
Indexing Million of Packets per Second using GPUs

Francesco Fusco
ETH Zurich

Gloriastrasse 35
Zurich, Switzerland

fusco@tik.ee.ethz.ch

Michail Vlachos
IBM Research - Zurich

Säumerstrasse 4
Rüshlikon, Switzerland

mvl@zurich.ibm.com

Xenofontas
Dimitropoulos

ETH Zurich
Gloriastrasse 35

Zurich, Switzerland
fontas@tik.ee.ethz.ch

Luca Deri
ntop.org

Pisa, Italy
deri@ntop.org

ABSTRACT

Network traffic recorders are devices that record massive
volumes of network traffic for security applications, like ret-
rospective forensic investigations. When deployed over very
high-speed networks, traffic recorders must process and store
millions of packets per second. To enable interactive explo-
rations of such large traffic archives, packet indexing mecha-
nisms are required. Indexing packets at wire rates (10 Gbps
and above) on commodity hardware imposes unparalleled
requirements for high throughput index creation. Such in-
dexing throughputs are presently untenable with modern
indexing technologies and current processor architectures.
In this work, we propose to intelligently offload indexing to
commodity General Processing Units (GPUs). We intro-
duce algorithms for building compressed bitmap indexes in
real time on GPUs and show that we can achieve indexing
throughputs of up to 185 millions records per second, which
is an improvement by one order of magnitude compared to
the state-of-the-art. This shows that indexing network traf-
fic at multi-10-Gbps rates is well within reach.

Categories and Subject Descriptors

C.1.3 [Processor Architectures]: Other Architecture
Styles—Heterogeneous (hybrid) systems; C.2.3 [Network
Operations]: Network monitoring

Keywords

Indexing, packet traces, GPU

1. INTRODUCTION
The volume of data that crosses the Internet has increased

rapidly in the last years and it is expected to keep increas-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IMC’13, October 23–25, 2013, Barcelona, Spain.

Copyright 2013 ACM 978-1-4503-1953-9/13/10 ...$15.00.

http://dx.doi.org/10.1145/2504730.2504756 .

ing fast in the future. Analysis from Cisco predicts that the
volume of Internet traffic will quadruple between 2011 and
2016 reaching 1.3 Zettabytes per year in 2016 [1]. This del-
uge of data imposes very demanding scalability requirements
on network monitoring systems. In particular, a major chal-
lenge is building network traffic monitoring and archival sys-
tems that support efficient search operations over large traf-
fic datasets. Efficiently searching traffic data is very im-
portant because it drastically increases the utility of traffic
archival systems. Otherwise, traffic archives are like a world
wide web without search engines.

Specifically, this is a major challenge for several network
monitoring and security devices (typically called network
traffic recorders or loggers in the industry) that need to ef-
ficiently process and store a recent window (e.g., the last
week) of raw network traffic, so as to enable post mortem
analyses, for example: to show the evidence of a crime, to re-
solve disputes of network-related performance issues (e.g., in
trading environments), or to troubleshoot connectivity prob-
lems. When deployed on high-speed links, traffic recorders
must be able to store millions of packets per second and sev-
eral Terabytes of data per day, without losing a single packet.
Recent research has shown that it is nowadays possible to
process [10] and even dump on disk [4] packets at 10 Gbps
using commodity hardware. In this context, implementing
searches as linear scans over a storage subsystem that is
constantly taxed by writing incoming new data, is not fea-
sible. To enable efficient search operations, real-time packet
indexing technologies for high-speed links are required.

Recent work has identified compressed bitmap indexes
as a very effective indexing technology for network traf-
fic data [5, 12, 13]. Bitmap indexes are more compact in
size than competitive approaches, such as tree-based in-
dexes, and provide significant speedup over complex multi-
attribute queries. In addition, our previous work [6] has
shown that by introducing bitmap indexing support into
the de-facto packet processing library, libpcap [2], packet
searches can be accelerated by up to 3 orders of magnitude.

