), increasing the ICW can lead

to significant increase of page load time. The same would apply to
other connections with higher percentile retransmission rates. We
see that for the connection in the 90th percentile, it first benefits
from increasing the ICW size up to seven, then by increasing the
ICW size more, the page load time starts increasing until it reaches
70% more than the minimum load time achieved at an ICW size of
7.
Conversely, looking at the right side of Table 1 (columns 4 and 5)

with zero packet loss rate (representing the 70th percentile retrans-
mission rate of all connections) we see the benefits from increasing
the ICW size all the way to 32.
Consequently, one can conclude that no one ICW choice would

benefit all users.
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Figure 19: Page load time for different ICWs with no loss.
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Figure 20: Page load time for different ICWs, packet loss rates,
and an RTT of 100ms (median for Singapore).
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loss (%) Time (s) loss (%) Time (s)

in
it
cw
nd

1 17 8.56 0.00 2.36
3 18 8.06 0.00 1.87
5 18 7.29 0.00 1.72
7 20 6.32 0.00 1.56
10 22 6.92 0.00 1.50
16 25 10.22 0.00 1.32
32 25 10.87 0.00 0.96

Table 1: Yahoo! front page load times for an RTT of 100ms
(median for Singapore) with increasing ICWs and their corre-
sponding loss rates from Figure 17. Right columns show times
with no loss for comparison.

4.1.3 Impact on TCP Fairness
When making changes to TCP, we need to make sure that it re-

mains fair to other TCP flows in the network. In this section, we
study the impact of increasing the ICW on TCP fairness.
Increasing TCP ICW size can be unfair to longer flows, sharing

the same bottleneck with short flows. If the network is congested
and experiencing significant packet loss, increasing the ICW will
increase packet loss. This loss may cause the congestion window
to shrink by half each round trip until it may eventually reach one.
Moreover, the sender could even experience timeouts. Hence, for
a long lived flow, the sender can end up sending at a rate lower
than one packet per round trip. Conversely, for a short flow, e.g. a
web object download, packet loss will only extend the transmission
by a few round trips and the window size may not drop to one by
then. Hence, the average window size for the whole transfer can
be significantly higher than that for a large transfer.
To demonstrate this point, we conducted the following experi-

ment using the setup described at Section 4.1.2. We configured
the connection between the host machine and the virtual machine
to have the profile of connections in the 95th percentile from Fig-
ure 10, i.e. 100ms of RTT and 25% packet loss rate. Also, we
configured the ICW to be 32.
First, we ran iperf for 5 minutes between the two machines

representing a long flow. This transfer achieved a bandwidth of
12.6KB/s – less than 1 segment per RTT (14.3KB/s). For the
second experiment, we downloaded a 48KB (32 segments) file off
the web server. The measured bandwidth for this second transfer
was 59.1KB/s. Note that as discussed in Section 3.2.3, although
48KB is the 95th percentile of downloaded web object sizes, it is
the 50th percentile with respect to objects contributing to overall
bytes downloaded from the Yahoo! CDN web servers.
Moreover, given that a recent study has shown that 52% of the

internet traffic is web traffic [8] and given that increasing the ICW
can increase packet loss and congestion for users with poor connec-
tions as shown in Fig. 17, we conclude that increasing the ICW can
be more unfair for longer flows for users having poor connectivity.
Furthermore, one can conclude that increasing the ICW will be

unfair to other short flows that remain using small ICW – e.g. the
current default value of 3.
We conclude that if the TCP standard is changed advocating

larger ICW sizes, this will be unfair to some flows, e.g. long flows
having high packet loss.

4.1.4 Discussion
In this section, we have seen that varying ICW size can have a

significant impact on web page load times. While a big fraction of
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Figure 21: First object transfer time in RTTs, for different
ICW and ABC settings.

users benefit from larger ICW sizes, others may suffer. Moreover,
the level of benefit or suffering can vary across users according
to their connection quality. Consequently, to achieve best perfor-
mance, different users should have different values of ICW depend-
ing on their connection quality. Hence, we argue that a dynamic
mechanism for configuring the ICW per connection is needed.

