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ABSTRACT
The dynamics of interdomain routing have traditionally been stud-
ied through the analysis of BGP update traffic. However, such stud-
ies tend to focus on the volume of BGP updates rather than their
effects, and tend to be local rather than global in scope. Studying
the global state of the Internet routing system over time requires the
development of new methods, which we do in this paper. We de-
fine a new metric, MRSD, that allows us to measure the similarity
between two prefixes with respect to the state of the global routing
system. Applying this metric over time yields a measure of how
the set of total paths to each prefix varies at a given timescale. We
implement this analysis method in a MapReduce framework and
apply it to a dataset of more than 1TB, collected daily over 3 dis-
tinct years and monthly over 8 years. We show that this analysis
method can uncover interesting aspects of how Internet routing has
changed over time. We show that on any given day, approximately
1% of the next-hop decisions made in the Internet change, and this
property has been remarkably constant over time; the correspond-
ing amount of change in one month is 10% and in two years is 50%.
Digging deeper, we can decompose next-hop decision changes into
two classes: churn, and structural (persistent) change. We show
that structural change shows a strong 7-day periodicity and that it
represents approximately 2/3 of the total amount of changes.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring; C.2.5 [Local
and Wide-Area Networks]: Internet – BGP

General Terms
Measurement
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1. INTRODUCTION
There are many aspects of the interdomain routing system that

are important to understand, including its stability, scalability, and
security. However, a particularly difficult problem is understanding
the overall structure of interdomain routing and how it evolves over
time. The immense size, complexity, and continuous growth of the
system make it challenging to gain a useful understanding of the
nature of routing changes over time.

This problem is important because currently there are no metrics
able to provide useful information about the rate of routing changes
of the interdomain routing system. Such metrics could contribute
at the understand the impact of de-peering disputes, link failures,
merging of autonomous systems and any other event that may affect
globally the routing structure of the Internet.

To address this challenge, we focus in this paper on answering
basic questions about how Internet routing has changed over time.
As a first step, we are interested in characterizing the rate of change
of the routing system and the dynamics of its change. We seek to
answer these questions for the system as a whole (i.e., globally)
and over long timescales. In this respect we differ from most prior
work which has asked more specific questions about the evolution
of Internet routing.

We believe that one reason that temporal change has not been ex-
tensively studied to date is that good methods and metrics to study
it have not existed. Accordingly, the first contribution we make is to
propose a metric that can be used to capture the dynamics of rout-
ing change, and show how to apply it to available BGP data. The
key idea behind our approach is that the entire state of the global
routing system at any time can be captured as a large set of tuples
that express the next-hop decisions made by each AS with respect
to each prefix. From this starting point, we define a natural mea-
sure of change for this set of next-hop decisions, and then show the
utility of the measure.

This kind of approach to the study of interdomain routing moves
away from studying the system in terms of an AS topology. Rather
than focusing on an imperfectly understood topology, we focus on
the fundamental decisions that are made by each AS, namely, its
next-hop choices. Further, our approach also avoids the problems
of studying routing in terms of BGP update messages, which are
very difficult to interpret in a global fashion. Analyzing BGP up-
dates is problematic, requiring special methods and heuristics, be-
cause BGP traffic represents a variety of effects (table dumps as
well as route changes) and because many messages do not result
in actual changes to the routing systems (e.g., updates that do not
trigger new next-hop decisions in the recipient).

The new metric we develop is based on the general concept of
Routing State Distance (RSD) [7]. However, we show that RSD as
originally used is insufficient to study the dynamics of a system that



changes over time. Hence, we develop a significant improvement
to RSD, called Multiple Next-hop Routing State Distance (MRSD).
MRSD has the advantage of being applicable in a much wider set
of routing systems than the original RSD, while still capturing the
same concept. Further, whereas the original concept of RSD was
developed to compare different prefixes, in this study we apply
MRSD to compare routing to the same prefix at different times.
We refer to the application of MRSD over time as Temporal MRSD
(TRSD).

