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ABSTRACT
Continuing success of research on social and computer networks
requires open access to realistic measurement datasets. While these
datasets can be shared, generally in the form of social or Internet
graphs, doing so often risks exposing sensitive user data to the pub-
lic. Unfortunately, current techniques to improve privacy on graphs
only target specific attacks, and have been proven to be vulnerable
against powerful de-anonymization attacks.
Our work seeks a solution to share meaningful graph datasets

while preserving privacy. We observe a clear tension between strength
of privacy protection and maintaining structural similarity to the
original graph. To navigate the tradeoff, we develop a differentially-
private graph model we call Pygmalion. Given a graph G and
a desired level of ε-differential privacy guarantee, Pygmalion ex-
tracts a graph’s detailed structure into degree correlation statistics,
introduces noise into the resulting dataset, and generates a syn-
thetic graph G′. G′ maintains as much structural similarity to G
as possible, while introducing enough differences to provide the
desired privacy guarantee. We show that simply applying differen-
tial privacy to graphs results in the addition of significant noise that
may disrupt graph structure, making it unsuitable for experimen-
tal study. Instead, we introduce a partitioning approach that pro-
vides identical privacy guarantees using much less noise. Applied
to real graphs, this technique requires an order of magnitude less
noise for the same privacy guarantees. Finally, we apply our graph
model to Internet, web, and Facebook social graphs, and show that
it produces synthetic graphs that closely match the originals in both
graph structure metrics and behavior in application-level tests.
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1. INTRODUCTION
Studying structure of real social and computer networks through

graph analysis can produce insights on fundamental processes such
as information dissemination, viral spread and epidemics, network
dynamics and resilience to attacks [4, 26, 27, 38]. The use of real
graphs generated from measurement data is invaluable, and can be
used to validate theoretical models or realistically predict the effec-
tiveness of applications and protocols [2, 12, 41, 43].
Unfortunately, there is often a direct tension between the need

to distribute real network graphs to the research community, and
the privacy concerns of users or entities described by the dataset.
For example, social graphs from real measurements are used to
capture a variety of artifacts in online social networks, including
strength of social ties, number and frequency of social interactions,
and flow of information. Similarly, detailed topology graphs of
enterprise networks or major ISPs contain confidential information
about the performance and robustness of these networks. Releasing
such sensitive datasets for research has been challenging. Despite
the best of intentions, researchers often inadvertently release more
data than they originally intended [35, 36, 47]. Past experience has
taught us that traditional anonymization techniques provide limited
protection, and often can be overcome by privacy attacks that “de-
anonymize” datasets using external or public datasets [5, 35, 36].
Thus we are left asking the question, how can researchers safely

share realistic graph datasets from measurements without compro-
mising privacy? One option is to develop and apply stronger
anonymization techniques [24,30], many of whichmodify the graph
structure in subtle ways that improve privacy but retain much of
the original graph structure. However, these approaches generally
only provide resistance against a specific type of attack, and can-
not provide protection against newly developed deanonymization
techniques. Techniques exist in the context of databases and data
mining which provide provable levels of protection [18,19], but are
not easily applied to graphs. Still other techniques can protect pri-
vacy on graphs, but must significantly change the graph structure
in the process [24, 39].
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Our approach to provide graph privacy and preserve graph
structure. We seek a solution to address the above question, by
starting with observation that any system for sharing graphs must
deal with the tension between two goals: protecting privacy and
achieving structural similarity to the original, unmodified graph.
At one extreme, we can distribute graphs that are isomorphic to the
original, but vulnerable to basic deanonymization attacks. At the
other extreme, we can distribute random graphs that share no struc-
tural similarities to the original. These graphs will not yield any
meaningful information to privacy attacks, but they are also not
useful to researchers, because they share none of the real structures
of the original graph.
Ideally, we want a system that can produce graphs that span the

entire privacy versus similarity spectrum. In such a system, users
can specify a desired level of privacy guarantee, and get back a set
of graphs that are similar to the real graph in structure, but have
enough differences to provide the requested level of privacy.
The main premise of our work is that we can build such a sys-

tem, by distilling an original graph G into a statistical represen-
tation of graph structure, adding controlled levels of “noise,” and
then generating a new graph G′ using the result statistics. This
requires two key components. First, we need a way to accurately
capture a graph’s structure as a set of structural statistics, along
with a generator that converts it back into a graph. For this, we
use the dK-series, a graph model that is capable of capturing suf-
ficient graph structure at multiple granularities to uniquely iden-
tify a graph [13, 31]. We can achieve the desired level of privacy
by introducing a specific level of noise into G’s degree correla-
tion statistics. Second, we need a way to determine the appropriate
noise necessary to guarantee a desired level of privacy. For this, we
develop new techniques rooted in the concept of ε-differential pri-
vacy, a technique previously used to quantify privacy in the context
of statistical databases.
In this paper, we develop Pygmalion, a differentially private graph

model for generating synthetic graphs. Pygmalion preserves as
much of the original graph structure as possible, while injecting
enough structural noise to guarantee a chosen level of privacy against
privacy attacks. Initially, we formulate a basic differentially pri-
vate graph model, which integrates controlled noise into the dK
degree distributions of an original graph. We use the dK-2 series,
which captures the frequency of adjacent node pairs with differ-
ent degree combinations as a sequence of frequency values. How-
ever, when we derive the necessary conditions required to achieve
ε-differential privacy, they show that an asymptotical bound for the
required noise grows polynomially with the maximum degree in
the graph. Given the impact of dK values on graph structure, these
large noise values result in synthetic graphs that bear little resem-
blance to the original graph.
To solve this challenge, we seek a more accurate graph model

by significantly reducing the noise required to obtain ε-differential
privacy. We develop an algorithm to partition the statistical rep-
resentation of the graph into clusters, and prove that by achieving
ε-differential privacy in each cluster, we achieve the same property
over the entire dataset. Using a degree-based clustering algorithm,
we reduce the variance of degree values in each cluster, thereby
dramatically reducing the noise necessary for ε-differential privacy.
Finally, we apply isotonic regression [6] as a final optimization to
further reduce the effective error by more evenly distributing the
added noise.
We apply our models to a number of Internet and Facebook

graphs ranging from 14K nodes to 1.7 million nodes. The results
show that for a given level of privacy, our degree-based clustering
algorithm reduces the necessary noise level by one order of mag-

nitude. Isotonic regression further reduces the observed error in
dK values on our graphs by 50%. Finally, we experimentally show
that for moderate privacy guarantees, synthetic graphs generated by
Pygmalion closely match the original graph in both standard graph
metrics and application-level experiments.
Access to realistic graph datasets is critical to continuing re-

search in both social and computer networks. Our work shows that
differentially-private graph models are feasible, and Pygmalion is a
first step towards graph sharing systems that provide strong privacy
protection while preserving graph structures.

2. GRAPHSANDDIFFERENTIAL PRIVACY
In this section, we provide background on graph anonymization

techniques, and motivate the basic design of our approach to graph
anonymization. First, we discuss prior work, the inherent chal-
lenges in performing graph anonymization, and our desired privacy
goals. Second, we introduce the main concepts of ε-Differential
Privacy, and lay out the preconditions and challenges in leveraging
this technique to anonymize graphs. Finally, we motivate the selec-
tion of the dK-series as the appropriate graph model on which to
build our system.

2.1 Data Privacy: Background and Goals
A significant amount of prior work has been done on protect-

ing privacy of datasets. We summarize them here, and clarify our
privacy goals in this project.
Private Datasets. Many research efforts have developed pri-
vacy mechanisms to secure large datasets. Most of these tech-
niques, including cryptographic approaches [7] and statistical per-
turbations [19, 37], are designed to protect structured data such as
relational databases, and are not applicable to graph datasets. An
alternative, probabilistic approach to privacy is k-anonymity [42].
It is designed to secure sensitive entries in a table by modifying
the table such that each row has at least k − 1 other rows that
are identical [18]. Several public datasets have been successfully
anonymized with k-anonymity [1, 33] or through clustering-based
anonymization strategies [8].
Graph Anonymization. Several graph anonymization tech-
niques have been proposed to enable public release of graphs with-
out compromising user privacy. Generally, these techniques only
protect against specific, known attacks. The primary goal of these
anonymization techniques is to prevent attackers from identifying
a user or a link between users based on the graph structure. Sev-
eral anonymization techniques [24, 30, 39, 46, 48] leverage the k-
anonymity model to create either k identical neighborhoods, or k
identical-degree nodes in a target graph. These types of “attack-
specific” defenses have two significant limitations. First, recent
results have repeatedly demonstrated that researchers or attackers
can invent novel, unanticipated de-anonymization attacks that de-
stroy previously established privacy guarantees [5,35,36,45]. Sec-
ond, many of these defenses require modifications to the protected
graph that significantly alter its structure in detectable and mean-
ingful ways [24, 39].
Our Goals: Edge vs. Node Privacy. In the context of privacy
for graphs, we can choose to focus on protecting the privacy of
either node or edges. As will become clear later in this paper, our
approach of using degree correlations (i.e. the dK-series), captures
graph structure in terms of different subgraph sizes, ranging from
2 nodes connected by a single edge (dK-2) to larger subgraphs of
size K.
Our general approach is to produce synthetic graphs by adding

controlled perturbations to the graph structure of the original graph.
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This approach can provide protection for both node privacy and
edge privacy. This choice directly impacts the sensitivity of the
graph privacy function, and as a result, how much structural noise
must be introduced to obtain a given level of privacy guarantees.
In this paper, we choose to focus on edge privacy as our goal,

and apply this assumption in our analysis of our differential pri-
vacy system in Section 3. We chose to target edge privacy because
our work was originally motivated by privacy concerns in sharing
social graphs, where providing edge privacy would address a num-
ber of practical privacy attacks.

