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ABSTRACT
We present WiScape, a framework for measuring and under-
standing the behavior of wide-area wireless networks, e.g.,
city-wide or nation-wide cellular data networks using active
participation from clients. The goal of WiScape is to provide
a coarse-grained view of a wide-area wireless landscape that
allows operators and users to understand broad performance
characteristics of the network. In this approach a central-
ized controller instructs clients to collect measurement sam-
ples over time and space in an opportunistic manner. To
limit the overheads of this measurement framework, WiS-
cape partitions the world into zones, contiguous areas with
relatively similar user experiences, and partitions time into
zone-specific epochs over which network statistics are rela-
tively stable. For each epoch in each zone, WiScape takes
a minimalistic view — it attempts to collect a small num-
ber of measurement samples to adequately characterize the
client experience in that zone and epoch, thereby limiting
the bandwidth and energy overheads at client devices. For
this effort, we have collected ground truth measurements
for up to three different commercial cellular wireless net-
works across (i) an area of more than 155 square kilometer
in and around Madison, WI, in the USA, (ii) a road stretch
of more than 240 kilometers between Madison and Chicago,
and (iii) locations in New Brunswick and Princeton, New
Jersey, USA, for a period of more than 1 year. We jus-
tify various design choices of WiScape through this data,
demonstrate that WiScape can provide an accurate perfor-
mance characterization of these networks over a wide area
(within 4% error for more than 70% of instances) with a
low overhead on the clients, and illustrate multiple appli-
cations of this framework through a sustained and ongoing
measurement study.
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Figure 1: A Snapshot of TCP throughput distri-
bution within our NetB network, covering a 155 sq.
kilometer city-wide area. Throughputs are collected
based on 1MB downloads, collected using WiScape.
Each dot corresponds to a circular area of radius 600
meters.
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works]: Network Architecture and Design—Wireless Com-
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1. INTRODUCTION
The ability to observe an entire network’s performance

is an important precursor to understanding and predicting
its behavior, and in debugging its performance problems.
Gathering such detailed observations at a network-scale is
challenging for any network, whether wired or wireless.

In wired networks, such as enterprises or ISPs, operators
typically deploy multiple monitoring nodes in carefully cho-
sen vantage points within the network to capture and aggre-
gate necessary information [1]. In the context of WLANs,
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multiple early efforts emulated these wired approaches by
deploying similar monitoring nodes in the wired part of
the network [2]. However, wired-only observations fail to
capture the impact of location-specific RF characteristics.
Hence, more recent WLAN monitoring efforts, e.g., Jig-
saw [3], chose to deploy numerous wireless sniffers across an
entire physical space, e.g., a campus building. While deploy-
ment of such a widespread wireless monitoring infrastruc-
ture is still feasible in building-wide settings, the logistics of
densely deploying and managing such infrastructure is im-
practical when the wireless networks are significantly larger
in scale. In particular, it is virtually impossible to densely
deploy wireless sniffers to monitor the performance of a city-
scale or a nation-scale cellular data network. In this paper,
we examine a different solution for monitoring and measur-
ing such large-scale wireless networks, one that leverages
the potential assistance of a large number of clients. More
specifically, we present WiScape, a framework to character-
ize the wireless landscape, using data collected from three
commercial cellular data networks over more than one year
across large regions: (i) more than 155 square kilometers in
and around Madison, WI, in the USA, (ii) a road stretch of
240 kilometers between Madison and Chicago, and (iii) tar-
geted regions in the cities of New Brunswick and Princeton
in New Jersey, USA. Figure 1 presents a snapshot of some of
our measurement data collected from one of the monitored
cellular networks across Madison, WI. The figure partitions
the entire area into coarse-grained zones (each zone is a 0.2
sq.km.), with only a sampled subset of zones shown, and the
size of the circles represent the average values of the TCP
download throughputs (the shade of the circle represent the
variance of throughput samples).

In this paper, we also demonstrate, via experimentation,
how network operators and users (applications) can benefit
from data accumulated by the WiScape framework. For in-
stance, in our experiments we found that a network operator
can use WiScape to easily identify significant changes in user
experiences within their own network, while an application
such as MAR [4] (which uses multiple cellular network inter-
faces to provide aggregated wireless bandwidth into vehicles)
can improve its own performance by up to 41% by leveraging
WiScape collected data. Finally, an approach such as WiS-
cape can potentially serve as a performance watchdog and
can provide a neutral view of different commercial wireless
networks over time and space.

Client-assisted monitoring in WiScape
Cellular data networks nationwide are placing increasing em-
phasis on performance, mobility and wide-area coverage. As
these networks attempt to provide ubiquitous connectivity
to large geographic areas, operators continue to seek better
tools to observe network performance at all locations. Each
network operator sends out its RF monitoring trucks during
initial deployment of cellular towers and periodically after
that to various neighborhoods. Occasionally, if the operator
receives a large volume of consumer complaints of network
performance from a certain area, they would also conduct
additional RF surveys at those specific locations [5]. Each
such RF survey is quite labor-intensive.

Furthermore, user complaints are unlikely to capture a
vast majority of network performance issues that occur. Users
often only complain when a problem is particularly serious

and persistent, causing major disruptions to the user over a
long period of time.

In WiScape we propose to measure the network’s perfor-
mance, as perceived by the clients and through the help of
clients. More specifically, in this approach diverse mobile
clients measures network properties based on instructions
from a central controller to map out the performance across
the entire network. Since the clients are naturally mobile,
they are perfectly positioned to monitor the network per-
formance from various vantage points. If implemented suc-
cessfully, this approach can mitigate significant costs that
operators might otherwise have to incur in order to collect
data of the same level of richness and detail. In addition,
such an approach provides us with unique data from the
client’s point of view, which is not available otherwise.

This high-level idea is actually a fairly common one and
different variants of it have been referred to as crowd-sourcing,
war-driving, and participatory sensing. Such approaches
have been used to collect locations of WiFi APs worldwide,
and have been proposed in various types of health-related
applications (air pollution, audio noise level, and radiation
exposure monitoring across a city), as well as social inter-
actions (detecting presence of friends nearby) [6, 7]. In the
wireless setting, there are now ongoing efforts that attempt
a similar approach to collect performance data of different
cellular networks. Examples include RootWireless [8] a com-
pany that distributes mobile phone applications that collect
measurements from volunteers to generate coverage maps
of cellular operators, the 3gtest application from U Michi-
gan [9] and AT&T’s “Mark the Spot” iPhone application
that allows iPhone users to record the location of where a
phone call was dropped.

While the main idea is relatively simple, the core techni-
cal challenge in designing an effective, scalable, and useful
system lies in its ability to manage the volume of measure-
ments required and the manner in which measurement tasks
can be coordinated across multiple clients. We comment on
this issue next.
WiScape approach and usage scenarios: In a client-
based monitoring system, if all clients are requested to col-
lect performance measurements all the time, the volume of
such measurement traffic could prohibit useful activity in
the network. Such an effort could also place a significant
burden on the client devices leading to quicker depletion of
the limited battery power of these devices. Therefore, the
key in designing a client-based monitoring infrastructure is
to ensure that the volume of data collected is low, yet is
adequate to present the operators and users with a broad
understanding of network performance. At the same time,
since this approach is able to collect measurements only from
specific locations clients are available at any given instant,
the number of measurement samples available from any ar-
bitrary location and at any desired time is likely to be quite
sparse, often zero, and hence not statistically significant.
Therefore, in WiScape we need to aggregate collected mea-
surements from clients, both in time and space so that it is
statistically significant for observations.

Burdened by above considerations, we partition the world
into zones (around 0.2 sq. kilometer each) and time in each
zone into epochs (a few tens of minutes). We define zones
such that measurements within each zone have relatively low
variance most of the time. We define epochs such that statis-
tics across multiple consecutive epochs of the same zone have
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low variance. (Note that epochs may have smaller dura-
tions in zones with rapidly changing performance observed
by clients.) In other words, each epoch for each zone is the
smallest time-space granularity that WiScape attempts to
accurately estimate to provide a stable measure. Based on
our models, we require around 100 measurement samples to
estimate network layer performance of each epoch of a zone,
such as throughput, delay, loss, and jitter. We believe for
most zones this measurement volume is easy to obtain, espe-
cially for zones in dense urban areas with many users. which
often require greater attention from network operators.

The nature of data collection in WiScape also dictates
the type of its use. Given our intent of collecting a small
amount of data, WiScape will miss many of the short-term
and transient variations, e.g., as a result of sudden burst
of active users arriving in a given location and then dis-
appearing within a few minutes. However, any persistent
network behavior (persistent in the order of an epoch, typi-
cally tens of minutes) will be captured by our system quite
accurately. We show this through multiple examples in Sec-
tion 4. An interesting such example was WiScape’s detection
of 4× increase in latencies in a specific zone of two cellular
networks in Madison, encompassing the UW-Madison foot-
ball stadium, for nearly 3 hours on a football Saturday when
nearly 80,000 people packed into the stadium for the game.

