
Revealing Middlebox Interference with Tracebox

Gregory Detal, Benjamin Hesmans,
Olivier Bonaventure

Université catholique de Louvain
Louvain-la-Neuve – Belgium

firstname.name@uclouvain.be

Yves Vanaubel, Benoit Donnet
Université de Liège

Liège – Belgium

firstname.name@ulg.ac.be

ABSTRACT

Middleboxes such as firewalls, NAT, proxies, or Deep Pack-
et Inspection play an increasingly important role in various
types of IP networks, including enterprise and cellular net-
works. Recent studies have shed the light on their impact on
real traffic and the complexity of managing them. Network
operators and researchers have few tools to understand the
impact of those boxes on any path. In this paper, we pro-
pose tracebox, an extension to the widely used traceroute

tool, that is capable of detecting various types of middle-
box interference over almost any path. tracebox sends IP
packets containing TCP segments with different TTL values
and analyses the packet encapsulated in the returned ICMP
messages. Further, as recent routers quote, in the ICMP
message, the entire IP packet that they received, tracebox
is able to detect any modification performed by upstream
middleboxes. In addition, tracebox can often pinpoint the
network hop where the middlebox interference occurs. We
evaluate tracebox with measurements performed on Plan-
etLab nodes. Our analysis reveals various types of mid-
dleboxes that were not expected on such an experimental
testbed supposed to be connected to the Internet without
any restriction.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network Monitoring

Keywords

Network Discovery, Middleboxes, tracebox

1. INTRODUCTION
The TCP/IP architecture was designed to follow the end-

to-end principle. A network is assumed to contain hosts im-
plementing the transport and application protocols, routers
implementing the network layer and processing packets, swit-
ches operating in the datalink layer, etc. This textbook

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IMC’13, October 23–25, 2013, Barcelona, Spain.

Copyright 2013 ACM 978-1-4503-1953-9/13/10 ...$15.00.

http://dx.doi.org/10.1145/2504730.2504757.

description does not apply anymore to a wide range of net-
works. Enterprise networks, WiFi hotspots, and cellular net-
works often include various types of middleboxes in addition
to traditional routers and switches [1]. A middlebox, defined
as “any intermediary box performing functions apart from
normal, standard functions of an IP router on the data path
between a source host and destination host” [2], manipulates
traffic for purposes other than simple packet forwarding.
Middleboxes are often deployed for performance or secu-
rity reasons. Typical middleboxes include Network Address
Translators, firewalls, Deep Packet Inspection boxes, trans-
parent proxies, Intrusion Prevention/Detection Systems, etc.

Recent papers have shed the light on the deployment of
those middleboxes. For instance, Sherry et al. [1] obtained
configurations from 57 enterprise networks and revealed that
they can contain as many middleboxes as routers. Wang
et al. [3] surveyed 107 cellular networks and found that 82
of them used NATs. Although these middleboxes are sup-
posed to be transparent to the end-user, experience shows
that they have a negative impact on the evolvability of the
TCP/IP protocol suite [4]. For example, after more that ten
years of existence, SCTP [5] is still not widely deployed, par-
tially because many firewalls and NAT may consider SCTP
as an unknown protocol and block the corresponding pack-
ets. Middleboxes have also heavily influenced the design of
Multipath TCP [4, 6].

Despite of their growing importance in handling opera-
tional traffic, middleboxes are notoriously difficult and com-
plex to manage [1]. One of the causes of this complexity
is the lack of debugging tools that enable operators to un-
derstand where and how middleboxes interfere with packets.
Many operators rely on ping, traceroute, and various types
of show commands to monitor their networks.

In this paper, we propose, validate, and evaluate trace-

box. tracebox is a traceroute [7] successor that enables
network operators to detect which middleboxes modify pack-
ets on almost any path. tracebox allows one to easily gen-
erate complex probes to send to any destination. By using
the quoted packet inside of ICMP replies, it allows to iden-
tify various types of packet modifications and can be used
to pinpoint where a given modification takes place.

The remainder of this paper is organized as follows: Sec. 2
describes how tracebox works and how it is able to iden-
tify middleboxes along a path. Sec. 3 analyses three use
cases from a deployment of tracebox on PlanetLab. Sec. 4
shows how tracebox can be used to debug networking is-
sues. Sec. 5 compares tracebox regarding state of the art.
Finally, Sec. 6 concludes and discusses further work.

2. TRACEBOX
To detect middleboxes, tracebox uses the same incremen-

tal approach as traceroute, i.e., sending probes with in-
creasing TTL values and waiting for ICMP time-exceeded

replies. While traceroute uses this information to detect
intermediate routers, tracebox uses it to infer the modifica-
tion applied on a probe by an intermediate middlebox.
tracebox brings two important features.