The goal of this work is to enable the creation of bitmap
indexes for packet data in real-time in the context of packet
recording systems, by using solely commodity off-the-shelf
hardware and without using distributed architectures. In
fact, creating indexes off-line using distributed architec-
tures is not desirable due to increased costs, higher complex-

ity, and physical deployment constraints (i.e., rack space).
Creating bitmap indexes in real-time in very high-speed
links (10 Gbps and beyond) represents a major challenge:
wire-rate packet indexing poses unprecedented requirements
for indexing throughput. The packet indexing throughput
reported by the most related previous work is one order of
magnitude lower than the incoming packet rate that can
be observed on 10 Gbps links [6, 7]. The main obstacle to
providing the required throughput is poor memory locality,
which, in a packet recording context, where the same mem-
ory and cache hierarchies are constantly stressed for process-
ing packets, can severely deteriorate system performance.

To meet our goal, we propose the adoption of GPUs as
indexing coprocessors to i) expand the traffic recording sys-
tem with a high-bandwidth memory subsystem dedicated
to indexing, ii) entirely offload the host from the bitmap
index creation, thereby saving precious computational and
bandwidth resources for high-speed packet recording and,
iii) achieve indexing throughputs required to index packet
header data in real-time from high-speed links.

In this paper we make the following contributions:

• We introduce algorithms to build two well-known
compressed bitmap indexes, namely WAH [15] and
PLWAH [3], entirely and at high-speed on GPUs, thereby
releasing precious resources to the host for fetching, pro-
cessing and storing packets on disk.

• We build the GPU-based indexing component of a traf-
fic recording system and show that GPUs can achieve
impressive indexing throughputs of up to 185 million
of records per second, which is one order of magnitude
higher than the state-of-the-art.

• We compare two state-of-the-art compressed bitmap in-
dexes and show that in the GPU space, the more complex
encoding (PLWAH) results in both smaller indexes and
higher throughput.

• We evaluate the indexing throughput using high-entropy
data, which reflect adverse conditions resulting from at-
tacks. We learn that the throughput on a GPU is less
affected by the cardinality of the data than on a CPU.
GPUs are therefore more suitable when high throughput
has to be sustained under adverse conditions.

Our findings show that by using GPUs real-time packet
indexing at multi-10-Gbps links is well within reach. Future
work needs to assess further opportunities and challenges
that will arise in the integration of our GPU-based indexing
component in a complete system. GPUs have already been
proposed to accelerate different networking workloads [8, 14,
11]. However, to the best of our knowledge, our work is the
first to exploit GPUs for indexing in the context of high-
performance packet recording systems. It makes a step for-
ward on exploiting the parallelism of current and upcoming
computing architectures for high-speed network monitoring.
Our contributions are not only useful in the context of in-
dexing network monitoring data, but also for any application
that requires high-throughput creation of bitmap indexes.

2. BACKGROUND
A bitmap index is an indexing data structure for numer-

ical records that enables expedient access to the row posi-

tions matching a given value of an attribute. More impor-
tantly, bitmap indexes corresponding to distinct attributes
can be used to efficiently answer queries involving boolean
operations over multiple attributes, e.g. ”SELECT * WHERE

DstPort = 80 AND Proto = 17”. The bitmap index corre-
sponding to an attribute that can assume n distinct values
is a binary matrix with n columns and as many rows as
the number of indexed records (as shown in the example of
Figure 1).