2.2 Differential Privacy
Our goal is to create a novel system for the generation of anonymized

graphs that support two key properties:

1. Provides quantifiable privacy guarantees for graph data that
are “future-proof” against novel attacks.

2. Preserves as much original graph structure as possible, to en-
sure that anonymized data is still useful to researchers.

Differential privacy [14] is a recently developed technique de-
signed to provide and quantify privacy guarantees in the context of
statistical databases [15,25]. Others have demonstrated the versatil-
ity of this technique by applying differential privacy to distributed
systems [40], network trace anonymization [32], data compression
techniques [44], and discrete optimization algorithms [22]. Other
work focused specifically on applying differential privacy to simple
graph structures such as degree distributions [23, 25]. In contrast,
our work has the potential to inject changes at different granular-
ities of substructures in the graph, instead of focusing on a single
graph metric.
One piece of prior work tried to guarantee graph privacy by

adding differential privacy to Kronecker graphs [34]. Whereas this
approach tries to guarantee privacy by perturbing the Kronecker
model parameters, our strategy acts directly on graph structures,
which provides tighter control over the perturbation process. Un-
fortunately, the author asserts there are incorrect results in the pa-
per1.
Basic Differential Privacy. The core privacy properties in dif-
ferential privacy are derived from the ability to produce a query
output Q from a databaseD, which could also have been produced
from a slightly different database D′, referred to as D’s neigh-
bor [14].

DEFINITION 1. Given a database D, its neighbor database D′

differs from D in only one element.

We obtain differential privacy guarantees by injecting a con-
trolled level of statistical noise into D [16]. The injected noise
is calibrated based on the sensitivity of the query that is being exe-
cuted, as well as the statistical properties of the Laplace stochastic
process [17]. The sensitivity of a query is quantified as the max-
imum amount of change to the query’s output when one database
element is modified, added, or removed. Together, query sensitivity
and the ε value determine the amount of noise that must be injected
into the query output in order to provide ε-differential privacy.
Differential privacy works best with insensitive queries, since

higher sensitivity means more noise must be introduced to attain a
given desired level of privacy. Thus insensitive queries introduce
lower levels of errors, and provide more accurate query results.

1See the author’s homepage.
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Figure 1: An illustrative example of the dK-series. The dK-
2 series captures the number of 2-node subgraphs with a spe-
cific combination of node-degrees, and the dK-3 captures the
number of 3-node subgraphs with distinct node-degree combi-
nations.

2.3 Differential Privacy on Graphs
We face two key challenges in applying differential privacy con-

cepts to privacy protection on graphs. First, we must determine a
“query” function in our context which we can use to apply differen-
tial privacy concepts. Second, the sensitivity of this query function
must be low enough, so that we can attain privacy guarantees by
introducing only low levels of noise, thus allowing us to preserve
the accuracy of the results. In our context, this means that we want
to generate graphs that retain the structure and salient properties of
the original graph. We address the former question in this section
by proposing the use of the dK-series as our graph query opera-
tion. We address the accuracy question in Sections 3 and 4, after
fully explaining the details of our system.
Recall that the problem we seek to address is to anonymize graph

datasets so that they can be safely distributed amongst the research
community. We leverage a non-interactive query model [14], such
that the original graph structure is queried only once and the en-
tire budget to enforce privacy is used at this time. dK is used to
query the graph and the resulting dK-series is perturbed under the
differential privacy framework. Note that only the differentially
private dK-series is publicized. Unlike applications of differential
privacy in other contexts, we can now generate multiple graphs us-
ing this differentially private dK-series without disrupting the level
of privacy of the original graph. Therefore, we use a non-interactive
query model to safely distributed graph datasets without being con-
strained to a single dataset.
The dK-Graph Model. We observe that the requirements of
this query function can be met by a descriptive graph model that
can transform a graph into a set of structural statistics, which are
then used to generate a graph with structure similar to the original.
Specifically, we propose to use the dK-graph model [31] and its
statistical series as our query function. dK captures the structure of
a graph at different levels of detail into statistics called dK-series.
dK can analyze an original graph to produce a corresponding dK-
series, then use a matching generator to output a synthetic graph
using the dK-series values as input. The dK-series is the degree
distribution of connected components of some sizeK within a tar-
get graph. For example, dK-1 captures the number of nodes with
each degree value, i.e. the node degree distribution. dK-2 cap-
tures the number of 2-node subgraphs with different combinations
of node degrees, i.e. the joint degree distribution. dK-3 captures
the number of 3-node subgraphs with different node degree com-
binations, i.e. an alternative representation of the clustering coef-
ficient distribution. dK-n (where n is the number of nodes in the
graph) captures the complete graph structure. We show a detailed
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example in Figure 1, where we list dK-2 and dK-3 distributions
for a graph.

dK is ideal for us because the dK-series is a set of data tuples
that provides a natural fit for injecting statistical noise to attain dif-
ferential privacy. In addition, together with their matching gener-
ators, higher levels of dK-series, i.e. n > 3, could potentially
provide us with a bidirectional transformation from a graph to its
statistical representation and back.
While larger values of K will capture more structural informa-

tion and produce higher fidelity synthetic graphs, it comes at the
expense of higher computation and storage overheads. Our work
focuses on the dK-2 series, because generator algorithms have not
yet been discovered for dK-series where K≥3. While this may
limit the accuracy of our current model, our methodology is gen-
eral, and can be used with higher order dK-series when their gen-
erators are discovered.
ε-Differential Privacy in Graphs. Given the above, we can
now outline how to integrate differential privacy in the context of
graphs. An ε-differentially private graph system would output a
graph that given a statistical description of an input graph, the prob-
ability of seeing two similar graphs as the real input graph is close,
where closeness between the two probabilities is quantified by ε.
A larger value of ε means it is easier to identify the source of the
graph structure, which means a lower level of graph privacy.
Prior work has demonstrated that in many cases, accuracy of

query results on differentially private databases can be improved by
decomposing complex queries into sequences of “simple counting
queries” that happen to have extremely low sensitivity [9, 10, 15].
Unfortunately, this approach will not work in our context, since our
goal is to achieve privacy guarantees on whole graph datasets, and
not just privacy for simple graph queries such as node degree dis-
tributions. In the next section, we start with a basic formulation
of a differentially private graph model, and then provide an opti-
mized version. We illustrate the final process, shown as Pygmalion
in Figure 2.

3. FIRST STEPS
In this section, we perform the analytical steps necessary to inte-

grate ε-differential privacy into the dK graph model. Our goal is to
derive the amount of noise necessary to achieve a given ε-privacy
level. The amount of Laplacian noise necessary is a function of
both ε, the user-specified privacy parameter, and S, the sensitiv-
ity of the dK function. First, we formally define the dK-2 se-
ries, and derive its sensitivity SdK−2. Next, we describe the dK-
perturbation algorithm (dK-PA) for injecting noise into the original
dK-2 series, and prove that it provides the desired ε-differential pri-
vacy. Our analysis shows that the asymptotic bound on noise used
in dK-PA grows polynomially with maximum node degree, which
means we need to inject relatively large levels of noise to guarantee
ε-privacy. Finally, as expected, our experiments on real graphs con-
firm that dK-PA generates synthetic graphs with significant loss in
accuracy. This poor result motivates our search for improved tech-
niques in Section 4.

3.1 Sensitivity of dK-2
dK-function. We formally define dK-2 as a function over a
graph G = (V, E), where V is the set of nodes and E is the set of
edges connecting pair of nodes in V :

dK(G) : Gn → $

where Gn is the set of graphs with n = |V | nodes and $ is the set
of unique degree tuples in the dK-2-series with the corresponding

count of instances in G. Formally, $ is a collection of {dx, dy; k}
where each entry represents that the number of connected compo-
nents of size 2 with degree (dx, dy) is k. Let m be the cardinality
of $. Because the maximum number of entries in dK-2 is bounded
by the number of possible degree pairs,

Pdmax
i=1 i, where dmax be

the maximum node degree in G, thus m = O(d2
max). Prior stud-

ies have demonstrated that in large network graphs dmax is upper
bounded by O(

√
n) [29, 43], and thus, in those cases, m is upper

bounded by O(n).
Sensitivity Analysis. In the context of differential privacy, the
sensitivity of a function is defined as the maximum difference in
function output when one single element in the function domain
is modified. The domain of dK-2 is a graph G. Neighbor graphs
of G are all the graphs G′ which differ from G by at most a single
edge. Changing a single edge inGwill result in one or more entries
changing in the corresponding dK-2-series. Thus, the sensitivity of
dK-2 is computed as the maximum number of changes in the dK-
2-series among all of G’s neighbor graphs.