4.2 Appropriate Byte Counting (ABC)
As explained above, the deployment of delayed acknowledg-

ments is pervasive. This leads to the congestion window growing
only by a factor of 1.5 per round trip. ABC mitigates this effect by
relying not on ACK arrival but on the number of bytes acknowl-
edged instead to increase the window size. This results in the con-
gestion window doubling during slow-start every round trip as it
was intended in the original TCP design. Linux allows 3 ABC set-
tings: 0 turns off ABC; 1 increments the window by one for each
acknowledged full segment; 2 increments the window by two for
each acknowledgement received.

4.2.1 Evaluation Using Live Traffic
We varied the ABC settings at the server and show their effect in

Figure 21. From these results we find that turning this feature on
has a positive, but limited, effect on object transfer times.

4.2.2 Studying Page Load time
To study the effects of TCP ABC on overall web page load time,

we used the same setup used in 4.1.2, except we used an RTT of
100ms and packet loss of zero and measured the page load time
with the ABC optimization turned on and off. As shown in Fig-
ure 22, turning on the ABC optimization has marginal effects on
the overall web page load time. The reason for this is that the ef-
fects of ABC will only be noticeable after many round trips. How-
ever, each TCP connection downloads very small number of little
objects, and thus it requires only few packets and few round trips.
Hence, there is not much difference in transmission time.
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Figure 22: Page load time, for different ICW and ABC settings.

4.3 HTTP Pipelining
HTTP pipelining is known to deliver better performance. In

this section, we quantify the performance gains from using HTTP
pipelining using realistic workloads. We also study the interplay
of HTTP pipelining with lower layers optimizations like increasing
the ICW size.
HTTP 1.0 only supported downloading a single object per con-

nection. This was inefficient especially for high delay networks as
at least two network round trips are spent per object download –
one for TCP connection establishment and another for download-
ing the object. Moreover, web pages are typically composed of
multiple small objects, making HTTP 1.0 even less efficient for la-
tency purposes. Later, HTTP 1.1 supported persistent connections
spanning multiple object downloads. Furthermore, it allowed for
pipelined HTTP requests over the same TCP connection as shown
in Figure 1.
HTTP pipelining can eliminate multiple expensive network

round trips from a web page download. This is because the client
can request multiple objects without waiting for the corresponding
responses to arrive from the server as seen in Figure 1.
Furthermore, pipelining allows web downloads to utilize much

larger TCP ICW sizes leading to faster downloads. As seen in Sec-
tion 4.1, currently the vast majority of web downloads cannot uti-
lize TCP ICW larger than 16, even if the web user has more network
bandwidth available. This is because web browsers download one
object at a time. As seen in Figure 11, 90% of objects downloaded
from the Yahoo! CDN are less than 24KB, i.e. they can fit in a TCP
window of 16. In contrast, with pipelining, multiple objects with
much larger aggregate sizes are downloaded concurrently. Hence,
much larger windows can be utilized to reduce the number of net-
work round trips per download.
Unfortunately, most web browsers do not support HTTP pipelin-

ing. For example Internet Explorer, the most popular browser [1],
does not support it. Firefox, the second most popular browser,
claims to support pipelining but has it switched off by default. As
of today, these two browsers control more than 74% of the web
browser market [1]. We tried to verify the level of pipelining sup-

ported by Firefox. We turned pipelining on, configured Firefox to
use a single connection to download objects from each domain, and
then downloaded Yahoo!’s front page. By looking at packet traces
of the download, we realized that only a few object downloads were
pipelined – at most two at time. This is in spite the fact that the web
page had many objects per domain – up to 15 objects.
A main reason for not supporting pipelining by web browsers

is that some web proxies in the Internet do not support it. How-
ever, this problem can be overcome if web browsers are modified
to probe a well known web server, at start time, to check if it is
connected to the server via a faulty proxy or not [18]. If no faulty
proxy is found, pipelining is used, otherwise, it is not.
To study the effectiveness of HTTP pipelining and its interplay