1

3

0

0

3

3

3

0

…

0 1 0 0

0 0 0 1

1 0 0 0

1 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

1 0 0 0

… … … …

0 1 0 0

0 0 0 1

1 0 0 0

1 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

1 0 0 0

… … … …

0 1 0 0

0 0 0 1

1 0 0 0

1 0 0 0

0 0 0 1

0 0 0 1

0 0 0 1

1 0 0 0

… … … …

2*0 1*1 8*0 1*0

2*1 7*0 … 1*1

3*0 … 2*0

1*1 3*1

… 1*0

…

2*0 1*1 8*0 1*0

2*1 7*0 … 1*1

3*0 … 2*0

1*1 3*1

… 1*0

…

Data Bitmap Index
RLE Compressed

Bitmap Index

0 1 32 0 1 32

Figure 1: A bitmap index of cardinality 4.

Bitmap indexes can become very large when the num-
ber of columns (or rows) grow. Compressed bitmap indexes
have been introduced to reduce the index size while preserv-
ing, or even accelerating, the index lookup time. Columns
are independently compressed using light-weight compres-
sion techniques, like Run Length Encoding (RLE), that typ-
ically enable boolean operations to be performed over mul-
tiple columns in the compressed domain. Several encodings
for compressing bitmap indexes have been proposed. WAH
and its extension PLWAH are among the best-known com-
pressed bitmap indexes as they stand out for their lookup
performance. A thorough evaluation of the response times
and compression ratios achieved by WAH and PLWAH in
the context of indexing network traffic data can be found
in previous work [6, 7]. Both encodings use word-aligned
compression symbols.

Word Aligned Hybrid (WAH) uses a dictionary of two
compression symbols: a literal L stores a chunk of 31 hetero-
geneous bits, and a fill F encodes a sequence of homogeneous
bits. A sequence of 31 or more consecutive 0’s is compressed
using a 0-Fill symbol (0F), and similarly a sequence of 31 or
more 1’s is converted into a 1-Fill symbol (1F). The symbol
type (1F and 0F) is given in a 2-bit header, and a number k
is recorded in the remaining 30-bits. k indicates how many
(31× k) consecutive bits of uncompressed 0’s or 1’s are en-
coded. Figure 2 provides an example of an uncompressed
bitmap and its WAH-compressed counterpart.

Position Lists Word Aligned Hybrid (PLWAH) is an
extension of WAH that aims at compressing sparse bitmaps
better. PLWAH has the same literal L symbol with WAH,
but introduces a different format for the 0-Fill and 1-Fill
symbols. In particular, the 30-bit payload of a fill-word is
used to store both the fill length k and a list of positions.
The list stores as 5-bit numbers the positions of each 1 in
the next literal. In this way a sparse literal can be encoded
within the fill word and then suppressed to save space as
shown in the bottom of Figure 2. Therefore, the maximum
length that can be encoded in each fill is 31× (231−(5i)

− 1),

where i is the number of positions. In practice, a single 5-
bit position makes PLWAH indexes half the size of WAH
indexes [3].

31 bits

1011101…..10100000000…..000000001000…..00000

31 x 4 bits 31 bits

32 bits Literal

1 1011101…..101 0000…000100 010000….00000

32 bits O-Fill 32 bits Literal

100

32 bits Literal

1 1011101…..101 00001…00100

32 bits O-Fill + Pos

0000001

Input:

PLWAH:

WAH:

Input

WAH

PLWAH

Figure 2: An uncompressed bitmap index (top) and
the corresponding WAH (middle) and PLWAH (bot-
tom) compressed bitmaps.

Given a list of input values of an attribute, the compressed
bitmap can be built incrementally, i.e., without needing
to create first the uncompressed bitmap, using the algo-
rithm described by Lemire [9]. Input values are processed
in chunks of 31 consecutive values. For each chunk, up to
31 literals (each corresponding to a distinct value) are cre-
ated. The new literals are then appended at the end of the
corresponding bitmap columns. Before appending a literal
to its corresponding column, the current chunk identifier is
compared to the identifier of the last literal appended to the
column. If the difference delta between the current and the
previous chunk identifier is greater than 1, then a 0-Fill word
whose length is exactly delta−1 needs to be inserted before
the new literal. In this way, when an index is updated with
a new chunk, only d ≤ 31 out of the n columns have to be
updated, where d is the number of distinct values present in
the chunk.