LEMMA 1. The sensitivity of dK-2 on a graph G, SdK−2, is
upper bounded by 4 · dmax + 1.

PROOF. Let e be a new edge added to a graph G = (V, E)
between any two nodes u, v ∈ V . Once the edge e is added to
G the degrees of u and v increase from d to (d + 1) and from
d′ to (d′ + 1) respectively. This graph transformation produces
the following changes in the dK-2 on G: the frequency k of tuple
{d + 1, d′ + 1; k} gets incremented by 1 because of the new edge
(u, v). For example, a new edge between A and C in Figure 1
produces an increment of the frequency k of the tuple {2, 3; k}
from k = 1 to k = 2. Furthermore, a total of d + d′ already
present tuples need to be updated with the new degree of u and v,
and so the tuples with the old degrees get decremented by a total of
d + d′ and the tuples reflecting the new degree get incremented for
a total of d + d′. To summarize, the overall number of changes in
the dK-2 -series is 2(d + d′) + 1. In the worst case, when u and v
are nodes of maximum degree dmax, the total number of changes
in the original dK-2-series by adding an edge between u and v is
upper bounded by 4 · dmax + 1.

Lemma 1 derives only the upper bound of the sensitivity because,
as in Definition 3 [14], it is the sufficient condition to derive the nec-
essary amount of noise to achieve a given ε-privacy level. Lemma 1
shows that the sensitivity of dK-2 is high, since dmax has been
shown to be O(

√
n) in measured graphs [29, 43]. Note that prior

work on differential privacy [9,10,15,23] generally involved func-
tions with a much lower sensitivity, i.e. 1. In these cases, the low
sensitivity means that the amount of noise required to generate dif-
ferentially private results is very small. In contrast, the sensitivity
of our function indicates that the amount of noise needed to guar-
antee ε-differential privacy in dK-2 will be high. Therefore, the
accuracy of synthetic graphs generated using this method will be
low. Note that if we use a higher order dK-series, i.e. K ≥ 3,
we would have found an even higher sensitivity value, which may
further degrade the accuracy of the resulting synthetic graphs.

3.2 The dK-Perturbation Algorithm
We now introduce the dK-perturbation algorithm (dK-PA) that

computes the noise to be injected into dK-2 to obtain ε-differential
privacy [14]. In dK-PA, each element of the dK-2-series is al-
tered based on a stochastic variable drawn from the Laplace distri-
bution, Lap(λ). This distribution has density function proportional
to e−

|x|
λ , with mean 0 and variance 2λ2. The following theorem
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Figure 2: Overview of Pygmalion. ε-differential privacy is added to measured graphs after sorting and clustering the dK-2-series.

proves the conditions under which ε-differential privacy is guaran-
teed [17].

THEOREM 1. Let gDK be the privacy mechanism performed on
dK such that D̃K(G) = dK(G) + Lap(

SdK−2

ε
)m. For any G

and G′ differing by at most one edge, gDK provides ε-differential
privacy if:

˛̨
˛ ln

Pr[D̃K(G) = s]

Pr[D̃K(G′) = s]

˛̨
˛ ≤ ε

PROOF. Let s =< s1, s2, ..., sm > be a possible output of
D̃K(G) and m the number of its entries, and let G′ be the graph
with at most one different edge fromG. Using the conditional prob-
abilities, we have:

Pr[D̃K(G) = s]

Pr[D̃K(G′) = s]
=

mY

i=1

Pr[D̃K(G)i = si|s1, ...si−1]

Pr[ ˜DK(G′)i = si|s1, ...si−1]
,

since each item of the product has the first i − 1 values of dK-2
fixed. Each si is the result of applying Laplacian noise calibrated
by SdK−2. Note that Lemma 1 has studied the sensitivity of dK-2,
SdK−2, under the condition that two graphs differ by at most one
edge. Thus, the conditional probability is Laplacian, allowing us to
derive the following inequalities:

mY

i=1

Pr[D̃K(G)i = si|s1, ...si−1]

Pr[ ˜DK(G′)i = si|s1, ...si−1]
≤

mY

i=1

e
| ˜DK(G)i−

˜DK(G′)i|
σ

where σ is the scale parameter of the Laplace distribution that is
4dmax+1

ε
. Thus,
mY

i=1

e
| ˜DK(G)i−

˜DK(G′)i|
σ = e

||D̃K(G)− ˜DK(G′)||1
σ

where, by definition D̃K(G) = dK(G)+Lap(
SdK−2

ε
), and ||DK(G)−

DK(G′)||1 ≤ SdK−2 with SdK−2 ≤ 4dmax + 1 as proved in
Lemma 1. Thus, we have:

e
||D̃K(G)− ˜DK(G′)||1

σ =

= e
||dK(G)+Lap(

SdK−2
ε

)−dK(G′)−Lap(
SdK−2

ε
)||1

σ ≤ e
4dmax+1
4dmax+1

ε = eε

and so, by applying the logarithmic function, we have that

˛̨
˛ ln

Pr[D̃K(G) = s]

Pr[D̃K(G′) = s]

˛̨
˛ ≤ ε

which concludes the proof.

Type Graph Nodes Edges

Internet WWW 325,729 1,090,108
AS 16,573 40,927

Facebook

Monterey Bay 14,260 93,291
Russia 97,134 289,324
Mexico 598,140 4,552,493
LA 603,834 7,676,486

Table 1: Different measurement graphs used for experimental
evaluation.

Theorem 1 shows that by adding noise to the dK-2-series using
independent Laplace random variables calibrated by SdK−2 from
Lemma 1, we achieve the desired ε-privacy.
Quantifying Accuracy. We apply the error analysis proposed
by [25] on dK-PA to quantify the accuracy of the synthetic graphs
it produces, compared to the original graphs.

DEFINITION 2. For a perturbed dK-2-series that is generated
by the privacy mechanism gDK on a graph G, as defined in Theo-
rem 1, the estimated error on gDK can be computed as the expected
randomization in generating gDK .

We now quantify the expected randomization in gDK:
mX

i=1

E[(D̃K(G)i − dK(G)i)
2] = mE[Lap(

SdK−2

ε
)2]

Using Lemma 1 and thatm = O(d2
max)we have:

mE[Lap(
SdK−2

ε
)2] = mV ar(Lap(

dmax

ε
)) =

2m · d2
max

ε2
= O(

d4
max

ε2
).

This asymptotical bound shows that the noise injected by dK-PA
into dK-2 scales with the fourth-degree polynomial of dmax. This
result implies that synthetic graphs generated by dK-PA will have
relatively low accuracy because of the large error introduced by the
perturbation process. Furthermore, it implies that even for rela-
tively weak privacy guarantees, dK-PA will introduce large errors
that may significantly change the structure of the resulting synthetic
graphs from the original.

3.3 Validation on Real Graphs
At this point, we have demonstrated analytically that the impact

of adding noise to the dK-2-series using dK-PA will result in syn-
thetic graphs that deviate significantly from the originals. In this
section, we empirically evaluate the impact of adding noise to the
dK-2-series by executing dK-PA on real graphs.
Methodology. To illustrate that our system is applicable to
different types of graphs, we select a group of graphs that include
social graphs from Facebook [41, 43], a WWW graph [3] and an
AS topology graph [38] crawled on Jan 1st, 2004, which have
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Figure 3: The noise required for different privacy levels quantified as the Euclidean distance between a graph’s original and per-
turbed dK-2 series.

been used in prior graph mining studies [28]. The social graphs
were gathered using a snowball crawl of the Facebook regional net-
works [43], and show graph metrics highly consistent with Face-
book graphs generated using unbiased sampling techniques [21].
Table 1 lists the graphs used in our evaluation, which range from
14K nodes to 650K nodes.
We extract the dK-2-series for each graph, introduce noise using

the dK-PA strategy, then compute the Euclidean distance between
the perturbed dK-2-series and the original as a measure of the level
of graph structural error introduced. We computed results for all
graphs in Table 1, and they are consistent. For brevity, we limit
ourselves to report results only for the AS graph, the WWW graph,
and the Russia Facebook graph. We choose Russia to represent
our social graphs because its results are representative of the other
graphs, and its size does not result in extremely long run time for
our experiments.
Results. Figure 3 shows that the dK-PA strategy produces a
large error for small values of ε (i.e. strong privacy guarantees). We
compute the error as the Euclidean distance between the original
dK-2-series and the perturbed dK-2-series with dK-PA strategy.
As we mentioned, the low level of accuracy is due to the large noise
dK-PA injects into dK-2, resulting in a perturbed dK-2 that is
significantly different from the original. The bright side is that the
dK-PA strategy is robust across different datasets, and the error
decreases exponentially as ε grows, which is shown by the linear
correlation in the log-log scale plot of Figure 3.
The high error is largely due to the high sensitivity of our func-

tion dK-2. To understand the potential lower-bound on the error,
we imagine a scenario where if we had a function with sensitivity
of 1, then we could achieve much lower error, plotted in Figure 3
as the Ideal line. Note that this line is a hypothetical lower bound
that is only meant to demonstrate the impact of the dK function’s
sensitivity on the final result. Indeed, Figure 3 shows that the loss
in accuracy of our model can largely be attributed to the sensitivity
of the dK-2 series.