Middleboxes Detection tracebox allows one to easily and
precisely control all probes sent (IP header, TCP or UDP
header, TCP options, payload, etc.). Further, tracebox
keeps track of each transmitted packet. This permits to
compare the quoted packet sent back in an ICMP time-

exceeded by an intermediate router with the original one.
By correlating the different modifications, tracebox is
able to infer the presence of middleboxes.

Middleboxes Location Using an iterative technique (in
the fashion of traceroute) to discover middleboxes also
allows tracebox to approximately locate, on the path,
where modifications occurred and so the approximate mid-
dleboxes position.

When an IPv4 router receives an IPv4 packet whose TTL
is going to expire, it returns an ICMPv4 time-exceeded

message that contains the offending packet. According to
RFC792, the returned ICMP packet should quote the IP
header of the original packet and the first 64 bits of the pay-
load of this packet [8]. When the packet contains a TCP
segment, these first 64 bits correspond to the source and
destination ports and the sequence number. RFC1812 [9]
recommended to quote the entire IP packet in the returned
ICMP, but this recommendation has only been recently im-
plemented on several major vendors’ routers. Discussions
with network operators showed that recent routers from
Cisco (running IOX), Alcatel Lucent, HP, Linux, and Palo-
Alto firewalls return the full IP packet. In the remainder
of this paper, we use the term Full ICMP to indicate an
ICMP message quoting the entire IP packet. We use the
term RFC1812-compliant router to indicate a router that
returns a Full ICMP .
By analyzing the returned quoted packet, tracebox is able

to detect various modifications performed by middleboxes
and routers. This includes changes in the Differentiated Ser-
vice field and/or the Explicit Congestion Notification bits in
the IP header, changes in the IP identification field, packet
fragmentation, and changes in the TCP sequence numbers.
Further, when tracebox receives a Full ICMP , it is able
to detect more changes such as the TCP acknowledgement
number, TCP window, removal/addition of TCP options,
payload modifications, etc.
tracebox also allows for more complex probing techniques

requiring to establish a connection and so multiple probes to
be sent, e.g., to detect segment coalescing/splitting, Applica-
tion-level Gateways, etc. In this case tracebox works in
two phases: the detection and the probing phases. Dur-
ing the detection phase, tracebox sends probes by itera-
tively increasing the TTL until it reaches the destination.
This phase allows tracebox to identify RFC1812-compliant
routers. During the probing phase, tracebox sends addi-
tional probes with TTL values corresponding to the previ-
ously discovered RFC1812-compliant routers. This strategy
allows tracebox to reduce its overhead by limiting the num-
ber of probes sent.

DestinationSource MB1 R1 R2

1.1.1.1 2.2.2.2 3.3.3.3 4.4.4.4 5.5.5.5

(a) topology

tracebox -p ’IP / TCP / mss(9000)’ -n 5.5.5.5
tracebox to 5.5.5.5 (5.5.5.5): 30 hops max
1: 3.3.3.3 TCP::SequenceNumber
2: 4.4.4.4 IP::TTL IP::CheckSum TCP::CheckSum TCP::SequenceNumber

TCPOptionMaxSegSize::MaxSegSize
3: 5.5.5.5

(b) output

Figure 1: tracebox example

Fig. 1(a) shows a simple network, where MB1 is a middle-
box that changes the TCP sequence number and the MSS
size in the TCP MSS option but that does not decrement the
TTL. R1 is an old router while R2 is a RFC1812-compliant
router. The server always answer with a TCP reset. The
output of running tracebox between“Source” and“Destina-
tion” is given by Fig. 1(b). The output shows that tracebox
is able to effectively detect the middlebox interference but
it may occur at a downstream hop. Indeed, as R1 does not
reply with a Full ICMP , tracebox can only detect the TCP
sequence change when analyzing the reply of R1. Neverthe-
less, when receiving the Full ICMP message from R2, that
contains the complete IP and TCP header, tracebox is able
to detect that a TCP option has been changed upstream of
R2. At the second hop, tracebox shows additional modifica-
tions on top of the expected ones. The TTL and IP check-
sum are modified by each router and the TCP checksum
modification results from the modification of the header.