The main obstacle to providing high-speed indexing
throughput is poor memory locality, which in a packet
recording context can seriously deteriorate the system per-
formance. Intuitively, the described algorithm exhibits poor
memory locality when indexing data with many distinct val-
ues. This is confirmed by our profiling measurements that
show that, especially in the case of high-entropy data, cache
misses are taxing the system and causing the CPU resources
to be underutilized. In modern multi-core architectures,
poor memory locality represents a serious performance lim-
itation as it prevents the parallelism to be fully exploited.
In fact, in multi-threaded implementations, the amount of
cache available per thread decreases with the number of
threads, making memory locality a serious problem.

3. BITMAP INDEXING ON GPUS
Modern GPUs are advanced data-parallel architectures

providing hundreds of cores and an aggregated memory
bandwidth that is several times higher than the bandwidth
available to modern processors. In the context of packet
recording, completely offloading the index creation to a
GPU, removes pressure from the host’s memory hierarchies,
which are constantly taxed for fetching and processing pack-
ets. In contrast to CPUs, which rely on large caches to
hide memory latencies, GPUs are optimized for through-
put and exhibit massive data-parallelism: hundreds of hard-
ware threads execute, in parallel, the same computation over
distinct data portions. The challenge is therefore turning
complex computations into sequences of simple, but highly-

parallel, computing steps. In this section, we describe the
steps of highly parallel computations that enable us to build
compressed bitmap indexes at very high speeds directly on
GPUs.

3.1 Data Flow
A given batch of numerical values of a packet header at-

tribute (e.g., port numbers) is copied from the main mem-
ory to the GPU (see Figure 3), which computes and returns
a serialized compressed bitmap index to the host memory
together with metadata required to access individual index
columns. The metadata consists of two parallel arrays called
keys and offsets. The keys array is sorted and stores m dis-
tinct keys, where m is the number of distinct values present
in the input data, which is smaller than the attribute cardi-
nality (e.g., less than 65,536 for port numbers). The offsets
array stores, for each key Ki, the offset within the index
where the corresponding bitmap column can be loaded1.

keys
offsets

Host (CPU) GPU

Data

Index

keys

offsets

bitmaps

K1 K2 K3 K4 K5

Figure 3: Data flow for indexing data on GPUs

3.2 Index creation
Exploiting the massive parallelism offered by GPUs is not

trivial; it requires a complete algorithm redesign. The core
idea of our approach is to exploit the high integer sorting
performance provided by modern GPUs to be able to build
all the bitmap index columns in parallel.

In particular, our algorithm starts with a step that as-
sociates each input value with a row identifier (rid), which
encodes the position of the value in the input batch. The
input values and the corresponding rids are stored in two
arrays, which are then sorted by the input values. Sorting
can be performed very efficiently on GPUs. In this way,
the array of rids is logically segmented into regions, one
for each distinct input value, containing monotonically in-
creasing identifiers. The rids array is used to produce the
literal (L) and 0-Fill (OF) compression symbols. The paral-
lelism of the GPU is further exploited by processing each in-
dividual rid on a different thread. Using a number of highly
parallel refinement steps that eliminate redundant informa-
tion by means of data reductions, the rids are turned into
symbols of the compressed bitmap index.

WAH indexing. Next, we explain the steps required to
build a WAH bitmap index on a GPU. Algorithm 1 shows
the pseudocode of our indexing algorithm. The algorithm
first copies the n input values to the array input in the GPU
memory. Next, in line 2, it builds a second array rids with
the raw identifiers where each value is encountered. rids

is initialized to increasing row positions 0 to n − 1. Subse-
quently, the input data and the row positions are reordered

1The length of the bitmap column i, expressed in number
of words, can be computed as offsets[i + 1] − offsets[i].