4. PRIVACY VIA PARTITIONING
The results in the previous section demonstrate the loss of accu-

racy in the perturbed dK-2-series after adding noise to guarantee
ε-differential privacy. In this section we propose a novel algorithm
called Divide Randomize and Conquer (DRC) that enables more
granular control over the noise injected into the dK-2-series. This
qualifies DRC to support ε-differential privacy while also allowing
for more accurate results. First, we discuss the design of DRC and
prove that it does guarantee ε-differential privacy. Next, we inves-

tigate the amount of error introduced with this approach, and show
that DRC requires significantly less noise than dK-PA to achieve
an equal level of privacy. Finally, we propose an optimized ver-
sion of DRC, called LDRC, and empirically verify the improved
accuracy of our algorithms using measured graphs.

4.1 Divide Randomize and Conquer Algorithm
Our goal is to develop an improved privacy mechanism that sig-

nificantly reduces the amount of noise that must be added to achieve
a given level of ε-privacy. While we cannot change the fact that
the sensitivity of dK-2 scales with dmax, our insight is to parti-
tion data in the dK-2-series into a set of small sub-series, then ap-
ply the perturbation independently to achieve ε-privacy within each
sub-series.
If we carefully perform the partitioning to group together tuples

with similar degree, we effectively reduce the value of dmax for
each of the vast majority of sub-series. This means we can achieve
ε-privacy on each sub-series for a fraction of the noise required
to achieve ε-privacy across the entire series. We will then prove
that ε-differential privacy holds across the entire dK-2-series if it
holds for each of the partitioned sub-series. Thus, we produce an
alternative algorithm that achieves the same level of privacy as dK-
PA, while introducing significantly less noise.
We instantiate our ideas as the Divide Randomize and Conquer

algorithm (DRC). The core steps of DRC are:

1. Partition (Divide) the dK-2-series into sub-series with spe-
cific properties;

2. Inject noise into each sub-series (Randomize);
3. Conquer the perturbed sub-series into a single dK-2-series.

In the remainder of this section we discuss the partitioning step
of DRC. We first define an ordering function on dK-2 to sort tu-
ples with similar sensitivity. The ordered dK-2 is then partitioned
into contiguous and mutually disjoint sub-series. We prove that the
properties of these sub-series lead to the definition of a novel sen-
sitivity function and consequently to a novel methodology to add
noise. Noise injection, conquering, and the resulting error analysis
are discussed in Section 4.2.
∂ ordering on dK-2. The dK-2-series is sorted by group-
ing dK-tuples with numerically close pairs of degrees. In partic-
ular, the dK-tuples are sorted in the new dK-2 series, named β-
series, by iteratively selecting from the original series all the tuples
{dx, dy ; k} with degrees (dx & dy) ≤ i, ∀ i ∈ [1, dmax]. Thus,
the β-series is simply the sorted list of dK-tuples that adhere to
the above inequality ordering. For example, the tuple {1, 2; k} is
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closer to {5, 5; k′} than to {1, 8; k′′}. We can formally describe
this transformation with the following function:

DEFINITION 3. Let ∂ be the sorting function on dK-2 which is
formally expressed as:

∂(i) = min
dx,dy∈dK

{max(dx, dy) ≥ max(dx′ , dy′) = ∂(i − 1) }

Note that {dx, dy; k} )= the first i−1 tuples. Thus, the ∂ function is
a transformation of dK-2 such that ∂ : $ → β where β identifies
the ordered dK-2.

Partitioning the β-Series. The β-series is partitioned into em
sub-series, with the ith named βi for i ∈ [1, em]. The partition of β
is based on two properties. First, the ∂ ordering has to be obeyed
and thus each partition can only acquire contiguous tuples in the
β-series. Second, each tuple can appear in one and only one sub-
series. Given the ∂ ordering and the above two rules we can guar-
antee mutually disjoint and contiguous sub-series βi. These two
constraints are fundamental to satisfying the sensitivity properties
we prove in the following Lemma 2 and Lemma 3.
Sensitivity of βi sub-series. The sensitivity of each βi-series
can be studied following the same logic used to find the sensitivity
of dK-2, by quantifying the maximum number of changes that may
occur in the βi-series due to an edge change in the graph G. Due
to the ∂ ordering imposed in each sub-series, we can show that the
maximum degree in each βi plays a fundamental role in bounding
its sensitivity.

LEMMA 2. The sensitivity Sβi of a sub-series βi with tuple de-
grees almost equal to dk + 1 is upper bounded by 4 · dk + 1.

The proof of this lemma is sketched because it follows the logic
of Lemma 1. Due to the proposed ∂ ordering, each sub-series i is
composed only of tuples where both degrees are less than or equal
to a particular integer d. The worst-case (i.e. the maximum number
of changes to the tuples in the same βi) occurs when the tuple with
degrees d − 1 are in the same sub-series. Therefore, the maximum
number of changes occur when a new edge is added between two
nodes (u, v) both with degree d − 1, after which both nodes u
and v have degree d. Adding a new edge between u and v causes
dk = d − 1 entries in βi to become invalid. Each invalid entry is
replaced with new entry of degree d. Thus, the upper bound on the
total number of changes is 2 ·dk deletions, 2 ·dk additions, and one
new edge, with the total being 4 · dk + 1.
Given the partitioning approach and the imposed ∂ ordering across

sub-series, we are able to exploit further properties on the βis-
series. In particular, the sensitivity of any βi is independent from
the location where the change occurs in the graph. Conversely, the
sensitivity of a particular partition is dependent on the tuple with
the highest degree values, as proved in Lemma 2. Therefore:

LEMMA 3. The sensitivity of any βi is independent by the sen-
sitivity of any other βj with i )= j.

PROOF. The proof proceeds by contradiction from the follow-
ing assumption: the sensitivity of a βi is impacted by a change
occurring in a βj with i )= j. Without loss of generality, assume
i < j, and ∂(i′) is a tuple in βi and ∂(j′) is a tuple in βj , as from
Definition 3. Assume that an edge is formed between a node x with
corresponding tuples < ∂(i′), ∂(i′ + 1), .. > ∈ βi and a node y
with corresponding tuples< ∂(j′), ∂(j′+1)... > ∈ βj . The maxi-
mum number of changes that can occur due to this event is bounded
by the degree values of x and y. Let d be the new degree of x. The
maximum number of tuples that can change in βi are d − 1 tuples

that get deleted and d that get added, which is < 2 · d. Symmet-
rically, let b be the new degree of y so the maximum number of
tuples that can change in βj is < 2 · b. Even if d and b are equal to
the maximum degree value dk within their sub-series, as demanded
in Lemma 2, the number of changes involved in each sub-series is
2 · dk < 4 · dk + 1 which means that the sensitivity of both βi and
βj are not mutually effected, which contradicts the hypothesis.

4.2 Theoretical Analysis
This section is devoted to the theoretical analysis of the privacy

and accuracy properties the DRC approach achieves. First, we
prove that ε-differential privacy can be applied to each sub-series
created during the partitioning phase of DRC. Next, we build on
this result to prove that the individual differentially private sub-
series’ can be reunified into a complete dK-2-series that is also
ε-differentially private. Lastly, we perform error analysis on DRC
and compare the results to dK-PA.
Analyzing ε-Privacy in βis. We now quantify the privacy of
each βi and prove that they satisfy ε-differential privacy.