The detection of middleboxes depends on the reception
of ICMP messages. If the router downstream of a middle-
box does not reply with an ICMP message, tracebox will
only be able to detect the change at a downstream hop simi-
larly as the above example. Another limitation is that if the
server does not reply with an ICMP (as in Fig. 1), then the
detection of middleboxes in front of it is impossible.
tracebox is implemented in C++ in about 2,000 lines of

code and embeds LUA [10] bindings to allow a flexible de-
scription of the probes as well to ease the development of
more complex middlebox detection scripts. tracebox aims
at providing the user with a simple and flexible way of defin-
ing probes without requiring a lot of lines of code. tracebox
indeed allows to use a single line to define a probe (see as ex-
ample the argument -p of tracebox in Fig. 1(b)) similarly
to Scapy [11]. tracebox provides a complete API to eas-
ily define IPv4/IPv6 as well as TCP, UDP, ICMP headers
and options on top of a raw payload. Several LUA scripts
are already available and allows one to detect various types
of middleboxes from Application-level Gateways to HTTP
proxies. It is open-source and publicly available [12].

To verify the ability of tracebox to detect various types
of middlebox interference, we developed several Click ele-
ments [13] modeling middleboxes. We wrote Click elements
that modify various fields of the IP or TCP header, ele-
ments that add/remove/modify TCP options and elements
that coalesce or split TCP segments. These elements have
been included in a python library [14] that allows to easily
describe a set of middleboxes and that generates the corre-
sponding Click configuration. This library is used as unit
tests to validate each new version of tracebox.

3. VALIDATION & USE CASES
In this section, we validate and demonstrate the usefulness

of tracebox based on three use cases. We first explain how
we deploy tracebox on the PlanetLab testbed (Sec. 3.1),
next we asses the coverage of tracebox (Sec. 3.2) and finally
discuss our use cases (Sec. 3.3, and 3.4).

3.1 PlanetLab Deployment
We deployed tracebox on PlanetLab, using 72 machines

as vantage points (VPs). Each VP had a target list of 5,000
items build with the top 5,000 Alexa web sites. Each VP
used a shuffled version of the target list. DNS resolution
was not done before running tracebox. This means that,
if each VP uses the same list of destination names, each
VP potentially contacted a different IP address for a given
web site due to the presence of load balancing or Content
Distribution Networks. Our dataset was collected during
one week starting on April 17th, 2013.
In this short paper, we focus on analyzing some interfer-

ences between middleboxes and TCP. In theory, PlanetLab
is not the best place to study middleboxes because Planet-
Lab nodes are mainly installed in research labs with unre-
stricted Internet access. Surprisingly, we noticed that seven
VPs, from the 72 considered for the use cases, automati-
cally removed or changed TCP options at the very first hop.
They replaced the Multipath TCP [6], MD5 [15], and Win-
dow Scale [16] options with NOP and changed the value of
the MSS option. We also found that two VPs always change
the TCP Sequence number.

3.2 RFC1812-compliant routers
tracebox keeps track of each original packet sent and

makes a comparison with the quoted IP packet when the
ICMP time-exceeded message is received. Further, trace-
box can potentially detect more middleboxes when routers
return a Full ICMP packet. tracebox’s utility clearly in-
creases with the number of RFC1812-compliant routers.
Fig. 2 provides an insight of the proportion of RFC1812-
compliant routers and their locations.
In particular, Fig. 2(a) gives the proportion of RFC1812-

compliant routers (the horizontal axis) as a CDF. A value
of 0, on the horizontal axis, corresponds to paths that con-
tained no RFC1812-compliant router. On the other hand,
a value of 1 corresponds to paths made only of RFC1812-
compliant routers. Looking at Fig. 2(a), we observe that, in
80% of the cases, a path contains at least one router that
replies with a Full ICMP . In other words, tracebox has the
potential to reveal more middleboxes in 80% of the cases.
Fig. 2(b) estimates the position of the RFC1812-compliant

routers in the probed paths. It provides the distance be-
tween the VP and the RFC1812-compliant routers on a given
path. Note that, on Fig. 2(b), the X-Axis (i.e., the distance
from the VPs) has been normalized between 1 and 10. Dis-
tances between 1 and 3 refer to routers close to the VP,
4 and 6 refer to the Internet core while, finally, distances
between 7 and 10 refer to routers closer to the tracebox

targets. The widespread deployment of RFC1812-compliant
routers in the Internet core is of the highest importance since
tracebox will be able to use these routers as “mirrors” to
observe the middlebox interferences occurring in the access
network [3].
Fig. 2(b) shows that for 22% of the paths, the RFC1812-

compliant routers are close to the VP. This is approxima-

0.0 0.2 0.4 0.6 0.8 1.0

router proportion

0.2

0.4

0.6

0.8

1.0

cd
f

(a) Proportion of RFC1812-
compliant routers on a path

0 2 4 6 8 10

normalized distance
0.0

0.2

0.4

0.6

0.8

1.0

cd
f

close to VP core close to dst

(b) Normalized distance from
VP to RFC1812-compliant
router

Figure 2: RFC1812-compliant routers

0 50 100 150 200 250 300

time (sec)
0

1

2

3

4

5

tc
p

se
q

o
ff

se
t

×10
9

VP 1

VP 2

Figure 3: Time evolution of the TCP sequence num-

ber offset introduced by middleboxes

tively the same proportion for routers close to tracebox tar-
gets. However, the majority of routers sending back a Full
ICMP are located in the network core.