with TCP ICW size, we evaluated it experimentally. We built a
simple web client that implements HTTP pipelining. It first down-
loads the HTML files. Then, it connects to the domains hosting the
different web page objects. All objects per domain are downloaded
in a pipelined fashion over a single persistent TCP connection. We
used the setup in Section 4.1.2 having Yahoo!’s front page as our
workload. The page objects span multiple domains. The domain
with the maximum aggregate objects’ size had 14 objects with total
aggregate size of 445KB. To allow for a single network round trip
download, we set the TCP ICW size at the server to 300 (∼450KB).
We also set the web client’s receive buffer to 450KB. Under these
settings, the web page download took 4 round trip times. The first
two round trips were to connect to the server then download the
HTML file. Once the HTML file is downloaded, its embedded ob-
jects and their locations are identified. The client then starts par-
allel connections to all the domains involved, one connection per
domain. For each domain, HTTP pipelining is used to fetch all
the objects in question at this domain. Hence, The two last round
trips are for connecting to the domain, then fetching all the objects.
This is well below the minimum number of round trips obtained in
Section 4.1 – 8 round trips.
It is worth mentioning that this minimal number of network

round trips can be also achieved by downloading all the web page
objects concurrently each via a separate TCP connection. Current
web browsers are moving in this direction by having multiple TCP
connections per domain. This is why we see in Figure 12 that
the average number of object downloads per TCP connection is
2.4. However, this approach has many shortcomings. First, it
limits TCP’s ability to control congestion as TCP controls con-
gestion within single connection. So, if many connections start
transmitting packets concurrently congestion collapse can happen,
especially if the connections have high ICW. In this case a sepa-
rate congestion manager [9] may be needed to control congestion
across all the connections, which increases the system’s complex-
ity. Second, having multiple concurrent connections consumes
more resources, e.g. the per connection TCP state and the CPU
cycles to maintain this state. That is why most web browsers cap
the number of concurrent connections used for objects download.
For example, by default, Firefox caps the number of persistent con-
nections per domain to 6 and caps the total number of connections
to 30. Web browsers for mobile phones use less concurrent con-
nections, e.g. Safari for the iPhone uses 4 connections. While the
load from 6 connections per domain may be not that significant for
most clients, it is certainly significant on web servers. It effectively
means that they have to handle 6 times more connections and their
corresponding overhead. Finally, using multiple TCP connections
per application can be unfair to other applications and users that
use a single connection per application.
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5. DISCUSSION AND FUTURE WORK
As we have seen in the previous sections tuning the initial con-

gestion window size can have a great impact on web page load time,
especially if used in conjunction with HTTP pipelining. In Section
4.3, we have seen that web page load time can benefit from huge
ICW sizes measured in hundreds of packets. Whereas, we see in
Figures 18 and 17 that some users suffer from having much smaller
ICW sizes.
This wide range of optimal initial TCP window sizes calls for

a dynamic scheme for setting this size per connection as there is
no one size that fits all. The right size depends on the connection
characteristics, e.g. available bandwidth. This information can be
learned from history of connections coming from the same loca-
tion. TCP Fast Start [22] was proposed to allow a new connection
to a host to reuse the state of older connections to the same host. It
also included a mechanism to modify intermediate routers to iden-
tify packets from hosts using Fast Start and give these packets lower
priority in the event of congestion. This is to account for the fact
that Fast Start may be using stale cached information. It is ques-
tionable though how effective this reuse will be. A typical host
does not reconnect to the same other host very frequently. Hence,
per-host cached information is likely to be stale. Moreover, main-
taining persistent state per client may be very expensive for a server
serving millions of clients. Finally, the requirement for modifying
intermediate routers is a significant hurdle to adoption.
We believe that the right approach to setting the initial TCP con-

gestion should rely on previous history as well. However, a more
effective approach tailored for web servers is needed. We leave this
as future work.
Finally, because of its effectiveness, we advocate supporting

pipelining in web browsers and implementing techniques, like [18],
to overcome faulty proxies. Moreover, it will allow for taking full
advantage of larger ICW sizes.