THEOREM 2. For each cluster βi with i = 1, .., em, let bβi be a
novel privacy mechanism on βi such that bβi = βi +Lap(

Sβi
ε

)|βi|.
Then, for all sub-series βi and β′

i derived from graphs G and G′

that differ by at most one edge, bβi satisfies ε-differential privacy if:
˛̨
˛ ln

Pr[ bβi = s]

Pr[ bβ′
i = s]

˛̨
˛ ≤ ε

PROOF. Let m∗ be the the cardinality of cluster βi. Let G′ be
a graph with at most one edge different from G. Let sj be the jth

item of the bβi-series, that is bβi[j] = sj . Using the conditional
probability on sj we can write:

Pr[ bβi = s]

Pr[ bβ′
i = s]

=
m∗Y

j=1

Pr[ bβi[j] = sj |s1, ...sj−1]

Pr[ bβ′
i[j] = sj |s1, ...sj−1]

Each item of the product has the first j − 1 tuples of the bβi-
series fixed. Each sj is the result of the Laplace noise that has
been calibrated for βi based on its sensitivity, as calculated using
in Lemma 2. The sensitivity of this function is derived under the
assumption that the two graphs have, at most, one edge difference.
Thus, the conditional probabilities are Laplacians, which allows us
to derive the following inequalities:

m∗Y

j=1

Pr[ bβi[j] = sj |s1, ...sj−1]

Pr[ bβ′
i[j] = sj |s1, ...sj−1]

≤
m∗Y

j=1

e
|cβi[j]−

cβ′
i
[j]|

σ

By definition bβi = βi + Lap(
Sβi

ε
)|βi| and by Lemma 2 ||βi −

β′
i||1 ≤ Sβi with Sβi ≤ 4dki + 1. Let σi be the scale parameter
of the Laplacian noise applied in each cluster i, thus:

m∗Y

j=1

e
|cβi[j]−

cβ′
i
[j]|

σ = e
||cβi−

cβ′
i
||1

σ

= e
||cβi+Lap(

Sβi
ε

)−cβ′
i
−Lap(

Sβi
ε

)||1
σ = e

||βi−β′
i||1

σ ≤ e

4dmi
+1

4dmi
+1

ε

Finally, by applying the logarithmic function the theorem state-
ment is proved.

Theorem 2 shows that adding noise does achieve provable ε-
differential privacy on each cluster. In particular, we prove that by
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Figure 4: Euclidean distances of the dK-2-series of different ε-Differential Privacy strategies on three real graphs.

only leveraging m∗ independent Laplace random variables, with
parameter λ = (

Sβi
ε

), it is possible to generate sufficient noise per
cluster to satisfy the privacy requirement.

Conquering ε-privacy into ∪i
bβi. Our next task is to leverage

the proved ε-differential privacy of each independent bβi to guar-
antee privacy on the entire perturbed bβ-series= ∪i

bβi. In order to
achieve this goal a further step is required, shown in the following
corollary.

COROLLARY 1. The amount of information an attacker can learn
on bβi by observing any bβj with i )= j is null.

This proof considers only two sub-series for simplicity. Given
Lemma 3, this proof can be extended to any number of clusters.

PROOF. LetA andB be two sub-series built out of our partition
strategy and let bA and bB be their ε-differentially private projection
as proved in Theorem 2. Finally, let a and b be events on bA and
bB, respectively. Through the Shannon Entropy Theory we quantify
the information a sub-series could exploit on another sub-series. In
particular, the Mutual Information

I( bA; bB) =
X

a,b

p(a, b) log
p(a, b)

p(a)p(b)

is the amount of information an attacker can infer on bA by ob-
serving bB. By construction the sensitivity of the sub-series A is
independent from the sensitivity of the sub-series B, as proved
in Lemma 3. This means that the sub-series A is perturbed by
a Laplace random process with parameter λA that is independent
from the Laplace random process acting on B, as consequence of
Lemma 2. Thus, this independence property directly implies that
the Mutual Information I( bA, bB) = 0, that is, an attacker gains no
information on bA by observing bB, which concludes the proof.

The properties derived on the different βis are sufficient to begin
the conquer phase of our DRC approach. The goal of the con-
quer phase is to unify the bβis such that the union set inherits the
ε-privacy guarantees from the individual sub-series.

THEOREM 3. Given em different sub-series bβi with i = 1, ..., em,
the result of the DRC conquer strategy∪iβi satisfies the ε-differential
privacy property.

PROOF. The DRC strategy produces em ε-differentially private
sub-series bβi, as proved in Theorem 2. Each βi satisfies Lemma 2

and Lemma 3, and any combination of bβis satisfies Corollary 1.
The privacy independence property, from Corollary 1, implies that
∪i

bβi satisfies the ε-Differential Privacy property.

Thus, we have proven that our perturbed dK-2, ∪i
bβi, satisfies

the ε-differential privacy requirement. DRC achieves a tighter bound
on noise than dk-PA due to the properties from Lemmas 2 and 3.
Error Analysis. We now quantify the error introduced to dK-
2 via our DRC strategy. Error analysis on DRC is complicated
because our algorithm does not specify the number of clusters to
generate during partitioning. Instead, our clustering approach is
general, and covers any possible set of cuts on the β-series such
that the resulting sub-series differ in cardinality and sensitivity from
each other, so long as they respect Lemmas 2 and 3. Therefore, in
order to provide an error analysis that covers any possible cluster-
ing of the β-series we have to study both the lower and the upper
bound of the error injected into those series.

DEFINITION 4. The error estimation of the union of the bβis un-
der the ∂ ordering on dK-2 of a graph G can be computed as the
expected randomization in generating bβ = ∪i

bβi.

The expected randomization in bβ is quantified as

emX

i=1

E

0

@
X

j

( bβi[j] − βi[j])
2

1

A =
emX

i=1

|βi|E[Lap(
Sβi

ε
)2]

The lower bound is found when each Sβi have the same mini-
mum value, which is 1, and thus

emX

i=1

|βi|E[Lap(
Sβi

ε
)2] ≥ d2

maxV ar(Lap(
1

ε
)) = Ω(

d2
max

ε2
)

Note that the considered minimum, i.e. 1, happens only when a
graph of nodes with zero degree is considered, and after adding an
edge Sβ is 1. The upper bound is found when each Sβi have the
maximum value that, as proved in Lemma 2, is O(dmax), and thus

emX

i=1

|βi|E[Lap(
Sβi

ε
)2] ≤ d2

maxV ar(Lap(
dmax

ε
)) = O(

d4
max

ε2
)

The worst-case error level of DRC is equal to that of dK-PA.
However, depending on graph structure, the error level can decrease
down to Ω(

d2
max
ε2

). As we demonstrate in the next section, real
graphs exhibit error rates towards the lower bound. Thus, in prac-
tice, DRC performs much better than dK-PA.
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Figure 5: Degree distribution of three real measured graphs, i.e. Russia, WWW and AS, each compared to the dK-synthetic graph
without noise and Pygmalion synthetic graphs with different ε values.
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Figure 6: Assortativity of three real measured graphs, i.e. Russia, WWW and AS, each compared to the dK-synthetic graph without
noise and Pygmalion synthetic graphs with different ε values.

4.3 Evaluating and Optimizing DRC
To quantify the improvement DRC achieves over the dK-PA

strategy, we compare the results of applying each algorithm on our
graphs. As before in Section 3.3, we quantify error using the Eu-
clidean distances between each of their dK-2-series and the dK-2-
series of the original graph. As seen in Figure 4, DRC reduces the
Euclidean distance by one order of magnitude for different graphs
and a range of ε values. As is the case for dK-PA, error introduced
by DRC decreases exponentially as the value of ε increases, which
is clear from the linear correlation in the log-log scale plot of Fig-
ure 4.
Further Optimization with LDRC. Despite its improvement
over dK-PA, DRC is still quite far from the idealized function in
terms of error (see Figure 4). We apply a prior result from [25]
that proves how to use isotonic regression [6], i.e. evenly “smooth”
out the introduced noise across tuples, without breaking differential
privacy properties. This technique enables a reduction of the error
introduced in the dK-2-series by another constant factor.
Formally, given a vector p of length p∗, the goal is to determine

a new vector p′ of the same length which minimizes the L2 norm,
i.e. ||p − p′||2. The minimization problem has the following con-
straints: p′[i] ≤ p′[i+1] for 1 ≤ i < p∗. Let p[i, j] be a sub-vector
of length j − i + 1, that is: < p[i], ..., p[j] >. Let defineM [i, j] as
the mean of this sub-vector, i.e. M [i, j] =

Pj
k=i p[k]/(j − i + 1).

THEOREM 4. [6] The minimum L2 vector, p′, is unique and is
equal to p′[k] = gMk, with:

gMk = minj∈[k,p∗]maxi∈[1,j]M [i, j]

We apply this technique on the set of all tuples produced by
DRC. We refer to it as the L2 minimization Divide Randomize and
Conquer algorithm, or LDRC. We include LDRC in our compari-
son of algorithms in Figure 4, and see that LDRC provides roughly
another 50% reduction in error over the DRC algorithm. Since it
consistently outperforms our other algorithms, we use LDRC as the
algorithm inside the Pygmalion graph model.
Implications. Finally, we note that our DRC partition tech-
nique is general, and has potential implications in other contexts
where it is desirable to achieve differential privacy with lower lev-
els of injected noise. More specifically, it can serve to reduce the
amount of perturbation necessary when the required perturbation is
a function of a parameter that varies significantly across values in
the dataset.