In the rest of the paper, we explain how we designed
the WiScape framework through detailed measurements and
statistical analysis of the data and make the following key
contributions:

• We establish the feasibility of client-assisted monitor-
ing of wide area wireless networks by carrying out ex-
tensive measurements over a duration of more than
1 year, spanning a geographical area of more than
155 sq.km. across multiple cities, a long road stretch
of 240 k.m. and across three 3G cellular networks.
Traces used for the paper will be made publicly avail-
able through CRAWDAD [10].

• We design and implement WiScape — a monitoring
system that bins measurements into epochs and zones
and collects a relatively small number of measurements
per epoch per zone. We establish appropriate parame-
ters for epochs, zones, and the number of measurement
samples through detailed data collection, analysis, and
experimentation.

• We demonstrate the benefits of WiScape through mul-
tiple simple use cases: (i) to quickly detect somewhat
persistent changes to network behavior and alert net-
work operators of need to perform detailed investiga-
tions of such changes, (ii) to apply WiScape collected
data to improve the performance of multi-network ap-
plications like MAR and “multi-sim.”

In the next section, we present some details on our mea-
surement and data collection efforts used designing and eval-
uating different aspects of WiScape. Subsequently, in Sec-
tion 3, we present the overall design of WiScape including
related validation. In Section 4 we demonstrate some uses of
data collected by WiScape, and finally discuss related work
and present our conclusions in Sections 5 and 6 respectively.

2. PRELIMINARIES
Our measurement setup consists of a measurement coor-

dinator running on a desktop in our university laboratory,
with well provisioned connectivity to the Internet, that pe-
riodically requests and collects measurements from different
client devices (based on Windows and Linux platforms). In
our measurements, we have gathered data from three differ-
ent cellular networks with nation-wide footprints, referred
to as NetA , NetB , and NetC 1. The data collection pro-
cess has been ongoing in multiple stages for more than one
year now (Table 1) and different clients in our measurement
setup had different capabilities and characteristics as dis-
cussed next.

Data collection process: While we have collected mea-
surement data for both uplink and downlink, in this paper,
we focus on the downlink direction. This is motivated by the
observation that most of data traffic is downlink. Our data
collection has been done using multiple platforms, some of
which are mounted on vehicles (public transit buses in Madi-
son, intercity buses, as well as nodes mounted on personal
vehicles), while others are static.

Wide-area: The spatially biggest datasets are labeled Stan-
dalone and WiRover . The Standalone dataset was collected
using up to five public transit buses in Madison, covering an
approximate area of 155 sq. kilometer in this city. These
public transit buses typically run from 6am to midnight
and each particular bus gets randomly assigned to differ-
ent routes each day. Even in a single month, this set of
buses is able to cover a significant fraction of Madison and
its neighboring cities. The WiRover data collection pro-
cess is the newer incarnation of the Standalone process, in
which all of these bus-mounted nodes now are equipped
with two network interfaces (NetB and NetC ), and provide
free WiFi service to bus passengers using the multi-network
setup [13]. In addition to the public transit buses of Madi-
son, we also placed additional nodes on two intercity buses
between Madison and Chicago, a distance of more than 240
kilometer. Over time, these buses generated multiple mea-
surement values for each location along this path stretch.
We did not evaluate if any bias was introduced by the peri-
odic nature of bus routes on the collected data.

Spot: The vehicular setup cannot provide us with long run-
ning contiguous measurements from a specific location. To
study cellular network performance over a longer timescale,
we selected some indoor locations to continuously collect
data for up to 5 months. These included multiple locations
in Madison, WI, and Princeton and New Brunswick, NJ.
We describe our criteria for selecting the specific locations
in Section 3.1. These datasets provide a more detailed and
fine-grained view than is possible using with the vehicular
collection methods of our Wide-area data. We apply these
datasets to understand network performance over time for a
given static location as will be demonstrated in Section 3.2.1.

Region: This consists of multiple datasets: Proximate-
WI, Proximate-NJ, and Short segment. The two Proximate
datasets were collected in neighborhoods close to the previ-
ously selected Spot locations. All three datasets consist of
targeted measurement data to understand the feasibility of

1Since our goal for this paper currently is to explore a mea-
surement framework, and not to answer which of these net-
works perform best or worst in different locations, we did
not find it useful to reveal the identities of these nation-wide
cellular providers.
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Networks
NetA GSM HSPA [11], Uplink (≤1.2Mbps), Downlink (≤ 7.2Mbps)
NetB CDMA2000 1xEV-DO Rev.A [12], Uplink (≤ 1.8Mbps), Downlink (≤ 3.1Mbps)
NetC CDMA2000 1xEV-DO Rev.A [12], Uplink (≤ 1.8Mbps), Downlink (≤ 3.1Mbps)

Hardware
Server 3 Desktops with well provisioned wired Internet connection
Client 3 Laptops with 3 cellular data cards & GPS

Measurement params
Transport protocol (TCP/UDP), Transmission duration (10sec∼5min)
Inter packet delay (1msec∼100msec, adaptively varies base on available capacity)
Download size (200 and 1200Bytes for UDP, 100Bytes∼2048Bytes for TCP)

Params logged Packet sequence number, Receive timestamp, GPS coordinates

Table 1: Measurement setup details.

Group Name Span Months Nets Location

Spot
Static-WI 5 locations 5 A, B, C Madison, WI
Static-NJ 2 locations 1 B, C New Brunswick, Princeton, NJ

Region
Proximate-WI Vicinity of the static locations 5 A, B, C Madison, WI
Proximate-NJ Vicinity of the static locations 1 B, C New Brunswick, Princeton, NJ
Short segment 20 km road stretch 3 A, B, C Madison, WI

Wide-area
WiRover 155 sq.km. city-wide area 6 B, C Madison, WI

and a 240 kilometer road stretch and Madison to Chicago
Standalone 155 sq.km. city-wide area 11 B Madison, WI

Table 2: Different data sets and details of locations. All measurements used TCP and UDP flows, except
Standalone which used ICMP pings instead of UDP flows.

composing infrequently collected measurement samples from
multiple (and potentially diverse) sources for estimating net-
work performance, as will be seen in Section 3.3. These mea-
surements were collected using client devices placed inside
personal automobiles and regularly driven over fixed routes.

All of our measurements reported in this paper were col-
lected using laptops or single-board computers equipped with
different models of cellular modems (some were USB-based
and others were PCMCIA).

Measurements collected: The Spot measurements and
Region measurements collected a specific set of performance
metric over three cellular networks, including TCP and UDP
throughput, UDP packet loss rate, application level jitter
measured in terms of Instantaneous Packet Delay Variation
(IPDV) [14], application level RTT, and ICMP-level RTT
(NetB only).

Throughput measurements were not conducted while us-
ing the WiRover system, as they would had affected the net-
work performance experienced by the clients of the WiRover
system. Hence, we only collect latency measurements using
UDP pings, roughly 12 pings a minute. Details regarding
measurement settings for each dataset are summarized in
Table 2 and Table 1.

Effect of vehicular mobility on measurements: In
our effort to collect measurements from a vast region over
sustained durations, we were forced to utilize vehicles trav-
eling at varying speeds. To understand the effects of the
vehicular speeds on our data we analyzed the distribution
of RTT latency (UDP ping test) as a function of vehicular
speed for the zones in our WiRover dataset in Figure 2(a).

As can be seen from the plot, there was very limited corre-
lation (correlation coefficient mostly close to zero) between
the latency and the vehicle speed. We also plot the CDF of
the correlation coefficients which were measured from each
zone in Madison and on the path from Madison to Chicago
in Figure 2(b). The plot shows that 95% of zones had little
correlation (0.16) between the speed of vehicle and latencies
observed, for typical vehicle speeds ranging from 0 km/h to
120 km/h. The absence of a correlation between the speeds
at which these measurements were collected assures us that

our datasets are representative of cellular network perfor-
mance, which are independent of (typical) vehicle speeds.

3. DESIGN OF WISCAPE FRAMEWORK
In this section we describe the design of WiScape. Fig-

ure 3 summarizes the flow of this section. First, we analyze
our Wide-area datasets to characterize the performance of
cellular networks over a large spatial region to determine if
data is aggregatable in space. In Section 3.1 we use these
datasets to determine the appropriate size of zones for our
measurement framework. In Section 3.2 we use our Spot
and Region datasets comprising of measurements collected
at finer time scales to analyze the performance variations
of the three cellular networks at fine-grained and coarse-
grained time scales at multiple locations. In Section 3.3.1
we determine the number of measurement samples necessary
to determine the bandwidth at a zone with certain degree of
accuracy. Then in Section 3.2 we determine the frequency
with which the measurements should be repeated. Finally,
in Section 3.3 we analyze our Region dataset to ascertain
the feasibility of carrying out client-sourced, coarse grained
performance estimation for cellular networks, involving mul-
tiple clients.