6. CONCLUSION
In this paper, we first characterized the traffic workload observed

at the edges of Yahoo!’s content distribution network. We noticed
that many connections have high RTTs. Some had significant re-
transmission rates. Based on this, we suggested and evaluated, both
in the wild and in the lab, the effects of several optimizations at
the TCP and HTTP layers with the goal of reducing overall page-
load time. These included a combination of TCP Appropriate Byte
Counting, increasing the slow-start ICW, and HTTP pipelining.
Overall, we find that, based on our traffic studies, a majority of

users would see significant benefit from increasing the ICW – up to
38% reduction in page load time. However, for clients in poorly
connected networks with high packet loss-rates, performance is
likely to suffer when using high ICW sizes. For this reason, we
conclude that no “optimal” setting exists that satisfies all users. We
also found that HTTP pipelining is very effective, especially if used
in conjunction with large ICW sizes. This combination can reduce
page load time by up to 80%.
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Weaknesses: Despite its value the paper does not really report 
something that seems exciting. It is not the problem of writing but 
the topic itself -- how TCP settings affect download delay. 

Comments to Authors: A small nit on the writing: I like papers 
that tell the reader the goal of the paper upfront. But for this paper 
the first page is all about general description of well known issues 
and ongoing work about TCP in IETF. Not until the second page, 
the paper stated “This paper is concerned with the delivery of 
content from edge servers from the Yahoo! CDN to the users.” 
(the wording is still a bit too narrowly scoped, e.g. how would this 
work be interesting to community as a whole to be worth 
publishing at IMC?)  

It seems that the findings of this paper would be highly interesting 
to the operational community (e.g. fig-6 results seem highly 
relevant to yahoo operations, why the RTT so high), and to IETF 
(e.g. ICW value impact, as IETF is mid of discussing 
recommended new settings).  

The ICM value selection change reflects changes in the 
underlying network infrastructure capacity and traffic load 
patterns, and hence engineering tuning of operational parameters; 
I am not sure that represent some highly interesting issues to the 
research community.  

The finding that no one size for the ICW fits all the users is also 
not surprising, given data is collected from a global network, it is 
only expected that in some places the network resources are still 
not up to the newly tuned value for other places. 

Response from the Authors 

First off, we would like to thank the reviewers for their feedback. 
 
One of the common high-level comments was about the novelty 
of the techniques used to reduce the web page load times. We do 
not claim novelty inventing or using any of these techniques. The 
contribution of this paper is studying the impact of these 
techniques in the wild using real workloads and evaluating the 
interplay of these techniques. We will try to make this clearer in 
the camera-ready version. 
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Another high-level comment was about only using four CDN 
nodes and one hour of traffic. We would like to point out that 
each of these four nodes belongs to a different site in a different 
region of the world. We believe that traffic at these regions is 
representative of Yahoo! traffic from across the world. We have 
verified that traffic at nodes in the same site have similar 
characteristics; hence we only report traffic from a single node 
per site. Also, we have verified that traffic during other times of 
the day qualitatively has the same characteristics as that in the 
afternoon. Moreover, we would like to point out that the traffic 
we analyzed contains over 12 million connections spanning 
hundreds of gigabytes of traces, which we believe to be a 
reasonable sample to give a general idea about Yahoo!’s CDN 
traffic characteristics. 
 

About the comment that the high RTTs measured could be due to 
misrouting users to wrong CDN nodes because of a mismatch 
between end users and their DNS resolvers as shown in previous 
work, we do not believe that this is the case. We use a different 
proprietary technique to route users that we believe to be 
accurate. Moreover, our results are qualitatively in line with 
results reported by another study (Krishnan et. al. 2009) over 
another CDN. 
 
We addressed most of the other lower level comments in the 
camera-ready version. The things we could not address properly 
are requests for comparisons with other CDNs. We do not have 
access to the CDNs of other companies, so we cannot speculate. 
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