5. END-TO-END GRAPH SIMILARITY
We have already quantified the level of similarity between real

and synthetic graphs by computing the Euclidean distances be-
tween their respective dK-series datasets. These values represent
the distortion in the statistical representation of a graph, i.e. the
dK-series, but do not capture the ultimate impact of the added
noise on graph structure. In this section, we evaluate how well
Pygmalion preserves a graph’s structural properties by comparing
Pygmalion’s differentially private synthetic graphs against the orig-
inals in terms of both graph metrics and outcomes in application-
level tests. Strong structural similarity in these results would es-
tablish the feasibility of using these differentially private synthetic
graphs in real research analysis and experiments.
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Figure 7: Average path length of three real measured graphs, i.e. Russia, WWW and AS, each compared to the dK-synthetic graph
without noise and Pygmalion synthetic graphs with different ε values.
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Figure 8: Reliable Email (RE) experiment run on three real measured graphs, i.e. Russia, WWW and AS, each compared with the
dK-synthetic graph without noise and Pygmalion synthetic graphs with different ε values.

5.1 Graph Metrics
Our evaluation includes two classes of graph metrics. One group

includes degree-based metrics such as: Average Node Degree, De-
gree Distribution, Joint Degree Distribution and Assortativity. These
are basic topological metrics that characterize how degrees are dis-
tributed among nodes and how nodes with particular degree con-
nect with each other. The second group includes node separation
metrics that quantify the interconnectivity and density of the over-
all graph. This group includes metrics such as Graph Diameter,
Radius and Average Path Length.
For our evaluation purposes, we always use our most advanced

algorithm, i.e. Pygmalion LDRC. We only focus on Pygmalion
LDRC, because there are practical problems in generating large
graphs from dK values after significant noise has been added. As
shown earlier, the dK-PA model introduces the highest noise. In
fact, errors introduced by dK-PA are so large that the generator
fails when trying to generate large graphs with the resulting noisy
dK distributions.
We generate ε-private graphs for ε ∈ [5, 100], and compare the

graph metrics of the resulting synthetic graphs against those of the
original graph, and a synthetic graph generated by the dK model
with no additional noise added. We limit ourselves to ε-private
graphs with ε ∈ [5, 100] because of two reasons. First, we aim
to find the ε value that contributes to a smallest noise such that it
is statistically similar to the synthetic dK-2 graph with no privacy
enforced. This way, we can indirectly quantify the level of privacy
introduced by a pure synthetic graph with no additional steps taken
to improve privacy. This by itself is a potentially interesting result.

In particular, we obtain this property only when ε is equal to 100.
Second, the dK-2 distribution is a very sensitive function and it
naturally requires a high level of noise to provide strong levels of
privacy guarantees. Unfortunately, very small values of ε require
larger noise values, thus producing synthetic graphs that are ex-
tremely different in structure from the original. Finally, for ε < 1,
the required noise level is so high for larger graphs, that the dK
graph generator fails to produce synthetic graphs that match the re-
sulting dK distributions. This is clearly a limitation of the current
system, one that we hope will be removed with the discovery of
less sensitive models and optimization techniques to further reduce
noise required for ε-differential privacy.
As we mentioned, our results are highly consistent across our

pool of graphs (Table 1), and we only report experimental results
on three graphs: the Russia Facebook graph, the AS graph and the
WWW graph.
Degree-based Metrics. These metrics are fundamental in un-
derstanding the statistical properties of node degrees and how nodes
connect to each other to form specific topological structures. Out
of the four metrics mentioned above, we report results for Degree-
Distribution (which supersedes average node degree) and Assorta-
tivity (which is related to joint degree distribution).
Degree Distributions. Figure 5 compares the node degree CDFs.
For each of the Russia, WWW, and AS graphs, the degree distribu-
tions of both the Pygmalion (ε=100) graph and the dK-synthetic
graph very closely match the degree distribution of the original
graphs. When we increase the strength of the privacy guarantees,
i.e. smaller ε values of 5 and 10, the accuracy of the synthetic de-

90



gree distribution progressively decreases. For example, both the
Russia and WWW graphs show a small deviation from the original
distribution even for ε = 5. Across all models for these two graphs,
the worst-case degree distribution deviation is still within 10% of
the original.
The AS graph, on the other hand, shows a slightly different be-

havior. For small ε values, i.e. ε = 5 and ε = 10, the largest
error is within 35% from the original graph values. The AS graph
shows a different behavior because a small number of high degree
nodes connect the majority of other nodes. Thus, when the privacy
perturbation hits those high-degree nodes, it can produce structural
changes that send ripples through the rest of the graph.
Assortativity. Figure 6 reports the results of the assortative met-
ric computed on both real and synthetic graphs for each of the three
graphs (Russia, WWW and AS). The assortativity metric describes
the degree with which nodes with similar degree are connected to
each other. Positive assortativity value denotes a positive correla-
tion between the degrees of connected nodes, and negative values
indicate anti-correlation. Note that both the WWW and AS graphs
show negative assortativity (Figure 6(b) and Figure 6(c)).
As with the degree distribution results, for each of our graphs

(Russia, WWW, and AS), assortativity results from synthetic graphs
for ε = 100 and those from the dK-series closely match results
from the original graphs. As we increase the level of privacy pro-
tection, the results get slightly further from the original values. For
example, using ε = 5 on Russia produces an error less than 0.05
on the assortativity value. The same ε value for the WWW graph
produces negligible error on assortativity. Assortativity results on
the AS graph are also consistent with degree distribution results.
Under high privacy requirements, i.e. ε = 5, error on assortativity
reaches 0.12.
Node Separation Metrics. For brevity, we report only the
Average Path Length as a representative of the node separation
metrics. Figure 7 shows the Average Path Length (APL) values
computed on Russia, WWW and AS compared to the APL values
on their synthetic graphs. On Russia and WWW, APL results de-
note a moderate level of error (higher when compared to results
for the earlier graph metrics). We can see that the error is mainly
introduced by the impreciseness of the dK-model, since the syn-
thetic graph from the dK-series with no noise shows the same er-
ror. In comparison, the error introduced by strengthening privacy
(and hence decreasing ε) is relatively small. This is encouraging,
because we can eliminate the bulk of the error by moving from
dK-2 to a more accurate model, e.g. dK-3.
As with previous experiments, the AS graph shows a slightly

different behavior. In this case, all of our synthetic graphs do a
good job of reproducing the average path length value of the AS
graph.
Summary. Our experimental analysis shows that synthetic
graphs generated by Pygmalion exhibit structural features that pro-
vide a good match to those of the original graphs. As expected,
increasing the strength of privacy guarantees introduces more noise
into the structure of the synthetic graphs, producing graph metrics
with higher deviation from the original graphs. These observations
are consistent across social, web, and Internet topology graphs.
Overall, these results are very encouraging. They show that we

are able to effectively navigate the tradeoff between accuracy and
privacy by carefully calibrating the ε values. The fact that signifi-
cant changes in ε values do not dramatically change the graph struc-
ture means owners of datasets can guarantee reasonable levels of
privacy protection and still distribute meaningful graphs that match
the original graphs in structure.

5.2 Application Results
For a synthetic graph to be usable in research, ultimately it must

produce the same results in application-level experiments as the
original graph it is replacing. To quantify the end-to-end impact
of trading graph similarity for privacy protection, we compare the
results of running two real world applications on both differentially
private synthetic graphs and the original graphs. We implement two
applications that are highly dependent on graph structure: Reliable
Email (RE) [20] and Influence Maximization [11].
Reliable Email. RE [20] is an email spam filter that relies on a
user’s social network to filter and block spam. One way to evaluate
the security of RE is to compute the number of users in a network
who can be spammed by a fixed number of compromised friends
in the social network. This experiment depends on the structure of
the network, and is a useful way to evaluate whether Pygmalion
graphs can be true substitutes for measurement graphs in research
experiments.
Figure 8 shows the portion of the nodes flooded with spam as we

increase the number of malicious spammers, using different graphs
as the underlying social network topology. We show results on the
usual three graphs, Russia, WWWand AS. On the Russia Facebook
graph, all synthetic graphs closely follow the original graph. Even
in the case of the strongest privacy setting, i.e. ε = 5, the difference
between the synthetic graph result and those of the original is at
most 10%. For both the WWWand AS graphs, all synthetic graphs
with and without noise produce results within 20% of the original
graphs.
InfluenceMaximization. The influence maximization problem
tries to locate users in the network who can most quickly spread
information through the network. This problem is most commonly
associated with advertisements and public relations campaigns. Eval-
uating a solution to this problem includes two steps. First, the so-
lution must identify the nodes who can maximize influence in the
network. Second, it must model the spread of influence through the
network to quantify how many users the influence has ultimately
reached.
For our purposes, we use a recently proposed heuristic for in-

fluence maximization that minimizes computation. The heuristic
is called the Degree Discount method [11], and is able to find the
most influential nodes, called “seeds,” on a given graph. Starting
from those seed nodes, we run three different influence dissemina-
tion models: Linear threshold (LT), Independent Cascade (IC) and
Weighted Cascade (WC), to determine the total number of users in
the network influenced by the campaign. We use source code we
obtained from the authors. However, significant memory overhead
in the code meant that we had to limit our experiments to smaller
graphs. Therefore, we use the MontereyBay Facebook graph and
the AS network topology graph in this experiment.
For both AS andMontereyBay graphs and each of the three influ-

ence dissemination models, Figure 9 shows the expected number of
influenced nodes when increasing the number of initial seed nodes.
While the actual percentage of users influenced varies across dis-
semination models, there are clear and visible trends. Results on
the AS graph in Figures 9(a), 9(b), 9(c) all show that Pygmalion
with ε = 100 and the dK-synthetic graph without noise are al-
most identical to the original AS graph under all three dissemina-
tion models. Graphs with stronger protection, Pygmalion ε = 10
and ε = 5, progressively diverge from the results of the AS graph.
Results on the MontereyBay graph are shown in Figures 9(d), 9(e),
9(f), and are quite similar to those on the AS graph. They confirm
that Pygmalion ε = 100 produces near perfect results, but higher
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Figure 9: Results of the Degree Discount Influence Maximization algorithm on the AS and MontereyBay graphs, compared to dK
graphs without added noise, and Pygmalion synthetic graphs with different ε values.

privacy protection increases the deviations from results on the orig-
inal MontereyBay graph.