3.3 TCP Sequence Number Interference
The TCP sequence number is not supposed to be modified

by intermediate routers. Still, previous measurements [4]
showed that some middleboxes change sequence and acknowl-
edgement numbers in the processed TCP segments. As the
sequence number is within the first 64 bits of the TCP
header, tracebox can detect its interference even though
there are none RFC1812-compliant routers.

We analyze the output of tracebox from the 72 VPs. Our
measurements reveal that two VPs always modify the TCP
sequence numbers. The position of the responsible mid-
dlebox is close to the VP, respectively the first and third
hop. We suspect that the middlebox randomizes the TCP
sequence number to fix a bug in old TCP/IP stacks where
the Initial Sequence Number (ISN) was predictable [17].

When used on a path that includes such a middlebox,
tracebox can provide additional information about the se-
quence number randomization. Depending on the type of
middlebox and the state it maintains, the randomization
function can differ. To analyze it, we performed two exper-
iments. First, we generated SYN probes with the same des-
tination (IP address and port), the same sequence number,
and different source ports. tracebox revealed that the mid-
dlebox modified all TCP sequence numbers as expected. A
closer look at the modified sequence numbers revealed that
the difference between the ISN of the probe and the random-
ized sequence number can be as small as 14510 and as large
as 4294858380 (which corresponds to a negative difference
of 108916 when the 32 bits sequence number space wrap).
Our measurements show that these differences appear to be
uniformly distributed for the different source ports.

MiddleboxClient Server

Seq 42 "A"

Seq 1042 "A"
Seq 43 "B"

Seq 44 "C"

Seq 1044 "C"

Ack 1043
SACK 1044-1044Ack 43

SACK 1044-1044

Figure 4: Example of invalid SACK blocks gener-

ated due to a middlebox.

For our second experiment, we used tracebox to verify
how the randomization evolves over time. For this, we sent
SYN probes using the same 5-tuple and different ISN dur-
ing five minutes and evaluated the evolution of the TCP
sequence number modifications. Fig. 3 shows the offset be-
tween the sent ISN and the randomized one for two different
5-tuples. tracebox reveals that the two middleboxes seem
to change their randomization approximatively every 20 sec-
onds. This suggests stateful middleboxes.
As explained by Honda et al. [4], changing the TCP se-

quence numbers has an impact on the TCP protocol evolv-
ability. Unfortunately, it has also an impact on the utiliza-
tion of widely deployed TCP extensions. Consider the TCP
Selective Acknowledgement (SACK) option [18]. This TCP
option improves the ability of TCP to recover from losses.
One would expect that a middlebox changing the TCP se-
quence number would also update the sequence numbers re-
ported inside TCP options. This is unfortunately not true,
almost 18 years after the publication of the RFC [18]. We
used tracebox to open a TCP connection with the SACK
extension and immediately send SACK blocks. tracebox

reveals that the middlebox changes the sequence number
but does not modify the sequence number contained in the
SACK block.
Fig. 4 shows the behavior of such a middlebox on the

TCP sequence number and SACK blocks. In this scenario,
the middlebox increases the TCP sequence number by 1,000
bytes causing the client to receive a SACK block that corre-
sponds to a sequence number that it has not yet transmit-
ted. This SACK block is invalid, but the acknowledgement
is valid and correct. For the receiver, it may not be easy
to always detect that the SACK information is invalid. The
receiver may detect that the SACK blocks are out of the win-
dow, but the initial change may be small enough to carry
SACK blocks that are inside the window.
If we know that a SACK block is invalid, algorithms that

use SACK should understand that the SACK option does
not give more information than a simple acknowledgment.
In this view, such algorithms should have at least the same
performance as they would have if SACK was not used at all.
Unfortunately, this is not the case as the Linux TCP stack
does not consider duplicate acknowledgment when SACK
is enabled. When the offset is small the SACK blocks are
potentially in-window. In this case the Linux TCP stack
reacts correctly. However, when the SACK blocks are out-
of-window then the TCP stack has to wait for a complete
RTO instead of doing fast-retransmit. We performed a small
measurement in a controlled environment and observed up
to a 50% drop in performance with a large offset [19].