We use TRSD to address our motivating questions by apply-
ing it to a large corpus of BGP data. Our raw data comes from
BGP Routing Information Bases (RIBs) made available through the
Route Views and RIPE measurement projects. We convert down-
loaded RIBs to a cleaned format for processing. The converted
data is smaller than the raw RIBs but still comprises more than
1TB (uncompressed); we store it in Hadoop Distributed File Sys-
tem (HDFS) and process it using Hadoop MapReduce.1

Our study looks at routing change at two granularities: at a daily
level, and at a monthly level. At the finer timescale, we study the
daily evolution of the routing system during three distinct years:
2005, 2008 and 2011. At the coarser timescale, we study the
monthly evolution of the routing system over 8 years, from the be-
ginning of 2005 until the end of 2012.

Our results reveal some interesting aspects of Internet routing.
We show that approximately 1% of all visible next-hop decisions
change each day, and that this rate is about 10% at the timescale of
one month and 50% at the timescale of 2 years. Surprisingly, we
show that that these values are remarkably constant over the period
investigated, despite the immense change and growth of the net-
work during our period of study. We also show a decomposition of
the daily TRSD time series in two components, intended to capture
the difference between sustained (policy-driven) changes in routing
versus churn (temporary changes, e.g., due to equipment failures).
About 2/3 of changes on a daily basis fall into the sustained cat-
egory, with the remaining 1/3 classified as churn. Interestingly,
we show that sustained changes show a strong weekly periodicity,
with the majority of sustained changes made in the workweek. On
the other hand, routing churn is better described as noise without a
strong periodic component. Finally, we also study the relative rate
of routing changes across different ASes. We show that this rate is
very long-tailed, i.e., that a small fraction of ASes are responsible
for the vast majority of changes to next-hop decisions.

The remaining of this paper is organized as follows. Section
2 briefly summarizes some related work. Section 3 presents the
notation and definitions while Section 4 presents our data collec-
tion methodology. Measurement results are presented in Section 5
and finally, discussions, conclusions and future work directions are
stated in Section 6.

2. RELATED WORK
The goals and methods of our study differ from or build on prior

work in a number of ways.
BGP instability measurement: Considerable prior work has

looked at the stability (or instability) of the interdomain routing
system, including [11, 8, 12, 9, 4]. On one hand, these studies
are related to ours in also performing long timescale studies of the
BGP system. However, these studies do not emphasize the global
evolution of routing decisions but focus mainly on the dynamics
of routing traffic. They focus on characterization and analysis of
BGP messages: how to understand BGP traffic dynamics over time,
and how to characterize stability of BGP routing for specific des-

1Our source code is available by email request to the authors.

tinations. Our focus is on the changes to next-hop decisions made
throughout the global routing system.

Longterm Internet evolution: Some other studies have looked
at global properties of the AS-level Internet over multi-year
timescales. In particular, [13] explores a dataset composed of AS
paths collected from 2005 to 2009, in order to show that the Inter-
net is flattening. Another study is [3], in which the authors ana-
lyzed the growth of the Internet over a period of 10 years, focusing
on the economical roles played by each AS, the types of relation-
ship between ASes, and differences across geographical regions.
Our work complements those studies by looking at similarly long
timescales, but focusing on more basic questions such as the rate
of change in routing, the nature of routing churn, and the ASes re-
sponsible for the most routing changes.

Routing State Distance: Finally, we mention that Routing State
Distance (RSD) was originally used in [7] and [6], but the definition
of RSD differs in important ways from the more general MRSD
metric we define here. Our definition of MRSD is a generalization
of RSD; it extends RSD to additional routing configurations that
RSD could not handle, while remaining equivalent to RSD for any
cases in which RSD can be used.

3. NOTATION AND DEFINITIONS
In this section we define the metrics we use to analyze change in

the global routing system.