5.3 Summary
We have used both popular graph metrics and application-level

tests to evaluate the feasibility of using differentially private syn-
thetic graphs in research. Our tests are not comprehensive, and
cannot capture all graph metrics or application-level experiments.
However, they are instructive because they show the observable im-
pact on graph structure and research results when we replace real
graphs with differentially private Pygmalion graphs.
Our results consistently show that Pygmalion introduces limited

impact as a result of adding noise to guarantee privacy. In fact,
many of the largest errors can be attributed to limitations of the
dK-2 series. Given the significant demand for realistic graphs in
the research community, we expect that generator algorithms for
more complex dK models will be discovered soon. Moving to
those models, e.g. dK-3, will eliminate a significant source of error
in these results.

6. CONCLUSION
We study the problem of developing a flexible graph privacy

mechanism that preserves graph structures while providing user-
specified levels of privacy guarantees. We introduce Pygmalion,
a differentially-private graph model that aims these goals using
the dK-series as a graph transformation function. First, we use
analysis to show that this function has a high sensitivity, i.e. ap-
plied naively, it requires addition of high levels of noise to obtain
privacy guarantees. We confirm this on both social and Internet
graphs. Second, we develop and prove a partitioned privacy tech-
nique where differential privacy is achieved as a whole when it is

achieved in each data cluster. This effectively reduces the level of
noise necessary to attain a given level of privacy.
We evaluate our model on numerous graphs that range in size

from 14K nodes to 1.7 million nodes. Our partitioned privacy tech-
nique reduces the required noise by an order of magnitude. For
moderate to weak levels of privacy guarantees, the resulting syn-
thetic graphs closely match the original graphs in both graph struc-
ture and behavior under application-level experiments.
We believe our results represent a promising first step towards

enabling open access to realistic graphs with privacy guarantees.
The accuracy of our current model is fundamentally limited by
both the degree of descriptiveness of dK-2 series, and the high
noise necessary to inject privacy properties. There are two ways to
improve our results. One way is to use a more descriptive, higher-
order dK model, under the assumption that its sensitivity is rea-
sonable low. While generators for higher order dK-models are still
unknown, our techniques are general, and can be applied to obtain
more accurate models as higher-order dK generators are discov-
ered. Another way to improve is to discover a function (or model)
of graph structure with much lower sensitivity. If such a function
exists, it can potentially lower the noise required for a given privacy
level by orders of magnitude.
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Summary Review Documentation for 

“Sharing Graphs using Differentially Private Graph 
Models” 

Authors: A. Sala, X. Zhao, C. Wilson, H. Zheng, B. Zhao 
 
Reviewer #1 
Strengths: Focuses on the important and timely problem of 
privacy-preserving graph anonymization. This is a very general 
and interesting problem. The paper proposes a novel approach to 
apply differential-privacy concepts on graphs. It produces 
anonymized graphs with specific privacy guarantees. The 
proposed method is thoroughly analyzed and evaluated. The paper 
is very well written. 
 
Weaknesses: The evaluation results show that proposed method 
produces accurate graphs mainly for weak privacy guarantees 
(large \epsilon). 
 
Comments to Authors: Without perturbation, the output of a 
query is the dk-2 distribution. This hides some information about 
the original graph, which the presented approach ignores. I 
wonder how much information it hides? Is it possible to quantify 
this? and/or take it into account in the anonymization procedure? 
 
I understand that in the context of graph an edge corresponds to a 
database record. Should edges not be independent? Edges in real 
graphs are not created independently. The paper is not very clear 
about this point. 
 
The paper misses perhaps the most related study (X. 
Dimitropoulos et al, “Graph Annotations in Modeling Complex 
Network Topologies” ACM Transactions on Modeling and 
Computer Simulation, vol. 19(4), Sep. 2009). This work distills an 
original graph to a 2K-series representation, creates empirical 
models of the 2K-series profile (unlike [30]), generates a new 
random 2K-series statistical profile from the modeled 2K-
distributions (effectively adding noise), and synthesizes a graph. 
Combining the dk-series framework for graph anonymization 
makes sense. The original dk-series framework [30] produces 
synthetic graphs that are too similar to the original graph. This 
property is useful for privacy-preserving graph publishing. 
 
I found the notation in the product of Theorem 1 somewhat 
cryptic, could not fully parse it. 
 
The values of \epsilon for which the authors get good results in 
Section 5 are very high. 
 
It is not clear which query model the paper assumes. Is the 
interactive query model supported? 
 
Reviewer #2 
Strengths: Important problem, and a good, first stab at the 
problem (where the problem is sharing graphs in a manner that is 

private and supports arbitrary queries, rather than a few select 
queries). 
 
Weaknesses: 1. The paper assumes that edges in the graph is 
what needs to be private and the methods do not work if we 
wanted information about nodes to be private. This assumption is 
fundamental to the work and, worse, it is implicit. There is no 
discussion in the paper why this definition of privacy is an 
appropriate one. 
2. The experiments are not stressing the scheme and should be 
done differently. Details below. 
 
Comments to Authors: Let me expand on the two complaints 
above.  
 
1. First, you are (implicitly) assuming that what needs to be 
hidden is whether an edge is present or absent in the graph. This is 
a good goal, but not the only (or the most private) one. For 
instance, another natural goal is to hide the 
presence/absence/properties of nodes in the graph. Your methods 
do not protect against attacks on node properties. To protect 
against node-level attacks, the neighboring graph would be one 
with an extra node added or deleted. It should be apparent that this 
change has way more sensitivity than adding or deleting an edge. 
It would be good to make this point clear in your paper; I believe 
it to be an important distinction. This does not detract from your 
paper but makes it more precise; I think what you are doing is a 
great first step. At the same time, please discuss why you believe 
edge-level privacy to be an appropriate definition. 
 
2. Second, I thought several aspects of your experiments should 
be done differently: 
 - The choices of \epsilon values are strange. What are they 
motivated by? My understanding is that \epsilon~10 is considered 
weak, but the lowest you go is 5. It is fine to study higher \epsilon 
values, but you need to study values for the more private end of 
the spectrum as well. 
 - I would like to see results in Sec. 5 for dK-PA as well. Does the 
poor performance that you show in earlier sections hinder it for 
the metrics in Sec. 5. After all, per measures in Sec. 3 and 4, even 
LDRC is orders of magnitude further away from the ideal. 
- I disagree with how you summarize your experimental findings 
in Section 5.3. You basically blame dK-2 series for most of the 
loss in fidelity that you observe. But it is pretty clear from Figure 
9, and to some extent Figure 8, that dK is not the fundamental 
bottleneck. dK-2 series itself is pretty close, but end-to-end 
measures come close only with very high \epsilon values (100). It 
means that it is the perturbation process that is responsible. 
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That said, I do like the fact that in your experiments you study 
applications that are not perfect matches for LDRC. You should 
just draw the right conclusions from them. 
 
How do you compute the sub-series in your scheme? What if 
there are multiple partitions that satisfy your constraints? 
 
Why do you see a non-monotonic behavior with respect to 
\epsilon in Fig. 6a? The error from the original is greater for 
\epsilon=10 than \epsilon=100. If this is entirely due to 
randomization, you should be conducting multiple experiments 
and plotting error bars. 
 
Reflecting on DRC at a higher-level, I find it intriguing on two 
counts. First, the trick of partitioning the data and independently 
adding noise seems general and might find use in other places. 
You may consider highlighting this aspect.  Second, it is also a bit 
counter-intuitive to me. I would have thought that considering the 
entire series would let one add lower noise than adding noise to 
individual subsets. This was essentially the observation in [39]. 
But you are going in the opposite direction. The difference 
perhaps is that you are able to find “natural” partitions of data. 
But it also suggests to me that better perturbation mechanisms can 
be designed, which treat the whole series together. 
 
Reviewer #3 
Strengths: Interesting idea.  Seems fairly complete. 
 
Weaknesses: Impact on end-to-end metrics is not clear.  Unclear 
whether the contributions are only theoretical. Some sloppiness in 
the techniques. The authors show that repeat queries cannot be 
handled very well with diffPriv.  It is unclear that distributing 
graphs with noise fits the diffPriv use case, which is more about 
answering some queries than shipping the dataset. 
 