3.4 TCP MSS Option Interference
Our third use case for tracebox concerns middleboxes

that modify the TCP MSS option. This TCP option is used
in the SYN and SYN+ACK segments to specify the largest
TCP segment that a host sending the option can process.
In an Internet that respects the end-to-end principle, this
option should never be modified. In the current Internet,
this is unfortunately not the case. The main motivation for
changing the TCP MSS option on middleboxes is probably
to fix some issues caused by other middleboxes with Path
MTU Discovery [20]. On top of changing the MSS option,
we also discovered middleboxes, in a couple of ISPs, that
add the option if it is missing.

Path MTU Discovery is a technique that allows a host to
dynamically discover the largest segment it can send without
causing IP fragmentation on each TCP connection. For that,
each host sends large segments inside packets with the Don’t
Fragment bit set. If a router needs to fragment the packet,
it returns an ICMP destination-unreachable (with code
“Packet fragmentation is required but the ’don’t fragment’
flag is on”) back to the source and the source updates its
segment size. Unfortunately, some routers do not return
such ICMP messages [21] and some middleboxes (e.g., NAT
boxes and firewalls) do not correctly forward the received
ICMP message to the correct source. MSS clamping miti-
gates this problem by configuring middleboxes to decrease
the size reported in the MSS option to a smaller MSS that
should not cause fragmentation.

We use our dataset to identify middleboxes that modify
the MSS option in SYN segments. Fig. 5(a) provides, for
each VP (the horizontal axis), the proportion of paths (the
vertical axis, in log-scale) where the MSS option has been
changed. We see that a few VPs encountered at least one
MSS modification on nearly all paths while, for the vast ma-
jority of VPs, the modification is observed in only a couple
of paths. We decided to remove those VPs from our data set
for further analyses, meaning that only 65 VPs were finally
considered for the use case.

Similarly to Fig. 5(a), Fig. 5(d) provides, for each target,
the proportion of paths affected by an MSS modification.
We see about ten targets that have a middlebox, probably
their firewall or load balancer, always changing the MSS
option. In the same fashion as the VPs that changed the
MSS option, they also removed the Multipath TCP, MD5
and Window Scale options.

Fig. 5(b) indicates where, in the network, the MSS option
is modified. In the fashion of Fig. 2(b), the distance from VP
has been normalized between 1 and 10, leading to the rise
of three network regions (i.e., close to VP, core, and close
to targets). As shown by Fig. 5(b), tracebox can detect
the MSS modification very close to the source (2.7% of the
cases) while this detection mostly occurs in the network core
(52% of the cases).

Remind that this distance does not indicate precisely where
is actually located the middlebox responsible for the MSS
modification. Rather, it gives the position of the router
that has returned a Full ICMP and, in this ICMP packet,
the quoted TCP segment revealed a modification of the MSS
field. Actually, the middlebox should be somewhere between
this position and the previous router (on that path) that has
also returned a Full ICMP (or the VP if it was the very first
Full ICMP on that path).

Fig. 5(c) refines our location of MSS modification by tak-

0 10 20 30 40 50 60 70 80

vantage point
10

−4

10
−3

10
−2

10
−1

10
0

ta
rg

e
t

p
ro

p
o
rt

io
n

(a) VPs proportion modifying
MSS

0 2 4 6 8 10

normalized distance
0.00

0.05

0.10

0.15

0.20

0.25

0.30

p
d

f

close to VP core close to dst

(b) Location

0 5 10 15 20 25

distance error
0.0

0.2

0.4

0.6

0.8

1.0

cd
f

(c) Location error

10
0

10
1

10
2

10
3

target
0.0

0.2

0.4

0.6

0.8

1.0

V
P

p
ro

p
o
rt

io
n

(d) Targets proportion observ-
ing an MSS modification

Figure 5: MSS option modification

ing this aspect (i.e., the middlebox is somewhere on the
path between the modification detection and the previous
RFC1812-compliant router) into account. It gives thus an
estimation of middlebox location error. This error is sim-
ply obtained by subtracting the distance at which tracebox

reveals the modification and the distance at which the pre-
vious RFC1812-compliant router was detected by tracebox

on that path. Obviously, lower the error, more accurate the
location given in Fig. 5(b). On Fig. 5(c), we see that in 61%
of the cases, the location estimation error is below (or equal
to) four hops. All errors above 13 hops, that represents the
length of around 60% of the paths, are uncommon (less than
1% each).

4. DISCUSSION
In Sec. 3, we showed that tracebox can provide a use-

ful insight on known middleboxes interference. We believe
that tracebox will also be very useful for network operators
who have to debug strange networking problems involving
middleboxes. While analyzing the data collected during our
measurement campaign (see Sec. 3.1), we identified several
strange middlebox behaviors we briefly explain in this sec-
tion. We also discuss how tracebox can be used to reveal the
presence of proxies and network address translators (NATs).