Algorithm 1 GPUIndexCreate(values, n)

Input: an array values storing n input values
Output: the corresponding compressed bitmap index
1: input ← copyFromCPUToGPU(values,n)
2: sortRidsByValue(rid, input);
3: (chIds, lit) = produceChunkIDLiteral(rids)
4: k = mergeLitByValChID(input, chIds, lit)
5: produceFills(input, chIds, k)
6: idxLen = fuseFillsLiterals(chIds, lit, index, k)
7: keyCount = computeColumnLen(chIds, input, k)
8: copyFromGPUToCPU(keyCount keys and offsets)
9: copyFromGPUToCPU(index, idxLen)

in such a way that: i) the input values are sorted in ascend-
ing order, and, ii) rids contains the positions corresponding
to the values.

Afterwards (line 3), the algorithm builds two new arrays of
the same length as the input data, chIds and lit, that contain
the chunk identifiers and the partial literals corresponding
to the row identifiers. A partial literal is a 32-bit word with
a 1-bit header and a 31-bit payload. The payload has one
bit set to 1 as shown in Algorithm 2.

Algorithm 2 produceChunkIDLiteral(rid, n)

Input: an array rid of n row identifiers
Output: two parallel arrays of chunk identifiers and partial lit-

erals
1: for i = 0→ n− 1 do in parallel
2: setBit(lit[i], rid[i] mod 31)
3: setBit(lit[i], 31) //mark header as literal
4: chIds[i]← rid[i] / 31
5: end for

Next, in line 4, literals are created by merging the par-
tial literals corresponding to the same input value and the
chunk identifier. This operation, described in Algorithm 3,
is a segmented parallel reduction. In fact, the input and
chIds arrays divide lit into logical segments corresponding
to each distinct tuple (input[i], chIds[i]). The logical seg-
ments carry the partial literals that need to be encoded in
a single complete literal. Within each segment the values
are reduced using a bitwise OR (see Figure 4). The result
of this is that the three arrays (chIds, input, lit) are com-
pacted and their length reduces from n to k, where k is the
number of distinct (input[i], chIds[i]) pairs.

Figure 4: Literals are created by reducing partial
literals.

The chIds array stores the chunk identifier correspond-
ing to a given literal. The next step (line 5) is to turn the
chIds[i] word into the O-Fill symbol that precedes the lit-
eral lit[i]. This can be obtained by taking the difference
between consecutive positions of chIds. If two adjacent lit-
erals belonging to the same input value are consecutive (i.e.,
chIds[i] = 1+ chIds[i− 1]), the length of the 0-Fill between
the two will be zero (i.e., there will not be a 0-Fill between
them in the final index). It is worth to remark that this

Algorithm 3 mergeLitByValChID(input,lit,chIds,n)

Input: three arrays input, lit and chIds of size n
Output: lit stores complete literal symbols instead of partial

literals
1: for i = 0→ n− 1 do in parallel
2: key[i] = (chIds[i], input[i])
3: end for
4: // Merge the partial literals
5: k ← reduceByKey(key, lit, OP::bitwiseOR)
6: return k

operation can be performed, in parallel, for all chIds, which
correspond to multiple keys. A corner case is represented by
the first chId of each key. In order to distinguish this case,
a parallel array called heads that marks the beginning of
each key has to be created. In particular, heads[i] is greater
than 0 if chIds[i] is the first chdId of a key and 0 otherwise.
The array heads can be efficiently computed in parallel by
performing an adjacent difference over the elements of the
input array. These operations are described in Algorithm 4.