Comments to Authors: There is a mismatch between what 
differential privacy provides - the ability to respond to queries 
without revealing anonymity versus the canonical use case with 
measurement datasets which involves releasing the dataset. I did 
not see a way of reconciling that in this paper. 
 
DiffPriv also has a problem dealing with succession of queries.  
They typically operate with a privacy budget, each answered 
query uses up part of it. Once budget is depleted, no more queries 
can be supported on the dataset without leaking information. How 
does the use case here work around this concern? 
 
I see that theoretically the amount of noise injected is lower 
O(d_max^4/\epsilon^2) to about O(d_max^3 / \epsilon^2) but I do 
not see the impact on stats that matter. For example, the results in 
Section 5 do not compare with dk-PA, the technique that injects 
noise as per standard diffPriv. For Fig. 4, I cannot really tell why 
'distance' is a good metric.  Employ something that users may care 
about, and show how the accuracy of that maps onto 'distance'. 
 
The required amount of privacy parameter, \epsilon, impacts 
results. \epsilon=100 is great, others not so good.  In Fig. 5, the 
distributions are far even when the X axes is on a log scale.  How 
does a user choose \epsilon?  How exactly is an \epsilon = 5 better 
in terms of privacy than \epsilon = 100?  The loss in accuracy is 
clear but the gains in terms of privacy not. 
 
What about the AS graph makes it much harder to keep accurate? 
for e.g.,  at \epsilon=100, the accuracy is quite poor. 

 
dK-Graph model: For network topology aspects, this is a good 
model.  Is there nothing in the social graph that goes beyond 
topology of the friend graph? Metadata? Group memberships?  
Activity? (When is she online more often? Does he play 
farmville?) Correlation in activity?   
 
Theorem 1 seems more of a sufficient than a necessary condition.  
 
\sigma is not E[Lap(...)] which by definition is zero.  
 
Error analysis, the lower bound seems impossible, i.e., the 
minimum value of 1.  
 
It is unclear if the L2 minimization works across partitions, as it 
does in the vanilla case.  
 
Sec. 5: it is not clear until the end of Sec. 5.1 that by dK you mean 
dK-2, which loses a lot of fidelity (Fig. 7). Use dK-3 instead? 
 
Reviewer #4 
Strengths: Anonymization is a useful tool. We lack as many 
datasets in this domain as we would like because commercial 
interests prevent them being shared. 
 
Weaknesses: The obsession of graph theorists with node degree 
is really damaging to networking research. It is not clear that node 
degree sequences really tell us anything we need to know about 
data networks, or that the node-degree sequence approach really 
does what it claims to do. 
 
Comments to Authors: A lot of this paper is based on statements 
in [30]. I never found that that paper convincingly showed that the 
ensemble of graphs it generated were (i) meaningfully different 
from the graphs that they came from (two graphs that differ by 
two edits can easily be homomorphic - are they then usefully 
different); and (ii) showed that the resulting graphs were similar in 
any sense except those related to node degree.   
 
It may naively seem that both problems cannot be true, because 
they are almost the opposite problem. However, the problems can 
be different for different instantiations. For instance, for either the 
clique, or graph with no edges, all possible graphs with identical 
node degree distribution are the same. On the other hand, we 
know from the work of Willinger et al that graphs with identical 
degree distributions can be quite different in nature. Adding 
higher order degree sequences does not fix this. So we could have 
a mapping that for some graphs just creates what are effectively 
homomorphisms, and for others, creates a range of graphs that are 
in no useful sense similar to the original.  
 
What is the worst case for this algorithm in both senses? Does it 
fail to anonymise for some cases, and fail to produce meaningful 
information in others? Limiting to dK-2 introduces similar 
questions. Adding noise complicates the matter further. 
 
The graph datasets lack the types of labels that would make them 
interesting for many practical problems, e.g., link capacity, 
policies and so on. Most of the graph datasets have substantial 
errors. What is the effect of errors in the initial measurements? 
 
As the framework is defined in terms of a particular set of queries, 
why not just distribute the results of the query on the graph? We 
do not know that the technique will work for other queries, so we 
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cannot just blindly apply them when we come to another graph. If 
the dK sequence is so important, why generate alternative graphs 
at all: just give people the dK sequence and let them work with it. 
	
  
Reviewer #5 
Strengths: - Addresses an important and difficult problem with 
some novel angle and non-trivial observation.  
- combines design with concrete validation that provides more 
ground (even if it does not close the topic). 
 
Weaknesses: - The reader should be ready to accept semi-proof 
and lack of complete rigorous formal model and proof, for the 
sake of exposition of interesting observations. 
- Limitations are severe (only releasing k=2 reduces the k series to 
its single most expression: assortativity). The extension is 
conceptually interesting but far from being as attainable as the 
authors say. 
- The levels of privacy proposed are not ready for prime time. 
Most \epsilon-differential privacy work recommends \epsilon at 
most 0.1 this paper considers the parameter between 5 and 100! 
 
Comments to Authors: I think this is an interesting candidate for 
publication. The use of dk series seems promising to address the 
need to manipulate realistic graphs, this paper is making one step 
for it. This has potential to impact an important problem.  
 
We are far from a contribution solidly written in the marble given 
the choices made by the authors in terms of high \epsilon and a 
rather poor exposition of the methods, which seem to follow more 
high-level intuition than precise first principles. Nevertheless the 
point that partitioning improves sensitivity and brings guarantee is 
a good catch, and the paper makes the case serious. 
 
p.1 “We take a different approach to address the above question, 
by making the observation” the current claim of ownership of this 
observation is strange. This tension is the very much at the core of 
much research including k-anonymity, differential privacy. 
 
The limitation of k=2 might appear a bit hard to swallow after 
such a grand claim. I still think it is an interesting step because 
that is the way to go. Who knows how sensitivity behave for k=3 
and if any partitioning make sense. 
 
“In contrast, our goal is to inject changes into all aspects of the 
graph topology, instead of focusing on a single graph metric.” 
You do not reproduce all aspects, and you will likely never. You 
propose to recover what the dk series can obtain, starting with 
k=2. It does already make your approach original (and promising) 
but stating it so broadly is a countersense. 
 
“Unfortunately, the author asserts there are incorrect results in the 
paper 1.” This is perhaps unfortunate but it does not explain how 
your method is intrinsically better. It would much stronger to 
highlight the difference first and then mention this point. 
 
Lemma 1 is a partial result. You only provide an upper bound, 
which does not prove that the real sensitivity is necessarily high. 
 

The statement of error measure is very vague. How does random 
noise alter the actual structure of the graph? 
 
Please clarify what happens between clusters? Are the data lost 
with some forms of random generation of links between them? 
 
Have you ever seen a single paper advocating \epsilon between 5 
and 100? You are essentially saying the users “Do not worry, your 
chance of being identified by joining the database are only 
multiplied between 148 and about 10^43”. What kind of 
guarantee is that? 
 
Response from the Authors  

We thank the reviewers for their insightful comments.  Several 
comments were results of ambiguous text in the paper, which we 
have addressed by clarifying our claims and assumptions and 
providing deeper explanations of our findings.  In particular, we 
explain that the omission of the dK-PA was simply because it 
generated so much noise that the dK-generator failed to generate 
matching graphs.  Two additional key points stood out in the 
comments, and we address them in detail below. 

First, on the issue of dK-2 as a graph statistical representation, we 
modified text to more clearly explain the advantages and the 
limitations of our choice.  We explain that we require a statistical 
representation of a graph that can be converted to and from an 
unique graph. The dK-series is ideal for this.  We use the dK-2 
series, because it is the most detailed dK-series that has a 
corresponding graph generator (e.g. there is currently no known 
dK-3 series graph generator that works on large graphs). While 
the choice of dK-2 limits the accuracy of our current model, our 
methodology is general, and can be used with higher order dK-
series when their generators are discovered (e.g. we are currently 
working on developing a scalable dK-3 generator).  It is possible 
that providing privacy on higher order dK-series may require 
more severe noise, which could consequently destroy their higher 
accuracy. Therefore, our conclusion is that higher order dK-series 
will become a practical solution only if we are able to preserve 
their accuracy through the perturbation process and when a 
generator will be invented. 

Second, we address via text edits questions on the choice of 
\epsilon: smaller \epsilon indicates stronger privacy. We use 
moderate to high values of \epsilon in our tests for two reasons. 
One, we wanted to find the \epsilon value that contributes to the 
smallest noise such that it produces a graph statistically similar to 
the synthetic dK-2 graph with no privacy. Thus we can indirectly 
quantify the level of privacy inherent in a synthetic graph without 
additional privacy constraints. We show that this property is 
achieved when \epsilon is equal to $100$. In addition, the dK-2 
series is a very sensitive function and naturally requires high level 
of noise to guarantee strong privacy. Our primary goal was to 
identify the feasibility of this approach, and leave further 
optimizations to achieve high fidelity graphs for lower \epsilon 
values as goals for future work. 
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