4.1 Unexpected Interference
We performed some tests with tracebox to verify whether

the recently proposed Multipath TCP [6] option could be
safely used over the Internet. This is similar to the un-
known option test performed by Honda et al. [4]. However,
on the contrary to Honda et al., tracebox allows one to
probe a large number of destinations. To our surprise, when
running the tests, tracebox identified about ten Multipath
TCP servers based on the TCP option they returned. One
of those server, www.baidu.com, belongs to the top 5 Alexa.
All these servers where located inside China. A closer look
at these options revealed that these servers (or their load
balancers) simply echo a received unknown TCP option in
the SYN+ACK. This is clearly an incorrect TCP implemen-
tation.

4.2 Proxy Detection
tracebox can also be used to detect TCP proxies. To be

able to detect a TCP proxy, tracebox must be able to send
TCP segments that are intercepted by the proxy and other
packets that are forwarded beyond it. HTTP proxies are fre-
quently used in cellular and enterprise networks [3]. Some
of them are configured to transparently proxy all TCP con-
nections on port 80. To test the ability of detecting proxies

with tracebox, we used a script that sends a SYN probe to
port 80 and, then, to port 21. If there is an HTTP proxy
on the path, it should intercept the SYN probe on port 80
while ignoring the SYN on port 21. We next analyze the
ICMP messages returned.

From our simple PlanetLab deployment, we identified two
oddities. First, we found an HTTP proxy or more probably
an IDS within a National Research Network (SUNET) as it
only operated for a few destinations and that the path for
port 80 was shorter than for port 21. Second, and more dis-
turbing, tracebox identified that several destinations where
behind a proxy whose configuration, inferred from the re-
turned ICMP messages, resulted in a forwarding loop for
probes that are not HTTP. We observed that the SYN probe
on port 21, after reaching the supposed proxy, bounced from
one router to the other in a loop as tracebox received ICMP
replies from one router then another alternatively.

4.3 NAT Detection
NATs are probably the most widely deployed middleboxes.

Detecting them by using tracebox would likely be useful for
network operators. However, in addition to changing ad-
dresses and port numbers of the packets that they forward,
NATs often also change back the returned ICMP message
and the quoted packet. This implies that, when inspecting
the received ICMP message, tracebox would not be able to
detect the modification.

This does not prevent tracebox from detecting many NATs.
Indeed, most NATs implement Application-level Gateways
(ALGs) [22] for protocols such as FTP. Such an ALG modi-
fies the payload of forwarded packets that contain the PORT

command on the ftp-control connection. tracebox can
detect these ALGs by noting that they do not translate the
quoted packet in the returned ICMP messages. This de-
tection is written as a simple script (shown in Fig 6) that
interacts with tracebox. It builds and sends a SYN for the
FTP port number and, then, waits for the SYN+ACK. The
script makes sure that the SYN+ACK is not handled by
the TCP stack of the host by configuring the local firewall
(using the filter functionality, shown at line 7, of tracebox
that configures iptables on Linux and ipfw on Mac OS
X). It then sends a valid segment with the PORT command
and the encoded IP address and port number as payload.
tracebox then compares the transmitted packet with the
quoted packet returned inside an ICMP message by an
RFC1812-compliant router and stores the modification ap-
plied to the packet. If a change occurs and a callback func-
tion has been passed as argument, tracebox triggers the
callback function. In Fig 6, the callback cb checks whether

1 -- NAT FTP detection
2 -- To run with: tracebox -s <script> <ftp_server>
3 -- Build the initial SYN (dest is passed to tracebox)
4 syn = IP / tcp{dst=21}
5 -- Avoid the host’s stack to reply with a reset
6 fp = filter(syn)
7 synack = tracebox(syn)
8 if not synack then
9 print("Server did not reply...")

10 fp:close()
11 return
12 end
13 -- Check if SYN+ACK flags are present
14 if synack:tcp():getflags() ~= 18 then
15 print("Server does not seems to be a FTP server")
16 fp:close()
17 return
18 end
19 -- Build the PORT probe
20 ip_port = syn:source():gsub("%.", ",")
21 data = IP / tcp{src=syn:tcp():getsource(), dst=21,
22 seq=syn:tcp():getseq()+1,
23 ack=synack:tcp():getseq()+1, flags=16} /
24 raw(’PORT ’.. ip_port .. ’,189,68\r\n’)
25 -- Send probe and allow cb to be called for each reply
26 function cb(ttl, rip, pkt, reply, mods)
27 if mods and mods:__tostring():find("Raw") then
28 print("There is a NAT before " .. rip)
29 return 1
30 end
31 end
32 tracebox(data, {callback = "cb"})
33 fp:close()

Figure 6: Sample script to detect a NAT FTP.

there has been a payload modification. If it is the case a
message showing the approximate position of the ALG on
the path is printed (see line 29).