Algorithm 4 produceFills(keys, chIds, n)

Input: the array chIds of chunk indentifier
the array keys of values

Output: the chIds array stores 0-Fill symbols
1: heads← createHeads(keys)
2: for i = 1→ n− 1 do in parallel
3: if heads[i] == 0 then
4: chIds[i]← chIds[i]− chIds[i− 1]− 1
5: else
6: if chIds[i] 6= 0 then
7: chIds[i]← chIds[i]− 1
8: end if
9: end if
10: end for

Finally (line 6 of Algorithm 1), the final compressed
bitmap index is created as a concatenation of bitmap in-
dex columns. 0-Fill words and literal words are contained
in the two parallel arrays chIds and lit. The output index
is created by interleaving the chIds and lit arrays. This is
accomplished by a scatter operation within each array in
even and odd positions. There is still one step remaining:
removing from the index the zero-values that are present
whenever two consecutive literals are encountered. This op-
eration is referred to as stream compaction. The pseudocode
describing the process is shown in Algorithm 5.

Algorithm 5 fuseFillsLiterals(chIds, lit, outindex, n)

Input: the array chIds of chunk identifiers
the array lit of literals

Output: the array outidx stores the index
1: for i = 0→ n− 1 do in parallel
2: outIndex[2 ∗ i] = chIds[i]
3: end for
4: for i = 0→ n− 1 do in parallel
5: outIndex[2 ∗ i+ 1] = literals[i]
6: end for
7: // Remove the zeros from the output
8: idxLen← streamCompaction(outindex, 0)
9: return idxLen

Once the index is created we prepare the metadata, that
is, the two distinct arrays keys and offsets. Recall that
the input data have been sorted and compacted via the
mergeLitByValChID step. We use a segmented reduction to
find for a given key the length of the corresponding bitmap
column. The length is computed by counting literals and
fills, which are present in the GPU memory. The only

consideration to be taken into account is that the zero ele-
ments in chIds have been removed from the final index and
therefore do not have to be included in the bitmap column
length. For that, we compute in-memory a temporary array
tmpArray such that tmpArray[i] is 1 when chIds[i] == 0
and 2 otherwise. Finally, since we would like to compute
the offsets instead of the lengths for each key, we perform
an inclusive scan. This process is described in Algorithm 6.
At this stage the index, the keys and the offsets are ready
to be copied from the GPU to the host memory.

Algorithm 6 computeColumnLen(chIds, input, n)

Input: the two paralell arrays input and chIds of size n
Output: the array lengths stores the offsets
1: // Prepare an array for the lengths
2: for i = 0→ n− 1 do in parallel
3: tmpArray[i]← (1 + (chId[i] == 0 ? 0 : 1)
4: end for
5: // Compute the length of each bitmap index column
6: keycnt← reduceByKey(input, tmpArray, OP::Sum)
7: // Transform the lengths in offsets
8: offsets ← inclusiveScan(tmpArray)
9: return keycnt

PLWAH indexing. PLWAH is a variant of WAH that
uses an additional compression step, called mergeFillLit-

eral (Algorithm 7), which merges sparse literals with the
previous 0-Fill word. This additional step is executed just
after step 5 of Algorithm 1 and leverages the popc and clz

instructions offered by NVIDIA GPUs to count the number
of bits set to one and the leading zeros, respectively. Ad-
ditionally, PLWAH requires the line 3 of Algorithm 6 to be
slightly modified in order to consider the case of sparse lit-
erals that have been merged into their corresponding 0-Fill.

Algorithm 7 mergeFillLiteral(chIds, lit, n)

Input: the two parallel arrays chIds and lit of length n
Output: literals with a single bit set are merged with the previ-

ous 0-Fill
1: for i = 0→ n− 1 do in parallel
2: if chIds[i] 6= 0 then
3: popcnt = populationCount(lit[i])
4: freeBits = leadingZero(chIds[i])
5: if popcnt == 1 AND freeBits ≥ 7 then
6: encodePosition(chIds[i], leadingZero(lit[i]))
7: lit[i]← 0
8: end if
9: end if
10: end for

Limitations and considerations. WAH and PLWAH
are double-sided, meaning that they can compress both se-
quences of 0’s and sequences of 1’s by using 0-Fill and
1-Fill words, respectively. Our algorithms do not include
1-Fill words because this pattern, as we have shown in our
previous work [7], is extremely uncommon in network traf-
fic data. This makes the implementation simpler and more
efficient.