3.1 Multiple next-hop RSD
Our starting point is the notion of Routing State Distance (RSD)

as defined in [7]. Briefly, RSD is a metric that defines the ‘distance’
between two destinations (e.g., prefixes) as the number of nodes
which choose different next-hops for the two destinations.

While this general concept is a good starting point for studying
routing changes, it has drawbacks. The main problem with RSD as
defined in [7] is that it assumes that each node in the network has
a unique next-hop towards any destination. In interdomain routing,
where nodes are ASes and destinations are prefixes, this property
does not hold. In [7], the authors decided to proceed as [10], i.e.,
they partitioned Autonomous Systems in such a way that each of its
parts (denoted “quasi-routers”) did not have more than one routing
option to reach any prefix. Although that was a natural choice,
this solution has a number of drawbacks. First, it can not be easily
generalized to other routing sytems with multiple next-hops, such
as OSPF with Equal Cost Multi-Path (ECMP). Second, identifying
quasi-routers optimally is a NP-hard problem [5]. Third, and most
important for our study, there is no natural way to extend the quasi-
router approach to routing systems that change over time, which
introduces serious problems for longitudinal analyses.

Hence, we need to define a new metric that handles the case
of multiple next-hops in a cleaner, more robust fashion: MRSD.
MRSD avoids the problems of RSD by allowing next-hops deci-
sions to be expressed as sets (instead of unique elements). MRSD
then uses Jaccard distance to compare the next-hop sets.

Formally, let G(V,E) be a directed graph where V is a set of
vertices and E is the set of edges. For all source-destination pairs
(u, v) ∈ V × V we define Nu,v as the set of next-hops from u
towards v. More formally, a vertex w ∈ Nu,v if and only if, the
edge (u,w) starts a path from u to v.

DEFINITION 1. Let G(V,E) be a graph and S (6= ∅) and P
subsets of V denoting sets of sources and destinations respectively.
For each pair (d, d′) ∈ P × P we define the Multiple next-hop



Routing State Distance (MRSD) over S by

MRSD(d, d′) =

∑
s∈S δs(d, d

′)

|S| , (1)

where δs(d, d′) = 1 − J(Ns,d, Ns,d′) and J(A,B) denotes the
Jaccard Index of any pair of sets A and B.

The intuition behind MRSD is that whenMRSD(d, d′) is close
to 0 then d and d′ are very similar in terms of the next-hop choices
made by all nodes in the set S. On the other hand, when MRSD
approaches 1 we have that those destinations are routed very dif-
ferently through the network. Note that MRSD is always a value
between 0 and 1, and it can be interpreted as the fraction of next-
hop decisions that differ, across all nodes in the network. It is also
important to remark that when all destinations always have unique
next-hops (|Ns,d| = 1 for all s and d), this definition is equivalent
to the one presented in [7], and so in that case MRSD reduces to
(normalized) RSD.

3.2 Temporal MRSD
Next we show how to apply the definition of the last section in

the context of interdomain routing on the Internet in order to con-
duct a longitudinal analysis.

Consider P and S being respectively a set of IP prefixes
{p1, . . . , p|P |} and sources (autonomous systems) {s1, . . . , s|S|}
on the Internet seen by a set of monitors at times t1, . . . , tT
(ti − ti−1 > 0 for i = 2, . . . , T ). We define Ns,p(t) as the set
of next-hops (autonomous systems) that source s may use at time t
in order to reach prefix p, where p ∈ P , s ∈ S and t = ti for some
i ∈ {1, . . . , T}.

DEFINITION 2. For a prefix p we define the Temporal multiple
next-hop Routing State Distance (TRSD) over a set of sources S
between time ti and tj (1 ≤ i < j ≤ T ) as:

TRSDp(ti, tj) =

∑
s∈S δs,p(ti, tj)

|Dp(ti, tj)|
, (2)

where δs,p(ti, tj) = 1 − J(Ns,p(ti), Ns,p(tj)) if both Ns,p(ti)
and Ns,p(tj) are non empty sets and zero otherwise, Dp(ti, tj) =
{s ∈ S : Ns,p(ti) 6= ∅ and Ns,p(tj) 6= ∅} and J(A,B) denotes
the Jaccard Index of any pair of sets A and B.