3.1 Aggregation in space (zones)
As it is not feasible to blanket monitor a entire wide-

area wireless network we must aggregate data into spatial
zones. We desire zone sizes which are small enough to ensure
similar performance at all locations inside the zone but big
enough to ensure enough measurement samples can be col-
lected for each zone to properly characterize the network’s
performance. For this purpose we analyze the variation of
TCP bandwidth measurements for NetB collected in Stan-
dalone dataset across city locations by dividing them into
circular zones of radius varying from 50 to 750 meters in
steps of 100 meters. We have not experimented with other
shapes of zones.

In Figure 4 we plot the CDF of relative standard devi-
ation (standard deviation of samples/mean of samples) for
all zones, for which we have at least 200 samples per week
over the duration of the measurement study. The left most
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Figure 2: Latency is weakly correlated with typical
vehicular speeds. In Figure 2(a), the latencies are
mostly around 120 msec, with no observable trend
with increasing speeds. In Figure 2(b), the CDF of
correlation coefficient between latency and vehicular
speed is less than 0.16 in 95% of zones.

curve corresponds to zone size of 50 meters while the right
most curve corresponds to zone size of 750 meters. Further-
more, the relative standard deviation of for 80% of the zones
is around 2.5% for zones with radius of 50 meters and 7%
for zones with radius of 750 meters2. The increase can be
explained by the change in terrain conditions across bigger
zones. As can be seen from the plot, despite increasing zone
radius the relative standard deviation tends to vary only
slightly. We pick a zone radius of 250 meters as 80% of the
zones with 250 meter radius have relative standard devia-
tion less than 4% and 97% of zones have a relative standard
deviation of 8% or lower. The low relative standard devia-
tion, implies that the characteristics of locations inside the
zone are mostly similar.

2In Figure 1, some zones have a relative standard devia-
tion greater than 0.3 (mean = 1080 Kbps, dev = 350 Kbs).
These zones in Figure 1 correspond to regions with very few
samples (less than 200 hundred samples) and hence are not
considered while plotting Figure 4.

Figure 3: The flow of text in Section 3, describing
the design choices made in WiScape.
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Figure 4: CDF of relative standard deviation of TCP
throughput across a cross-section of the city with
NetB as a function of increasing zone radius, only
zones with more than 200 data-points have been con-
sidered.

We find that the TCP throughput does not vary signif-
icantly for the cellular network. Specifically, we note that
80% of zones have a relative standard deviation between 2%
and 8% regardless of zone size. Moreover, less than 2% of the
zones have a standard deviation of 15% or higher. Based on
the above observation we selected representative zones with
overall performance variability for NetB that was between
2% and 8% and zones with TCP throughput variability of
the other two networks that was less than 15%. These rep-
resentative zones are used for our Spot data collection, as
seen in Section 3.2.

We also examined data from WiFi-based networks as re-
ported by others (GoogleWiFi [15], RoofNet [16] and us
(MadCity Broadband [17]) in prior work on how throughput
measurements for cellular networks might compare to that
of such WiFi-based networks. Such prior work report high
and sudden variations in achievable throughputs in the WiFi
networks, often due to the use of unlicensed spectrum, ran-
dom access nature, and the characteristic of the spectrum
itself. This is contrast to the more coordinated access meth-
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ods and the licensed nature of the cellular spectrum that
provides some performance stability across epochs as de-
fined above. Hence, epochs in WiFi system are likely more
difficult to define than compared to these cellular systems.
The low degree of variability in cellular performance is the
motivation for exploring the feasibility of estimating cellular
data network performance using a small number of measure-
ments.

A closer look: To understand the stability of measure-
ments within individual zones, we use the Static and Prox-
imate datasets. As noted in Section 2, data for our Proxi-
mate dataset was collected by driving around in a car within
a 250 meter radius from corresponding Static dataset loca-
tions. The Proximate dataset, provides us with network
performance measurements from multiple locations in close
vicinity of the locations in Static. The measurements in
Proximate dataset are, thus, representative of the kind of
measurements we can expect to gather for a given zone from
a set of clients in a real deployment of WiScape system.
The data for Proximate dataset was collected for each zone
over a span of 5 months in Madison and 1 month in New
Brunswick. In the rest of this section, we present results for
a single zone from Madison and one in New Brunswick and
omit the results for the remaining five static locations. We
examine how the average throughput measured from Static
subset relates to the throughput measurements from the cor-
responding Proximate measurements.

We present the average and standard deviation for the
Static and corresponding Proximate measurements in Ta-
ble 3. From the table we note that the client sourced mea-
surements form a reasonable approximation of the expected
performance at a given location.

We observe that the average UDP throughput of NetB-WI
for the ground truth and the client sourced UDP traces are
876 Kbps and 855 Kbps respectively, where the percentage
of error is less than 1%. The observation holds true even in
case of representative zones from New Brunswick which has
higher degree of performance variation compared to zones
in Madison.

The jitter values reported in the Proximate dataset are
also close to 7 msec for NetA-WI which matches the corre-
sponding Static dataset jitter value shown in Table 3. Simi-
larly, the jitter for NetB-WI and NetC-WI are around 3 msec
in the Proximate dataset which again matches the Static jit-
ter value of the two networks at the location, as shown in
Table 3. We also have noted the same behavior for NetB-NJ
and NetC-NJ whose jitter values are 2.8 msec and 1.6 msec
respectively. From the above results we find that measure-
ments collected across multiple locations within a zone are
close to each other.

Summary: We choose a radius of 250 meters for zones
as 97% of such zones in Madison have low (8%) relative
standard deviation for TCP throughput for NetB .

3.2 Aggregating in time (zone-specific epochs)
We analyze data from Spot dataset to understand the per-

formance of the three cellular networks over different gran-
ularities of time. As noted in Table 2, the Spot data was
collected at five distinct locations in Madison and two loca-
tions in New Jersey, for all three networks, to characterize
the performance of the cellular networks at a fine granularity.
In particular we study coarse (30 minutes) and fine (10 sec-
onds) time scale variations of different performance param-

eters such as throughput, loss rate etc. and in Section 3.2.2
we explain the mechanism for calculating the epoch duration
for the monitored zones.

3.2.1 Performance at different time granularities
We look at Spot data measurements to characterize the

performance variability of cellular networks. We present
data from two representative locations, one in Madison and
another in New Brunswick where the relative standard devi-
ation (standard deviation/average) of any of the parameters
(TCP and UDP throughput, Jitter, Loss rate) was less than
0.15, for the entire monitored duration. The highest relative
standard deviation of 0.15 was observed for TCP through-
put at both locations. We observed similar properties for the
other four measured locations in Wisconsin and one other lo-
cation in New Jersey, but do not present them in this paper
for the sake of brevity.

Coarse time scale: We present the average throughput,
jitter, and error rates, averaged in 30 minute bins collected
in Madison and New Brunswick in Figure 5(a,b,c,d) and
5(e,f,g,h) respectively. As can be seen from Figure 5, for the
selected location in Madison, the NetA network on an aver-
age offers throughput benefit greater than 50% for both TCP
and UDP over the worst performing network. We also find
that the variance in throughput across all three networks
over the entire duration is less than 0.15 of their long term
average. Moreover, all three networks have a packet loss
rate less than 1% with a very low variation (Figure 5(d)).
We find from Figure 5(c) that the jitter is around 3 msec for
NetB and NetC networks while it is around 7 msec for the
NetA network.

For the location in New Brunswick, looking at Figure 5(e,f),
we find that the TCP and UDP throughput for NetB and
NetC has higher variability than the location in Madison.
Although the overall variation is still lower than 0.15. Akin
to the location in Madison, both networks have low jitter
(less than 3 msec) and packet loss (less than 1%).

Fine time scale: In Table 4, we present the standard
deviation for throughput, jitter, and loss rate calculated for
10 seconds bins and 30 minute bins for all three networks for
both locations, to compare and contrast the network charac-
teristics at fine time scales with coarse time scales.As can be
seen from the table, the standard deviations over coarse and
fine timescales vary significantly. For example, at the loca-
tion in Madison, the standard deviation of TCP throughput
is 211 Kbps at coarse timescales, whereas it is around 377
Kbps at finer timescales, a difference of 159 (377-211) Kbps.
Similar observations can be drawn for other metrics across
all the networks. This difference in standard deviation is
expected as 30 minutes is a large duration of time which
can hide large fluctuations in performance. We can make
similar observation for the measurements collected at the
location in New Brunswick. The high degree of variation at
short time scales effectively rules out the use of small and
infrequent measurements to estimate performance.