The number of values that our GPU-implementation can
index in a single batch is limited by two parameters: the
maximum fill length that can be encoded by a single 0-

Fill symbol and the memory of the GPU. Our algorithm
cannot create two consecutive 0-Fill words, and, therefore,
the maximum number of input values must be smaller than
31 × ((231 − 1) − 1) (more than 60 billions of numbers) for
WAH. In a packet logging context, this number is not a

practical limitation as packet traces are customarily stored
in batches of Millions of packets, which usually corresponds
to multi-gigabyte packet traces. A more important consid-
eration is the available memory on the GPU. Our algorithm
requires four arrays to be resident in the GPU memory for
storing: the input values, the literals, the chunk identifiers,
and the temporary buffers for sorting. In practice, a modern
GPU with 4Gb of RAM is more than capable of indexing up
to 50 Million records, which translates to traces of several
Gigabytes (more than 3Gb considering the smallest packet
sizes).

4. EVALUATION
We implemented our algorithms using Thrust, which is a

C++ library provided by the NVIDIA SDK designed to en-
hance code productivity and more importantly performance
portability across NVIDIA GPUs. To evaluate the perfor-
mance of our solution, we have used similarly priced CPU
and GPU: a 3.4Ghz Intel i7-2600K processor with 8 Mb of
cache and a NVIDIA GTX-670 GPU fitted in a PCI-e Gen
2.0 slot.

Figure 5: Indexing throughput vs cardinality for
WAH on a CPU, WAH on a GPU, and PLWAH
on a GPU.

Our main design goal is to enable high-speed packet in-
dexing in the context of network traffic recording. There-
fore, indexing should be able to operate flawlessly under very
diverse traffic distributions, like high-entropy distributions
that result from attacks. With this in mind, we evaluate
how the cardinality of the index affects the indexing speed
under uniformly distributed data, which is the most pes-
simistic scenario. We use indexes of increasing column car-
dinality (from 256 up to 65,536 columns) and we compare
the performance obtained when indexing on a GPU using
our algorithms and on a CPU using the online indexing al-
gorithm for WAH of Lemire [9], which is the state-of-the-art.
On the CPU we use a single thread implementation because
it serves as a reference point that enables to estimate an
upper bound on the performance that multi-core CPUs can
realize. However, we highlight that the goal of this work
is to show that it is feasible to build indexes entirely in a
GPU without CPU intervention as in a packet recording sys-
tem CPU computational and bandwidth resources are very
scarce.

In Figure 5 we show the indexing throughput of WAH
on a CPU and of WAH and PLWAH on a GPU. We first
find that using a GPU we achieve up to a 20-fold
speedup over indexing on a CPU. In addition, for a
cardinality of 256, we reach with PLWAH a maximum speed
of 185 Million records per second. With 64-byte packets, this
suggests that on a GPU we can, for example, index more
than 12 attributes per packet at a sustained packet rate of
10 Gbps.

Moreover, we observe that while on the CPU the through-
put decreases rapidly with the cardinality of the index, on a
GPU the throughput exhibits a much better scaling
behavior. In particular, on the CPU the throughput in-
curs a 4.5-fold decrease when the cardinality increases from
256 to 65,536. In sharp contrast, the throughput on the
GPU decreases only by a factor of 1.13 as we can effectively
exploit the available parallelism. The reason for this small
decrease is that the complexity of the sorting algorithm of
Thrust depends on the actual length (in bits) of the values
to be sorted.

Figure 6: Time spent in different steps of our algo-
rithm for building the WAH and PLWAH indexes
on a GPU.