This definition is similar to the one presented in the last section,
but has some key differences. The differences are: first, TRSD
is specialized to the specific case of interdomain routing. Second,
TRSD compares the next-hops of the same prefix in two different
times instead of two different prefixes at the same time. And third,
TRSD normalizes in a slightly different way, namely, the set S of
sources becomes Dp(ti, tj) which may vary with time. This was
done by design, to address the fact that networks may grow over
time.

To illustrate the definition, Figure 1 presents graphs related to
the routing decisions towards a prefix p (hosted on AS xp) at times
ti and ti+n (n > 0). Table 1 shows the intermediate computations
for TRSD over the set S = {a, b, c, d, e, f}.

From Table 1 we have that |Dp(ti, ti+n)| = 5 and as conse-
quence TRSDp(ti, ti+n) = 0.283. This can be interpreted as
saying that from time ti to ti+n, the network’s next-hop decisions
changed 28.3% with regard to p. It is important to remark that, in
this example, the last row (related to the source f ) did not con-
tribute anything to TRSD (because it was not considered in the
composition of the set Dp(ti, ti+n) and δf,p(ti, ti+n) = 0). This
shows an important aspect of our definition, i.e., TRSD was de-
signed with the intention of capturing routing changes, and hence
does not increase simply due to the growth of the network.

a d

e xp

b c

(a) Time ti

a d

e xp

b f c

(b) Time ti+n

Figure 1: Routing decisions towards p at ti and ti+n

Table 1: TRSD computation for Figure 1
s Ns,p(ti) Ns,p(ti+n) δs,p(ti, ti+n)
a {d, e} {d, e} 0
b {a, c, e} {e, f} 3

4
c {xp} {xp} 0
d {xp} {xp} 0
e {c, xp} {c, d} 2

3
f {} {c, e} 0

4. DATASET DESCRIPTION
To explore the evolution of Internet routing over time, we col-

lected four datasets comprising Routing Information Bases (RIBs)
from RIPE [1] and Route Views [2]. Datasets 1, 2 and 3 consist
of all RIBs on a daily basis for the entire years of 2005, 2008 and
2011 respectively. The fourth data set consists of all RIBSs for the
first day of each month from 2005 to 2012. Since RIBs are made
available at a coarser granularity than BGP updates (every 2 hours
for Route Views and 8 hours for RIPE) we did not attempt to re-
move the effects of short term convergences, i.e., for each day, we
kept all available distinct AS paths. It is important to remark that
we collected data only for IPv4 prefixes.

Each RIB is a collection of records containing information about
how to reach a prefix p from a specific autonomous system. From
these records we extracted the following information: route dump-
ing date, autonomous system path a0, a1, . . . , ar (r ≥ 1) and des-
tination prefix p, hosted in the AS ar . After that we decomposed
each record into r 4-tuples of the form [route dumping date, ai,
ai+1, p], for i = 0, . . . , r − 1. The semantics of each 4-tuple is: at
the time of route dumping date, in order to reach the prefix p, AS
ai uses AS ai+1 as (one of its) next-hops. In the rest of the paper,
AS ai will be referred to as a source, prefix p will be referred to as
a destination, and AS ai+1 will be referred to as a next-hop.

To apply the definitions presented in Section 3 to this data, S is
the set of all sources (ai) and P is the set of all prefixes (p) found in
a dataset. Table 2 presents a summary of each dataset collected af-
ter transformation into a collection of 4-tuples as described above.