Finally, given the relatively low overall jitter (less than 10
msec) and no losses in the networks, we desist from present-
ing further jitter and loss performance results for the sake
of brevity.

3.2.2 Calculating zone specific epochs
To determine the zone specific epoch duration, we need to

determine the granularity of time over which a given met-
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Figure 5: CDF of long term (30 min) average data. Plots (a)-(d) correspond to a location in Madison and
(e)-(f) correspond to a location in New Brunswick. The variation in throughput across all the networks at
two locations is below 15%. Location in New Brunswick shows higher variance in throughput. The average
and variation of both jitter and loss are low across all locations.

NetA-WI NetB-WI NetC-WI NetB-NJ NetC-NJ
Static Proximate Static Proximate Static Proximate Static Proximate Static Proximate

TCP (Kbps) 1242 (196) 1266 (180) 845 (63) 827 (82) 1067 (61) 1005 (78) 1494 (222) 1549 (196) 1850 (201) 1869 (159)
UDP (Kbps) 1241 (101) 1257 (135) 867 (67) 855 (89) 1017 (62) 962 (72) 1690 (290) 1748 (248) 2204 (221) 2245 (166)
Jitter (msec) 7.4 (0.4) 8.5 (0.6) 3 (1.6) 5.4 (1.6) 3.4 (1.2) 5.6 (2.4) 2.8 (1.5) 2.8 (0.9) 1.6 (0.9) 1.5 (0.6)
Loss (%) ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0

Table 3: Table showing the closeness average and standard deviation (in parentheses) of different nearby
locations (Proximate dataset) from the same zones for each network.

ric is stable. A metric should be estimated for each epoch
independently. We use the Allan deviation measure [18] to
determine the epoch for which the metric is stable. The
Allan deviation is used to calculate the frequency stability
of a variable and is defined as the square root of the Al-
lan variance. Allan variance is then defined as the variance
between two measurement values formed by the average of
the squared differences between successive values of a regu-
larly measured quantity. The sampling period of the mea-
surement also forms a parameter which determines the time
granularity at which the Allan deviation is measured. The
difference from standard deviation arises from the usage of
immediate measurement values to calculate the difference
terms, instead, of using the long term mean.

It is mathematically expressed as,

σy(τ0) =

r

PN−1
i=1

(Ti+1−Ti)2

2(N−1)

Where, Ti are the averaged measurement values collected
at time instance i and N is the total number of available
measurement values. A low Allan deviation implies that the

current values do not differ much from the previous values.
In contrast, large Allan deviation would signify that the co-
herence of the measured metric is changing.

We present the Allan deviation of UDP throughput at
the two zones for the NetB network using the Proximate
dataset in Figure 6 as an example. In the figure, the x-
axis of the plot represents the periodic burst duration while
the y-axis represents the corresponding Allan deviation. We
find that, for the zone in Madison, Allan deviation becomes
the lowest around a time duration of about 75 minutes. This
value is higher (mostly greater than 0.5) at both smaller and
larger values. For the zone in New Brunswick we find that
Allan deviation is lowest around 15 minutes. We pick this
minimum value of the Allan deviation is the epoch duration
for the corresponding zone. Epochs for other metrics can
similarly be determined using the above method.

In WiScape, we collect measurements from clients to get
stable estimates in each epoch for a zone, re-starting this
process as we move from one epoch to the next. Hence,
for the representative zone from Madison, the measurement
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NetA-WI NetB-WI NetC-WI NetB-NJ NetC-NJ
Long Short Long Short Long Short Long Short Long Short
(30m) (10s) (30m) (10s) (30m) (10s) (30m) (10s) (30m) (10s)

TCP (Kbps) 211 370 33 102 36 96 126 408 167 414
UDP (Kbps) 77 241 39 82 38 94 153 429 182 365
Jitter (msec) 0.2 0.7 1.3 2.1 0.7 1.6 0.5 1.6 0.5 1.0

Loss (%) ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0

Table 4: Table showing the standard deviation of long term (30 min) and short term (10 sec) data for each
network. The standard deviation of short term data is significantly higher than that of long term data.
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Figure 6: Allan deviation for UDP throughput mea-
surements at a given zone for NetB using Proximate

subset traces. For the measured data, the Allan de-
viation is lowest around 75 minutes, which corre-
sponds to the epoch of the zone.

process repeats every 75 minutes, while for the zone in New
Brunswick it repeats every 15 minutes.

Summary: When aggregated at finer time scales (tens of
seconds), the network metrics vary significantly more, than
when aggregated at a coarser time scale (tens of minutes).
Hence, we use the minimum value of the Allan deviation in
each zone to determine the epoch of that zone. This value
is estimated regularly for each zone.

3.3 Composability of client sourced measure-
ments

We use client sourcing to collect measurements from differ-
ent client devices, leading to estimation of network proper-
ties for each epoch in each zone. Composability of measure-
ments collected from diverse sources would be feasible only
when they are similar (to a certain) extent to one another. In
our work, we have only used laptop or single-board computer
(SBC) based hardware, each equipped with different cellular
modems. This section shows that composability across this
class of clients is, indeed, possible. However, composability
of measurements from a mobile phone and a laptop equipped
with a USB modem may not always work well. This is be-
cause a mobile phone, among its other characteristics, has a
more constrained radio front-end and antenna system, than
a USB modem. Potentially data collected from such devices
with different capabilities need to go through a normaliza-
tion or scaling process. We have not addressed such types of
composition in this work. Instead we suggest that we group
devices into broad categories — mobile phones, laptops or
SBCs with USB or PCMCIA modems, etc., and perform
client-assisted monitoring for each individual category sep-
arately. Given our experimentation was performed using

laptops and SBCs equipped with cellular modems (as this
was the platform used in our wide-area data collection efforts
for various practical and logistical reasons), we demonstrate
that composability within its category. Future work would
require us to re-create some of these results with the mobile
phone category as well as as examining techniques for nor-
malization across categories, a significant effort unto itself.

To demonstrate the closeness of client sourced samples
to stationary data, we evaluate a) if the probability dis-
tribution of the measurements collected at the same loca-
tion (same GPS coordinates) by different clients at differ-
ent times within the time epoch are statistically similar to
the overall long-term distribution at that location and b)
if the probability distribution of the measurement samples
collected by different clients at different locations (within a
bounded distance) during the same time epoch are statis-
tically similar to the overall long-term distribution at that
location. While (a) measures the temporal variability, (b)
measures the spatial variability of the measurement samples
inside a zone.

We measure the similarity of two probability distribution
functions, using the symmetric Normalized Kullback-Leibler
Divergence (NKLD) between the data from the Static dataset
and the Proximate dataset for a given location. The sym-
metric NKLD is a measure of the dissimilarity between two
distributions.

The Kullback Liebler divergence (KLD) quantifies the rel-
ative entropy between two probability distributions which
are generated from a common event. The KLD is zero for
two identical probability distributions. To rectify the asym-
metric nature of the metric we use a symmetric and normal-
ized version of the metric as used in [19]. The normalized
symmetric Kullback Leibler metric,

NKLD(p(x), q(x)) =
1

2

„

D(p(x)||q(x))
H(p(x))

+
D(q(x)||p(x))

H(q(x))

«

where, p(x) and q(x) are the two probability distributions
based on a common set χ.
H(p(x)) =

P

x∈χ p(x)log(1/p(x)) is the entropy of the
random variable x, with probability distribution p(x), and,

D(p(x)||q(x)) =
X

x∈χ

p(x)|log
p(x)
q(x)

|

is the Kullback-Leibler divergence. A small value of NKLD
would signify that the two distributions are “close”. For our
experiments, we take an NKLD value of 0.1 and lower to
signify that the distribution of measurements are similar.
We plot the KLD distributions for UDP throughput for the
NetB network in Figure 7.

Temporal variability of samples: We randomly select
two measurement traces of two clients of progressively in-
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Figure 7: Plot of NKLD for UDP throughput (a) and (c) shows that samples collected at temporally different
instances at same location are highly similar, (b) and (d) shows data collected at spatially different locations
which are in the same zone are highly similar. Plots (a) and (b) corresponds to location in Madison, Wisconsin,
while (c) and (d) corresponds to location in New Brunswick, New Jersey.

creasing time durations with the same GPS coordinates and
calculate the divergence of this distribution with the overall
distribution consisting of all measurements, this process is
repeated across 100 iterations and the average of the NKLD
is calculated. We plot the results in Figure 7(a) and Fig-
ure 7(c). We find that for the location in Madison, by the
time we have accumulated 50 to 60 samples, the NKLD goes
down to a 0.1 signifying that the two distributions are sim-
ilar to each other. For the location in New Brunswick, we
find that the NKLD goes below 0.1 once we have accumu-
lated 80 to 90 samples. Furthermore, the two distributions
become similar once we have gathered around 120 samples.