Furthermore, PLWAH, despite being a more complex en-
coding than WAH, can provide substantially higher through-
puts. To better understand this point, in Figure 6 we illus-
trate the time spent in each step of PLWAH and WAH when
indexing 20 Million random 16 bit numbers (65,536 cardi-
nality). Recall that, compared to WAH, PLWAH uses an
additional step that merges sparse literals with the previ-
ous 0-Fill word. This step, which is indicated as 5.1 in
Figure 6, is extremely fast and allows the time required to
copy the index from the GPU to the host memory to be
drastically reduced due to the smaller index size. From this
measurement we learn that the cost of the additional
operations for building a more complex encoding in
a GPU is greatly overshadowed by the savings of the
more compact compression.

5. CONCLUSION
Indexing high-speed streams of network measurement

data in real-time poses significant performance challenges,
especially in the context of network traffic recording, where
traffic recording systems have to process packets at wire-rate
without experiencing any packet loss under every traffic mix.
In this paper we have shown that GPUs can provide index-

ing throughputs that are one order of magnitude higher than
the state-of-the-art. Therefore, this work opens the path to
wire-rate multi-10-Gbps packet indexing using commodity
hardware.

6. REFERENCES
[1] Cisco Visual Networking Index Forecast (2011 - 2016).

http://www.cisco.com/web/solutions/sp/vni/vni_

forecast_highlights/index.html.

[2] TCPDUMP/LIBPCAP public repository.
http://www.tcpdump.org/.

[3] F. Deliège and T. B. Pedersen. Position list word
aligned hybrid: optimizing space and performance for
compressed bitmaps. In Proc. of the 13th Int. Conf.
on Extending Database Technology, EDBT ’10, 2010.

[4] L. Deri, A. Cardigliano, and F. Fusco. 10 gbit line rate
packet-to-disk using n2disk. In Proc. of the 5th Int.
Workshop on Traffic Monitoring and Analysis, 2013.

[5] L. Deri, V. Lorenzetti, and S. Mortimer. Collection
and exploration of large data monitoring sets using
bitmap databases. In Proc. of the 2nd Int. Workshop
on Traffic Monitoring and Analysis, 2010.

[6] F. Fusco, X. Dimitropoulos, M. Vlachos, and L. Deri.
pcapIndex: an index for network packet traces with
legacy compatibility. SIGCOMM Computer
Communication Review, 42(1):47–53, Jan. 2012.

[7] F. Fusco, M. Vlachos, and M. Stoecklin. Real-time
creation of bitmap indexes on streaming network data.
The VLDB Journal, 21:287–307, 2012.

[8] S. Han, K. Jang, K. Park, and S. Moon. Packetshader:
a gpu-accelerated software router. In Proc. of the
ACM SIGCOMM 2010 conference, 2010.

[9] D. Lemire, O. Kaser, and K. Aouiche. Sorting
improves word-aligned bitmap indexes. CoRR,
abs/0901.3751, 2009.

[10] L. Rizzo. Netmap: a novel framework for fast packet
I/O. In Proc. of the 2012 USENIX Annual Technical
Conf., 2012.

[11] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam,
and C. Estan. Evaluating GPUs for Network Packet
Signature Matching. In Proc. of the Int. Symposium
on Performance Analysis of Systems and Software
(ISPASS), 2009.

[12] K. Stockinger et al. Network traffic analysis with
query driven visualization sc 2005 hpc analytics
results. In Proc. of the ACM/IEEE Conf. on
Supercomputing, 2005.

[13] T. Taylor, S. E. Coull, F. Monrose, and J. McHugh.
Toward efficient querying of compressed network
payloads. In Proc. of the 2012 Usenix Annual
Technical Conf., 2012.

[14] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P.
Markatos, and S. Ioannidis. Gnort: High performance
network intrusion detection using graphics processors.
In Proc. of the 11th international symposium on
Recent Advances in Intrusion Detection, 2008.

[15] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing
bitmap indices with efficient compression. ACM
Transactions of Database Systems, 31:1–38, March
2006.