Table 2: Summary of the four datasets
Dataset 1 Dataset 2 Dataset 3 Dataset 4

Granularity daily daily daily monthly
First 01/01/05 01/01/08 01/01/11 01/01/05
Last 12/31/05 12/31/08 12/31/11 12/01/12
Size (GB) 200 500 680 160
|S| 5,086 6,934 9,093 14,829
|P | 316,519 517,773 616,714 1,157,670

To see the need for using Jaccard Index in Definitions 1 and 2,
we note that, in our dataset on each day, approximately 7% of the
sources have more than one next-hop choice towards a specific pre-
fix.
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Figure 2: r(i, n) versus i for different values of n

5. MEASUREMENTS
In this section we show how TRSD can be used to extract useful

knowledge about interdomain routing dynamics.

5.1 Analyzing TRSD
To analyze routing dynamics in the four datasets we compute

time series of TRSD, averaged over all prefixes. Specifically, let
rp(i, n) = TRSDp(ti, ti+n) for 1 ≤ i ≤ T − n and some
1 ≤ n ≤ T − 1. We then define r(i, n) as the average of all
rp(i, n) that can be computed, i.e., for all prefixes that have routing
information at times ti and ti+n in our datasets. We use average
of rp(i, n) because it gives a measure of the total magnitude of
change. Thus, r(i, n) represents average proportion of change in
next-hop decisions at timescale n.

Figure 2 presents the time series of r(i, n) for our 4 datasets,
where n is 1, 2, 7 and 30 days for datasets 1 to 3 (daily), and n is
1, 2, 6, 12 and 24 months for dataset 4 (monthly). From now on, to
simplify discussion, we assume that time indices always represent
days for datasets 1, 2 and 3, and represent months for dataset 4.

The first striking aspect of these time series is that they are all
are approximately stationary. That is, they fluctuate around a mean
value, but do not show any long-term trend. Furthermore, the mean
values of TRSD do not show significant differences across years,
from 2005 to 2012. This indicates that despite the considerable
growth of the Internet in terms of ASes and Prefixes (which might
suggest more next-hop options per AS) there is an approximately
constant rate of routing decision changes over time. For example,
for n = 30 days in the daily datasets we have that r(i, n) is ap-
proximately 0.1, meaning that from month to month, on average,
10% of the Internet changes in terms of next-hop routing decisions.
The same value can be seen in the monthly dataset for the curve
n = 1 month.

The next observation is that as n grows so does r(i, n). This
implies that at least a portion of the routing changes that happen
over time are persistent, i.e., are not undone quickly so as to return
to a previous routing state. On the other hand, we cannot say that it
is a system governed by system-wide changes. To see that we can
refer to the curve r(i, 24) of the monthly dataset. From this curve
we can see that in a time window of 2 years, approximately 50% of
the next-hop choices persisted (because 50% changed). This fact
indicates many routes are stable over a long period of time.

Yet another property that can be seen in the daily datasets is re-
lated to seasonality. One can note that for n = 1 day there is
pattern of weekly variation in the data. This may be explainable
as evidence of human input (network operators) in the system. We
explore this conjecture in the following section.

5.2 Analyzing Routing Changes
After analyzing the results of the last section one question that

arises is: of the total set of next-hop changes that happen over the
time, what portion is related to sustained (changes that persist in
the system for some time) and which fraction is related to churn
(changes that change again in the near future)?

To answer this question we decompose the TRSD time series
(r(i, 1)) into two components: s(i, k) and c(i, k), standing for
sustained TRSD and churn TRSD respectively. Sustained TRSD
(s(i, k)) captures the portion of r(i, 1) that represents next-hop
decisions that changed from ti to ti+1 but did not subsequently
change from ti+1 to ti+k. In the same vein we define c(i, k) as the
portion of r(i, 1) that represents next-hop decisions that changed
from ti to ti+1 and then changed again from ti+1 to ti+k.