We need higher number of samples in New Brunswick,
due to the greater degree of variation of its performance
compared to the network in Madison.

Spatial variability of samples: We randomly select lo-
cations which are 50-250 meters apart from each other and
simultaneously start UDP downloads using two clients at
both locations for a duration of 2 minutes. The test is re-
peated at 10 different locations. We plot the divergence of
the distribution of throughput values collected from two lo-
cations in Figure 7(b) for Madison and Figure 7(d) for New
Brunswick. We find that with 80 and 100 measurements in
Madison and New Brunswick respectively the NKLD is less
than 0.1. This signifies that by the time we have accumu-
lated around 100 samples at two locations the distribution
of such samples becomes similar to one another in both the
representative locations.

Based on above results, we conclude that client sourced
measurements can be used as a estimator of the ground truth
for a zone.

3.3.1 Example: client sourced throughput estimation
We intend to determine the minimal amount of measure-

ments necessary to estimate the network’s performance at
a given location with a certain degree of accuracy. In this
section, we use throughput estimation as an example. We
note that similar methods can be used for client-sourced es-
timation of other metrics such as jitter, loss and latencies
etc..

A lot of research has focused on estimating the available
network bandwidth for wired as well as WiFi based net-
works [20, 21]. In contrast, few studies have concentrated
on characterizing the available bandwidth for the cellular

Network-Location UDP TCP

NetA-WI 90 60
NetB-WI 60 40
NetC-WI 40 40

NetB-NJ 120 120
NetC-NJ 70 50

Table 5: Table showing the number of back-to-
back measurement packets to be sent to estimate
TCP/UDP throughput within an accuracy of 97%
of the expected value.

networks. Availability of an accurate and efficient estima-
tion algorithm is vital for client-assisted monitoring.

We experimented with two such bandwidth measurement
tools: Pathload and WBest [20, 21]. To estimate the accu-
racy of these tools we take the average of UDP throughput
measured over 100 seconds for 10 iterations as the ground
truth at that location. We then define relative error as
E = X−GUDP

GUDP
× 100%, where X is the result from available

bandwidth measurement tools (i.e., Pathload or WBest) and
GUDP is the ground truth UDP throughput. In our evalu-
ations we found that neither of the two tools give an ac-
curate approximation. WBest consistently under-estimates
the actual bandwidth by up to 70% while Pathload under-
estimates up to 40%. Similar benchmarking results are also
reported in [22]. Hence, we carry out simple UDP downloads
over a duration of time to measure the network performance.
In the rest of this section, we determine how many such sam-
ples should be sent to fairly accurately (∼97%) estimate the
network throughput at a specific location. We intend to
diagnose the reason behind the estimation inaccuracies for
the two bandwidth measurement tools as part of our future
work.

How many packets necessary? We revisit our TCP
and UDP throughput measurements from our Proximate
datasets to determine the minimum number of packets to
be collected for attaining a maximum accuracy in estimat-
ing the expected performance of a zone.

We select a given number of client collected packets and
calculate their average. We then compare it with the ground
truth throughput at that instant (calculated as mentioned
above). We repeat this process 100 times for a given packet
size. We present the number of packets necessary to at-
tain an accuracy of 97% in Table 5. We find that for the

107



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14  16

C
D

F

Precentage error in measurement 
 (average of universe - average of Crowd-data)

Figure 8: Error of WiScape measurements in com-
parison to our extensive measurements collected.

zone in Madison, we need 90 TCP packet measurements to
obtain an accuracy within 97% of the expected measure-
ment for NetA . From the same table, we can estimate the
expected TCP throughput which is within 97% of the ex-
pected throughput by collecting as many as 40 back-to-back
measurement packets for NetC for both TCP and UDP. The
number of packets are marginally higher for NetA as com-
pared to NetB and NetC as the network performance varies
more for NetA clients (Figure 5, Table 4).

For the zone in New Brunswick, we find that we need
120 packets for estimating the TCP and UDP performance
of NetB network. Whereas, for the NetC network we need
to send only 70 UDP and 50 TCP packets back-to-back for
a estimation accuracy of 97%. With an expected cellular
data-rate in hundreds of Kbps, a client can thus, finish a
measurement in less than a second.

Summary: We validate that network performance esti-
mation using a small number of measurements collected by
different clients inside a zone is indeed feasible. Specifically,
we find that for the monitored zone, the distribution of the
observed metric becomes almost similar to that of any other
client present in the same zone (or from the same client at
an earlier time epoch) we have accumulated more than 80
packets.

3.4 Putting it all together
We envision a simple user agent in each client device, e.g.,

as part of the software in the mobile phones or bundled with
drivers of cellular NICs. A measurement coordinator, de-
ployed by the operator or by third-party users, will manage
the entire measurement process. Each cellular device peri-
odically reports its coarse-grained zone (based on associated
cellular tower) to the measurement coordinator3. Based on
this zone information, our measurement coordinator period-
ically provides each mobile device with a measurement task
list.

When a mobile device performs a task, it is required to
collect more precise zone information at which the task is
initiated as well as completed. If the mobile phone has a
built-in GPS receiver, it is possible for it to obtain zone in-
formation quite easily. However, alternate techniques to ob-
tain zone information include triangulation and fingerprint-
ing based techniques, using the cellular, WiFi, or Bluetooth
interfaces [23, 24, 25].
3Current cellular systems already collect such zone informa-
tion from all mobile devices in order to correctly and quickly
route calls and traffic to them.

The rate of refreshing the measurements for each zone
would depend on the coherence period of that zone as de-
termined by looking at the Allan deviation.

For a given zone, once in every coherence time-period, the
measurement coordinator will provide a measurement task
to each active mobile client with a probability, chosen such
that the number of measurement samples collected over each
iteration is sufficient for estimating accurate statistics, as de-
termined by the NKLD algorithm. Once the selected clients
report their measurements, the server checks if the measured
statistic has changed substantially from its previous update
(say by more than twice the standard deviation). In such
a situation the server would update its record for the zone
with the new value.

Validation: To analyze the accuracy of our WiScape
framework, we partitioned our Standalone dataset which
consists of around 400 zones with 200 or more samples, into
two subsets (Client sourced data and Ground truth). For
each zone, we assume that the entire Ground truth set pro-
vides our expected value (consisting of up to 125,000 packets
for various zones). Figure 8 shows the CDF of error in esti-
mation of TCP throughput for the WiScape data from the
Client sourced dataset and the Ground truth data. As can
be seen from the plot, WiScape data has less than 4% error
in estimating the TCP throughput for more than 70% of the
zones. The maximum error in performance measurements is
around 15%, which indicates that WiScape is able to deter-
mine the necessary measurement parameters for each zone
and provide a fairly accurate performance estimate.

Discussion: We note that there is an important trade off
between the volume of measurements collected, the ensuing
accuracy, and the energy and monetary costs incurred. Our
design in WiScape defines one specific design choice in this
multi-dimensional space. Many other alternatives are cer-
tainly possible and would make for interesting exploration
in the future.

4. APPLICATIONS OFWISCAPE
In Section 4.1 we demonstrate how client-assisted moni-

toring of networks can help discover zones with highly vari-
able network performance. Variability in network perfor-
mance can be an indicator of possible network problems.
Hence, client-assisted monitoring can help network opera-
tors short-list zones which need further detailed diagnosis.
Finally, in Section 4.2 we characterize the potential perfor-
mance enhancement for two applications when using coarse
grained measurements. Both applications use more than one
cellular network.

4.1 Helping operators
To ensure that the network performance at the deployed

regions is above a certain quality, the cellular service providers
carry out periodic drive-by tests to validate the performance
of their network. This involves using a car equipped with
network measurement equipment, and then carrying out net-
work performance tests at specific locations. However, such
tests are labor intensive and hence not scalable for wide
area wireless networks. Client-assisted monitoring can help
network operators in this regards by pin-pointing zones with
performance characteristics significantly different than neigh-
boring zones.
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Figure 9: CDF of Relative standard deviation (stan-
dard deviation/average) of TCP throughput for all
zones (with 250 meter radius) and those with more
than 20 days with at least one ping failure.