5. RELATED WORK
Since the end of the nineties, the Internet topology dis-

covery has been extensively studied [23, 24]. In particu-
lar, traceroute [7] has been used for revealing IP interfaces
along the path between a source and a destination. Since
then, traceroute has been extended in order to mitigate
its intrinsic limitations. From simple extensions (i.e., the
types of probes sent [25, 26]) to much more developed mod-
ifications. For instance, traceroute has been improved to
face load balancing [27] or the reverse path [28]. Its probing
speed and efficiency has also been investigated [29, 30, 31].
To the best of our knowledge, none of the available trace-

route extensions allows one to reveal middlebox interference
along real Internet paths as tracebox does.
Medina et al. [21] report one of the first detailed analysis

of the interactions between transport protocols and middle-
boxes. They rely on active probing with tbit and contact
various web servers to detect whether Explicit Congestion
Notification (ECN) [32], IP options, and TCP options can be
safely used. The TCPExposure software developed by Honda
et al. [4] is closest to tracebox. It also uses specially crafted
packets to test for middlebox interference.
Wang et al. [3] analyzed the impact of middleboxes in

hundreds of cellular networks. This study revealed various
types of packet modifications. These three tools provide
great results, but they are limited to specific paths as both
ends of the path must be under control. This is a limitation
since some middleboxes are configured to only process the
packets sent to specific destination or ports. On the con-

trary, tracebox does not require any cooperation with the
service. It allows one to detect middleboxes on any path,
i.e., between a source and any destination. Our measure-
ments reveal middleboxes that are close to the clients but
also close to the server.

Sherry et al. [1] have relied on network configuration files
to show the widespread deployment of middleboxes. Still,
their study does not reveal the impact of these middleboxes
on actual packets.

6. CONCLUSION
Middleboxes are becoming more and more popular in var-

ious types of networks (enterprise, cellular network, etc.).
Those middleboxes are supposed to be transparent to users.
It has been shown that they frequently modify packets travers-
ing them, sometimes making protocols useless. Further, due
to the lack of efficient and easy-to-use debugging tools, mid-
dleboxes are difficult to manage.

This is exactly what we tackled in this paper by propos-
ing, discussing, and evaluating tracebox. tracebox is a new
extension to traceroute that allows one to reveal the pres-
ence of middleboxes along a path. It detects various types
of packet modifications and can be used to locate where
those modifications occur. We deployed it on the PlanetLab
testbed and demonstrated its capabilities by discussing sev-
eral use cases. tracebox is open-source and publicly avail-
able [12].
tracebox opens new directions to allow researchers to

better understand the deployment of middleboxes in the
global Internet. In the coming months, we plan to perform
large-scale measurement campaigns to analyze in more de-
tails middlebox interferences in IPv4 and IPv6 networks.
tracebox could also be extended to fingerprint specific mid-
dleboxes.

Acknowledgments

We are grateful to the anonymous reviewers for their feed-
back. We would also like to thank Randy Bush, Matsuzaki
Yoshinobu, Marc Neuckens, Pierre Reinbold, Bruno Del-
court and Claire Delcourt for assistance in understanding
the middleboxes present in their networks.

This work is partially funded by the European Commis-
sion funded mPlane (ICT-318627) and CHANGE (INFSO-
ICT-257422) projects and the BESTCOM IAP.

7. REFERENCES
[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,

S. Ratnasamy, and V. Sekar, “Making middleboxes
someone else’s problem: Network processing as a cloud
service,” in Proc. ACM SIGCOMM, August 2012.

[2] B. Carpenter and S. Brim, “Middleboxes: Taxonomy
and issues,” Internet Engineering Task Force, RFC
3234, February 2002.

[3] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An
untold story of middleboxes in cellular networks,” in
Proc. ACM SIGCOMM, August 2011.

[4] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda, “Is it still possible to
extend TCP,” in Proc. ACM/USENIX Internet
Measurement Conference (IMC), November 2011.

[5] R. Stewart, Q. Xie, K. Morneault, C. Sharp,
H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla,

L. Zhang, and V. Paxson, “Stream control
transmission protocol,” Internet Engineering Task
Force, RFC 2960, October 2000.