Identifying locations with variable performance

Let us assume the network operator intends to determine
potential locations with highly variable throughput (say rel-
ative standard deviation greater than 20%). This informa-
tion would be difficult to deduce from a relatively low num-
ber of client sourced measurements because of the fact that
the accuracy of client sourcing depends on low variability
in network performance. We note that while small through-
put tests conducted infrequently every tens of minutes might
miss out on zones with highly variable performance, other
infrequently calculated metrics may be used to detect such
variability. To highlight such a metric, we revisit our Stan-
dalone dataset. As mentioned in Section 2, we present data
for ICMP ping tests in our Standalone dataset. From this
dataset, we first determine zones, with radius 250 meters,
that have multiple ping test failures. In Figure 9 we present
the CDF of relative standard deviation of all the zones with
more than 200 measurements and those zones with at least
one failed ping tests every day, for a period of 20 consecu-
tive days or more. As can be seen from the plot, zones with
20 or more consecutive days with at least one ping failure
have a very high variation in their relative deviation of TCP
throughput. For example, 65% of the links have a relative
deviation of the order of 40%. We also find that zones with
back-to-back ping failures constitute 97% of the zones with
relative standard deviation above 20%. This is in contrast
with the majority of other zones which have less than 1%
relative standard deviation.

Identifying locations for additional provisioning

Coarse grained estimates can also help network operators de-
termine places where additional resources might be needed
to satisfy periodic surge in demands. For example, Fig-
ure 10, shows the network latency of two cellular networks
near a football stadium (80,000 seating capacity) during a
football game. The shaded region in the plot represents the
scheduled time of the football game. As can be seen from
the plot, for the duration of the game the average ping la-
tencies go up from 113msec to 418msec, an increase of the
order of 3.7X for NetB. As the duration is in order of 100s
of minutes, infrequent periodic monitoring can detect the
above event and help operators take corrective measures.
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Figure 10: Network latency (averaged over 10 min-
utes) during a football game. The scheduled time of
the game is covered by the shaded region.

4.2 Improving client performance
To show the potential benefits of a WiScape like system for

clients, in Section 4.2.1 we show that for a large number of
zones the performance of one cellular network is persistently
better than other networks over large duration of time, and
hence observable using infrequent measurements. In Sec-
tion 4.2.2 we explain how such information can be utilized
by clients with multiple cellular connections to choose the
best network of operation for each zone.

4.2.1 Persistent network dominance

We intend to understand if the relative performance char-
acteristics of different cellular networks are persistent over
large periods of time (for each zone). For this purpose, we
define persistent network dominance as follows: when the
lower 5 percentile of the best network’s metric is better than
the upper 95 percentile of other networks in a given zone,
we say the zone is persistently dominated by the best net-
work. The fact that the lowest 5 percentile of performance
of the dominant network is better than the 95 percentile of
the other networks implies that the dominance is persistent
over time and hence observable using infrequent measure-
ments made by a WiScape like system. In Figure 11, we
present the percentage of zones with a persistently domi-
nant network, in terms of RTT latency collected from the
WiRover dataset, as a function of the zone size. As we
see, persistent network dominance is observed in 85% of the
zones and across different zone sizes. The consistently better
performance of one network at a given zone can be explained
by observing that the network performance is dependent on
the base-station location, technology, and traffic load on the
base-station; a combination which would be expected to vary
across different network operators.

We use measurement data from our Short segment dataset
to further investigate the presence of persistent network dom-
inance. The measurements were collected with our vehicle
driving across this stretch of roadway regularly for a period
of 5 months, at average speeds of 55 km/h. We show a part
(10 km) of the road stretch in Figure 12. Each circle cor-
responds to a zone of 250 meters radius and the shade on
the circle corresponds to the network which performs best
in that zone.

We plot average TCP throughput performance of NetA,
NetB, and NetC networks for each zone over entire exper-
iment duration in Figure 13. In conformance with our ob-
servations of persistent dominance in terms of latencies, we
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Figure 12: Map depicting the Short segment dataset
and the dominant network for each zone. Over all
zones we observe that 52% of zones have a dominant
network.

find that for a significant number of zones a specific network
offers better performance on an average than the other two
networks. For example, at zone 20 (as marked in the x-
axis) the performance difference between the best network
gives 42% higher throughput than the next best network
over the entire measurement set. Similarly, the performance
at zone 4 of the best network is almost 30% higher than
others. We also find that multiple zones exist where none of
the networks give clear performance advantage for the en-
tire set of measurements. We identify zones where the lower
5 percentile of the best performing network is better than
the upper 95 percentile of other two networks. The inset
table in Figure 12 shows the number of zones where one
network dominates other networks. From the table we note
that there are 52% of zones where one network gives better
performance than other consistently over the measurement
period. We color the zones in Figure 12 based on which
network dominates it. A white color indicates a lack of a
persistently dominant network.

4.2.2 Application performance improvement
We present two application scenarios which can benefit

from approximate network quality estimates for a specific
location. The first is a client equipped with a mobile phone
that has two or more SIM cards and hence can connect to
any one of two or more alternate cellular networks at a given
point in time. We call this the multi-sim application. Such
phones are cheaply available in the market today, e.g., Sam-
sung Fizz [26] and Jinpeng S3288 [27], and are gaining in
popularity in developing countries like India and China. In
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Figure 13: TCP performance on each zone across 20
km stretch of road for three monitored networks.

absence of any knowledge of which network gives the best
performance at the current location, the clients with such
phones would be forced either to select a network in a ran-
dom fashion or to carry out measurements to ascertain the
network quality for all the networks.

The second application that can benefit from location spe-
cific information is a MAR [4] — a multi-network Internet
gateway mounted on a vehicle that can aggregate bandwidth
from all networks that it simultaneously connects to. The
scheduler in MAR stripes traffic flows to different network
interfaces. While authors in [4] suggest using location spe-
cific network performance information to further optimize
performance by intelligently mapping data requests to inter-
faces based on locality of operation, we highlight the bene-
fits of such a scheme over a simple multi-interface striping
algorithm where all currently active requests from differ-
ent clients are mapped onto different cellular networks in a
round robin fashion.

To illustrate the benefits of coarse throughput estimates
for the above two applications, we consider the following
experiment scenario. A client (either a MAR gateway or
a Multi-sim phone) places back-to-back requests for a set
of pages from the Internet while driving on a road stretch
depicted in Figure 12. In our experiments, the client re-
quested pages from a webserver hosting a pool of 1000 wep
pages with sizes between 2.8 KBytes and 3.2 MBytes, gen-
erated using SURGE [28]. Akin to [4] we also experiment
with popular Web sites by downloading wepages to a depth
of 1 from their starting page. For our experiments we run
the car on the same road-segment (Table 2) multiple times
during the experiment. We compare performance between
a system where data is requested in a round robin fashion
on each network. The other system with a monitoring agent
uses the GPS to determine the location of the vehicle and
based on zone information selects the best network to min-
imize download latency.

Multi-sim Improvements: We present the results in
terms of HTTP latency averaged over ten runs in Table 6.
As can be seen from the Table 6, we can decrease the HTTP
latency by 30% by selecting best performed interface at a
given location. We show the HTTP latency for well known
Web pages in Figure 14(a). As can be seen from the plot, our
scheme gives the maximum improvement for amazon.com
webpage (32% improvement) and minimum improvement for
microsoft.com webpage (13% improvement).

MAR performance improvements: Here we compare
the download latency for the two schemes. We measured

110



Avg.(in sec) Std.(in sec)

WiScape 87.66 8.33
NetA 124.26 14.90
NetB 158.55 33.69
NetC 145.46 14.89

MAR-WiScape 25.72 3.48
MAR-RR 36.8 6.44

Table 6: Average latency and standard deviation
for downloading 1000 HTTP files. We can improve
HTTP latency by 30% using Multi-sim-WiScape.
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Figure 14: Multi-sim and MAR latency improve-
ments with well known Web pages over round-robin
(MAR).

the HTTP latency by running our car with a MAR client
with 3 interfaces on a 2.4 Km segment of road (from zone
10 to 15 from Figure 13). We measure the performance of
MAR system using network performance information and
while mapping client requests to interfaces in a throughput-
weighted Round Robin fashion (MAR-RR). As can be seen
from Table 6 (last two columns) by using the information
provided by WiScape we can decrease the HTTP latency by
32% compared to MAR-RR.

We have also experimented with well known Web pages
as described above. We present results in Figure 14(b). As
can be seen from the plot, using a locality aware scheme
can improve performance by 37% over a naive round robin
scheme.

We note that the applications can also estimate network
performance through explicit measurements of its own, which
would result in a steady measurement overhead on all the
network interfaces. Besides, applications like MAR would
also need to stop all client traffic thus potentially hamper-
ing performance. In contrast a client-sourcing base approach
would gather this data ahead of time and can simply make
it available to potential clients, at a low overhead. We would
also like to note, that we did not account for multiple sys-
tem level issues, such as energy efficiency, time to switch
between links, or presence of client think time into account
while calculating the performance. Accounting for such is-
sues might lead to changes in achievable benefits that we
present. However, we believe that independent of the spe-
cific metric being optimized (energy or completion time) in-
formation about link performance can always be leveraged
for better performance.

5. RELATED WORK
We compare and contrast our contributions in WiScape

with prior work on two separate fronts.
Prior monitoring research: With the rapid growth of

cellular based Internet connectivity, cellular providers and

third-party developers have started developing client-based
techniques to learn about the properties of these networks.
They include the AT&T’s “Mark the Spot” [29] applica-
tion, 3gtest [9], and applications by Root Wireless [8]. Un-
like these applications, WiScape focuses on a measurement
methodology for client-sourcing that systematically reduces
the number of measurements required across time periods
and zones based on data already collected while ensuring
that collected data is statistically useful.

Other recent work has conducted detailed measurements
of specific 3G cellular networks to understand their perfor-
mance for both static and mobile environments [30, 31]. Lie
et al. presents the characterization of PHY and MAC layer
of 3G network and its impact on TCP performance [30].
Akin to [30] where the authors find the DRC (dependent on
SINR) to vary significantly over large time scales, we also
found a high variation in RSSI over the period of a day.
Similar to [30], we did not find any correlation (0.03) be-
tween the expected application level TCP throughput and
RSSI. In light of the above observation we discarded RSSI
statistics from further consideration.

Similar studies have also been conducted on outdoor WiFi
mesh networks [32, 15]. Again, such prior works are primar-
ily measurement studies and do not focus on our focus of a
client-sourced measurement framework with goals of mini-
mal data collection from diverse clients.

Related applications: The novelty of our work is that
we collected long term city-scale data and built the WiS-
cape framework which harnesses the performance measure-
ment of 3G network to maximize the performance of multi-
network applications, e.g., MAR [4]. Many other vehicular
networking systems have been designed and deployed in re-
cent years, each with different target applications. Exam-
ples include VanLAN [33, 34], a WiFi based Internet service
into vehicles [33, 34], PluriBus [35, 36] a WiFi, 3G, and
WiMAX based system with similar goals but with different
algorithms, DieselNet [37, 38] that mostly focused on delay
tolerant networking and opportunistic Internet services. We
believe that many of these systems could potentially lever-
age client-based data collected by WiScape to better opti-
mize their data striping algorithms (analogous to our design
of improvements to MAR).

6. CONCLUSION
In this paper we presented the design for a client-assisted

network monitoring system. Through extensive measure-
ment over a period of more than one year, in and around
Madison and small parts of New Jersey, we have validated
the possibility of carrying out client assisted network mon-
itoring. With experimentation we show how client-assisted
network monitoring can help cellular network users and op-
erators. We believe this work is merely a starting point in
larger scale measurements and network monitoring, span-
ning multiple cities, state, or across the whole country.

Cellular data traffic volume is set to increase dramatically
in near future, placing enormous load on the infrastructure.
Moving forward, we intend to expand the spatial and tempo-
ral reach of our client-assisted cellular data network monitor-
ing, with the goal of understanding the effects of increased
cellular networks on performance.

We hope to organically grow our efforts in the months and
years to come. Specifically, we intend to extend our study
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to bigger cities, where high number of users, would present
a more challenging monitoring problem.

To deploy our ideas developed in WiScape, we plan to
integrate our proposed sampling techniques into a publicly
available cellular network based measurement and monitor-
ing tool called Network Test [39], available for both the An-
droid and iPhone platforms currently. We believe this would
further enrich our understanding of the client-sourced net-
work measurement process.
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Summary Review Documentation for 

“Can They Hear Me Now?: A Case for a Client-Assisted 
Approach to Monitoring Wide-Area Wireless Networks” 

Authors:  S. Sen, J. Yoon, J. Hare, J. Ormont, S. Banerjee 

 

Reviewer #1 
Strengths: Lengthy explanation of the choices of the parameters 
(size of zones, epochs and number of samples). 
Large set of measurements over space, time and wireless 
networks. 
Evaluate the benefits of a multi-network strategy for data 
connectivity. 
 
Weaknesses: The framework idea is expected, so a key 
contribution is the choice of parameters. However since it is 
mainly based on data collected in once city, it is not clear how 
reusable the parameters for over environments like countryside or 
dense urban areas like NYC. 
 
Comments to Authors: It is great to see such attention spent on 
choosing the right parameters for your system. I do not have 
many comments as the paper was well written and the idea was 
clear. 
 
Since you collect data from buses, I was wondering if it would not 
introduce some bias in your data set. For instance, data in one 
location often collected around the same time. 
 
Aggregation in space: 
 
It seems that you have done your study by aggregating over time 
instead of keeping time constant.  
How would the standard deviation look like if you would 
compare different zones during the same time of the day? 
It would be nice to get similar results from other environments 
like Manhattan or the countryside. 
Did you evaluate the incremental benefits of having zones of 
different sizes or different shapes (e.g., clustering)? 
RTT is an important metric for wireless environments. Why is it 
not part of the zone size evaluation? 
 
I find your last section on multi-Sim, MAR, network dominance 
interesting. You might want to develop that aspects in future 
papers.  

 
Reviewer #2 
Strengths: The paper has rich data: 3 cellular network 
performance measured by clients at several different locations. 
The use of client-side measurements for network monitoring 
makes a lot of sense. 
 
Weaknesses: The paper mostly focuses on aggregation, but 
aggregation would miss interesting temporal and spatial 
dynamics. 
 

Comments to Authors:  I enjoy reading your paper. The goal of 
understanding the effectiveness of using client-side measurement 
to quantify the wide-area wireless network performance makes a 
lot of sense. Understanding the level of aggregation both in time 
and in space is useful. On the other hand, using aggregation to 
find the time interval and zones to smooth out the data is simple, 
and the paper should shorten this part, and spend more time on the 
more interesting and less obvious part on the applications. 
Moreover, aggregation filters out interesting variation across time 
and space, which is equally interesting to the aggregation results 
if not more and is more challenging technically than aggregation. 
I would like to see some discussion on this part.  
 
The authors promise to publish their datasets, which would be 
very useful to the community. 
 
Reviewer #3 
Strengths: - detailed measurement study which is well thought 
out 
- empirically informed design 
- potential impact of the data. 
 
Weaknesses: - tedious to read, though its not this particular 
paper’s fault 
- not clear how actionable the results are except for long term 
network planning and fault detection. 
 
Comments to Authors: My main comment is on how this data 
can be acted on. For example, it is not clear if a user observed 
poor performance, how this data can help him improve or even 
diagnose his performance problems. While it is nice to have a 
sense of the network performance at long time scales, it is not 
clear how useful it is to the end user. 
 
Can we isolate uplink and downlink performance? It would be 
useful since cellular links are notoriously asymmetric.  
 
How are measurements impacted by client parameters such as 
battery levels etc? I guess since you are using laptops this is not a 
concern, but with smart phones battery dictates uplink and 
downlink behavior which would bias your measurements. 
 
Reviewer #4 
Strengths: Extensive measurements have been collected, from a 
variety of situations. The framework has some practical 
applications. The authors intend to share their measurements. 
 
Weaknesses: The active measurement approach seems less ideal 
than a passive one for gathering the information for network 
providers. The presentation needs quite a bit of improvement. In 

113



particular, it is often difficult to follow which of the variety of 
data sets is being used. The paper does not consider smart phones, 
and in general does not consider the various practical issues for 
deploying this in practice. 
 
Comments to Authors:  A more compelling motivation is needed 
as to why network operators would want to use this framework. I 
agree that these operators would like more information on where 
problems are occurring in their network, for the various reasons 
that you describe in the paper. What I do not agree with is the 
need to collect (only) active measurements to get that 
information. Most of the information shown in this paper could be 
gathered with passive measurements, which have numerous 
benefits: no overhead on the wireless infrastructure, they are 
measurements of actual user traffic, they would not require 
instrumenting the user devices, etc. Only in cases where the user 
could not connect to the network might active measurements be 
useful. 
 
I agree that users could take advantage of this framework, e.g., to 
compare the performance of multiple network providers in a 
given location. However, that seems to have limited applicability, 
at least for cell phone users, the majority of whom will have a 
contract with one provider (even though some will have multiple 
SIM cards, as stated in your paper). 
 
Since access to the passive measurements may not be available to 
you, the active measurements that you have collected could fill in. 
However, the paper currently does not touch on the issue of the 
benefits of passive measurements for the provider, which is why 
my rating is lower than it might otherwise have been. 
 