[6] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure,
“TCP extensions for multipath operation with
multiple addresses,” Internet Engineering Task Force,
RFC 6824, January 2013.

[7] V. Jacobson et al., “traceroute,” UNIX, man page,
1989, see source code:
ftp://ftp.ee.lbl.gov/traceroute.tar.gz.

[8] J. Postel, “Internet control message protocol,” Internet
Engineering Task Force, RFC 792, September 1981.

[9] F. Baker, “Requirements for IP version 4 routers,”
Internet Engineering Task Force, RFC 1812, June
1995.

[10] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes,
“LUA, an extensible extension language,” Software:
Pactice & Experience, vol. 26, no. 6, pp. 635–652,
June 1996.

[11] P. Biondi, “Scapy,” see
http://www.secdev.org/projects/scapy/.

[12] G. Detal, “tracebox,” July 2013, see
http://www.tracebox.org.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
F. Kaashoek, “The click modular router,”ACM
Transactions on Computer Systems, vol. 18, no. 3, pp.
263–297, August 2000.

[14] B. Hesmans, “Mbclick,” July 2013, see
https://bitbucket.org/bhesmans/mbclick.

[15] A. Heffernan, “Protection of BGP sessions via the
TCP MD5 signature option,” Internet Engineering
Task Force, RFC 2385, August 1998.

[16] V. Jacobson, R. Braden, and D. Borman, “TCP
extensions for high performance,” Internet Engineering
Task Force, RFC 1323, May 1992.

[17] Microsoft, “Patch available to improve TCP initial
sequence number randomness,” Microsoft, Microsoft
Security Bulletin MS99-066, October 1999, see
http://technet.microsoft.com/en-us/security/bulletin/
ms99-046.

[18] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow,
“TCP selective acknowledgement options,” Internet
Engineering Task Force, RFC 2018, October 1996.

[19] C. Paasch, “Presentation ietf 87,” July 2013, see
http://tools.ietf.org/agenda/87/slides/
slides-87-tcpm-11.pdf.

[20] J. Mogul and S. Deering, “Path MTU discovery,”
Internet Engineering Task Force, RFC 1191,
November 1990.

[21] A. Medina, M. Allman, and S. Floyd, “Measuring
interactions between transport protocols and
middleboxes,” in Proc. ACM SIGCOMM Internet
Measurement Conference (IMC), October 2004.

[22] P. Srisuresh and M. Holdrege, “IP network address
translator (NAT) terminology and considerations,”
Internet Engineering Task Force, RFC 2663, August
1999.

[23] B. Donnet and T. Friedman, “Internet topology
discovery: a survey,” IEEE Communications Surveys
and Tutorials, vol. 9, no. 4, December 2007.

[24] H. Haddadi, G. Iannaccone, A. Moore, R. Mortier,
and M. Rio, “Network topologies: Inference, modeling
and generation,” IEEE Communications Surveys and
Tutorials, vol. 10, no. 2, pp. 48–69, April 2008.

[25] M. Torren, “tcptraceroute - a traceroute
implementation using TCP packets,” UNIX, man
page, 2001, see source code:
http://michael.toren.net/code/tcptraceroute/.

[26] M. Luckie, Y. Hyun, and B. Huffaker, “Traceroute
probe methode and forward IP path inference,” in
ACM SIGCOMM Internet Measurement Conference
(IMC), October 2008.

[27] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,
T. Friedman, M. Latapy, C. Magnien, and R. Teixeira,
“Avoiding traceroute anomalies with Paris traceroute,”
in Proc. ACM/USENIX Internet Measurement
Conference (IMC), October 2006.

[28] E. Katz-Bassett, H. Madhyastha, V. Adhikari,
C. Scott, J. Sherry, P. van Wesep, A. Krishnamurthy,
and T. Anderson, “Reverse traceroute,” in Proc.
USENIX Symposium on Networked Systems Design
and Implementations (NSDI), June 2010.

[29] B. Donnet, P. Raoult, T. Friedman, and M. Crovella,
“Efficient algorithms for large-scale topology
discovery,” in Proc. ACM SIGMETRICS, June 2005.

[30] R. Beverly, A. Berger, and G. Xie, “Primitives for
active Internet topology mapping: Toward
high-frequency characterization,” in Proc.
ACM/USENIX Internet Measurement Conference
(IMC), November 2010.

[31] T. Bourgeau and T. Friedman, “Efficient IP-level
network topology capture,” in Proc. Passive and
Active Measurement Conference (PAM), March 2013.

[32] K. Ramakrishnan, S. Floyd, and D. Black, “The
addition of explicit congestion notification (ECN) to
IP,” Internet Engineering Task Force, RFC 3168,
September 2001.