Minor Comments 
 
Section 2 
- In the discussion of the WiRover data set, the throughput tests 
could affect other users in all of the wireless environments, not 
just the tests done on buses. 
- Please clarify where the various tests were run between (i.e., 
where is the server(s) that is used in each test located?) 
 
Section 3.1: In “A closer look”, please explain the intuition 
behind “driving around in a car within a 250 meter radius”; i.e., 
people may sit at a location that is within a short distance of an 
access point, but not too many will drive around in a circle to stay 
in range. 
 
Section 3.2: It would help to have some more insight on what test 
duration will provide a reasonable throughput value with low 
enough variance for the tasks that a user may care about; e.g., 
someone trying to decide between using provider A and provider 
B is not going to run two 30 minute tests; they might run two 30 
second tests, if that is sufficiently long to make a confident 
decision 
Section 3.2.2: A time duration of 75 minutes seems rather long for 
a throughput test that is supposed to have “low overhead” 
 
Section 3.3: In the discussion of UDP downloads (or earlier), 
clarify how many clients you have at your disposal 
 
Section 3.3.1:  
- Can’t a provider monitor available bandwidth at each access 
point, rather than run active tests? (i.e., is there any technical 
reason they could not do this, even if they are not doing so 
today?) 

- While UDP downloads will obtain useful information, it seems 
like a heavyweight way to do so. why (generally speaking) can 
providers not obtain this information passively? 
- In “Summary”, why would there be any doubt that one could use 
clients under your direct control to estimate network 
performance? 
 
Section 3.4: clarify what is meant by “sufficient collect accurate 
statistics” 
 
Section 4: in the caption of Figure 9, shouldn’t “200 meter radius” 
be “250 meter radius”? 
 
Section 4.1 
- Clarify why throughput tests “cannot detect zones with highly 
variable performance”; it seems quite plausible, depending on 
how you conduct the tests and measure the results 
- Note that passive measurements by the provider could also 
determine this information. 
 
Section 4.2.1: Clarify which is the “best network’s metric” 
 
Section 4.2.2 
- While there are certainly users who use multiple SIM cards, it 
seems like it will be a minority of users, due primarily to cost; 
thus, I do not find the arguments here particularly compelling 
- SURGE uses a synthetic workload, does it not? Are you testing 
against a Web server running these synthetic pages? (If so, please 
clarify) 
 
Section 5: if you consider my comments on passive 
measurements, then there will obviously be a bunch of new 
material to consider here 

 
Reviewer #5 
Strengths: Real data, geographically dispersed, over a year.  Data 
submitted to CRAWDAD. 
 
Weaknesses: Most of the hard systems problems were not 
confronted, even the stated challenge of scale.  It is not clear how 
typical their data is with respect to line-of-sight problems. 
 
Comments to Authors: There are really two parts to this paper: 
the measurement collection system and the results of the 
measurements themselves. The measurement collection system 
seems to ignore all of the hard parts of the problem - including 
those brought up and stated by the authors. The measurements 
themselves may be of independent use for others, particularly 
because they are being made publicly available via CRAWDAD. 
 
For the system, you state in the intro that the core technical 
challenges are related to scaling, but no where in your system 
do you *explicitly* consider scaling. Yes, you spend a lot of 
time trying to figure out how often to measure something (my 
concerns for that are below) but you never relate it back to the 
amount of bandwidth or power consumed at the client (as 
implied by both the abstract and intro) or how many 
simultaneous clients your system can support or what 
infrastructure would be required to monitor, for example, a 
nationwide cellular deployment. Your measurements have 
fewer than 20 clients in total and no mention was made as to 
how many of these were working in parallel.  Further, it reads 
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as if all of your measurements were done with laptops instead 
of handheld devices, so no inference about the power 
consumption of WiScape can be made either.  The lack of these 
points makes the assertion that client-side monitoring is viable 
unsupported.   
 
Further, the big challenge that you ignore is deployment: how 
do you get your measurement infrastructure (be it an app or 
what have you) deployed on to enough client phones to get 
decent coverage? In my opinion, this is the hardest part of a 
client-side measurement system and it’s not at all mentioned 
here. 
 
The fact that WiScape has apparently not been tested on an 
actual portable handset seems to be a big strike against the 
viability of this system. 
 
Now, ignoring all of that, there are still problems. Most of the 
interference in cellular networks is caused by line of sight 
issues.  How typical are your data sources with respect to line 
of sight?  Intuitively, a bus on a road outside does not have 
significant line of sight issues.  Your data description of your 
spot nodes was not sufficient to determine what line-of-sight 
issues they had.  So, it is not clear how your empirical zone and 
epoch derivations would change if the client was indoors, for 
example. 
 
That said, the graphs in Figure 5 seemed very interesting - if 
this paper is the first to present this level of data (from different 
regions, over time), please say so. 
 
In Section 3.1, is the assumption that zones are square?  If yes, 
please say so. Any reason not to consider other shapes? 
 
The data in Fig 4. seems to contradict Fig 1. and Fig.9 ; why are 
all of the relative standard deviations so small in Fig 4 (<0.1), 
whereas in Fig 1, they seem to be much higher (350 Kbs std dev 
/ 1080 Kbs mean = 0.3 relative std dev) and Fig 9 shows 
relative stddevs > 0.7: it seems unintuitive that the stddev 
should be so small in Fig 4 (independent of zone size) when lots 
of the other Figures show much higher variation. 
 
In Section 3.2, the implicit assumption here is “stable is better”, 
where I am not convinced. Intuitively, operators are not as 
interested in the average performance as much as the “trouble 
spots”, so by optimizing for inter-epoch stability, are you not 
just averaging away what the operator wants to know? 
 
The conclusion did not add much to the paper: were there any 
lessons learned? Are the plans for a WiScape iOS or Android 
app? What are your concrete next steps? 
 
Response from the Authors 
 
We thank the reviewers for their constructive comments that 
helped improve the paper. We have fixed the text to address some 
of the reviewer concerns regarding clarity of description.  
 
Some questions regarding interpolability of our observations in 
bigger cities, while using various cellular phones, in presence of 
severe line-of-sight issues etc., can be answered only by 
increasing the scale of our study to a broader geographical 
location and by involving more people in the process. We intend 

to do so in future and have expanded the conclusions section to 
describe our concrete next steps to this end.  
 
In particular we understand that design, implementation and 
deployment of client-assisted wide-area wireless network 
monitoring systems would involve addressing multiple hard 
challenges, a few of which are described by Reviewer#5. 
However, designing and deploying the system is not the main 
focus this paper. Our main contribution is, first, to analyze 
measurement data for three cellular service providers over the 
span of an entire city, and at various other locations for a period 
of two years. Second, we identified characteristics of wide-area 
cellular networks which help estimate performance efficiently and 
highlighted how such minimal coarse grained client collected 
measurements can be leveraged by some applications. We believe 
that establishing the effectiveness and utility of lightweight coarse 
grained monitoring is an important first step for designing and 
implementing a scalable client-assisted monitoring system.  
 
That said, as mentioned in Section 6, we are actively working 
towards building such a measurement platform for both vehicular 
communication systems as well as for cellphone users.  
 
We also agree with Reviewer#4 that passive measurement is a 
potential lightweight alternative for understanding network 
performance. We are presently in the process of augmenting our 
measurement mechanisms with such passive estimation 
techniques. In future we intend to publish our findings on the 
same.  
 
Finally, we have shown how client assisted in Section 4 can help 
network service providers and users of multiple cellular cards. We 
agree with Reviewer#3’s concern on the utility of client-assisted 
measurements for individual users. Client-assisted monitoring in 
the context of cellular networks is a new technique and we intend 
explore other aspects of cellular network monitoring that client 
assisted monitoring can help with.  
 
Specific comments:  
Reviewer#3: Test duration of 75 minutes… The measurements for 
a zone need to be retaken every 75 minutes, the test themselves 
involve sending 40-120 packets (as noted in Table 5). We have 
made this clearer in the text.  
 
Reviewer#5: In Section 3.2, ... here is “stable is better”, ... We 
meant “stable is better” in the sense that, we can potentially take 
less number of measurements to converge to the correct estimate 
if the network is stable.  
 
Reviewer#5: The data in Fig 4. seems to contradict ... In Figure 1, 
the zones have a radius of 800 meters, and include locations with 
less than 200 measurements, hence some zones show high 
standard deviation. In Figure 9 the higher relative standard 
deviation is for zones with multiple ping failures, which we took 
as an indicator of high performance variance. The high standard 
deviation for such zones, thus, when compared to the small 
relative standard deviation for the aggregation of all zones (also 
plotted in same graph) proves our point.  
 
Reviewer#5: Line of sight issue ... All our static measurements 
were taken in indoor locations and hence were not in line-of-sight 
from the base station, we have clarified it in the text. 
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