Formally, we define s(i, k) as the average over all sp(i, k),
where sp(i, k) is a measure for sustained changes for a specific



Month

A
ve

ra
g

e
 s

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

J F M A M J J A S O N D

(a) s(i, k), k = 7 days

Month

A
ve

ra
g

e
 c

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

J F M A M J J A S O N D

(b) c(i, k), k = 7 days

Day of week

A
ve

ra
g

e
 s

 a
n

d
 c

0
.0

0
0

0
.0

0
4

0
.0

0
8

Mon Tue Wed Thu Fri Sat Sun

Average s

Average c

(c) weekly average of s(i, 7) and c(i, 7). Er-
ror bars are 95% Confidence Intervals

Figure 3: s(i, k) and c(i, k) for 2011, daily

prefix p given by:

sp(i, k) =

∑
s∈S δ

′
s,p(i, k)

|D′p(i, k)|
, (3)

where D′p(i, k) is the set of all sources for which the sets Ns,p(ti),
Ns,p(ti+1) andNs,p(ti+k) are not empty and δ′s,p(i, k) is the frac-
tion of elements, which belong to the set Ns,p(ti) ∪ Ns,p(ti+1),
that satisfy any of the two following conditions: i) the element is in
Ns,p(ti) but it is not in Ns,p(ti+1) nor in Ns,p(ti+k); or ii) it is in
Np,s(ti+1) and Ns,p(ti+k) but it is not in Ns,p(ti).

Then proceeding analogously to Equation (3) we can compute
c(i, k). One important observation is that sp(i, k) and cp(i, k), by
definition, form a partition of rp(i, 1), i.e., sp(i, k) + cp(i, k) =
rp(i, 1), for all p and k that have available routing information at
times ti, ti+1 and ti+k.

Figure 3 presents s(i, 7) and c(i, 7) for the daily dataset of 2011.
(Results for 2005 and 2008 are similar). The choice of k = 7
means that routing changes that persist for a week are considered to
be sustained. The first observation, obtained by comparing Figures
3(a) and 3(b), is that sustained routing changes (s(i, 7)) have more
impact on TRSD than c(i, 7). The average value of s(i, 7) is around
0.007 (0.7%), while c(i, 7) has an average value of approximately
0.004 (0.4%).

The next observation is that s(i, k) inherits the weekly period-
icity of r(i, 1) while c(i, k) is more similar to noise. This weekly
periodicity suggests that there is some sort of human interaction
with the system. Our conjecture is that those changes are triggered
by BGP policy management and resulting changes to BGP config-
urations. In order to dig deeper we computed the average of c(i, k)
and s(i, k) over days of the week. Figure 3(c) presents the re-
sults, where we can see that both curves indicate more activity in
the workweek and less on the weekends. However, the difference
between week and weekend behavior is much more significant in
the case of the sustained changes, i.e., s(i, k). These results cor-
roborate with the idea of human interaction with the system, since
we can understand them as the ASes avoiding intentional routing
changes on weekends (probably due to reduced number of network
operators working full time).

The decomposition into sustained TRSD and churn TRSD is also
informative on long timescales. Figure 4 presents s(i, 2) and c(i, 2)
for dataset 4 (2005 to 2012, monthly). Here we adopt the assump-
tion that routing changes that persist for one month are considered
to be sustained. This Figure shows that on average, about 3% of all
routing decisions churn on a monthly basis, while about 8% of all
routing decisions show a sustained change. Comparing Figures 4
and 3, one can see that the sustained and churn TRSD on a monthly

basis are greater than the corresponding values on a weekly basis,
which is to be expected. However, the difference between sustained
and churn TRSD is much greater on the monthly timescale, show-
ing that sustained TRSD captures the accumulation of intentional
changes to the routing system over time, while churn TRSD reflects
the continuous background noise in the system.
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Figure 4: s(i, k) and c(i, k), monthly dataset with k = 2

The relative stability of s(i, 2) in Figure 4 shows that large-scale,
system-wide changes to Internet routing are rare. There are only a
couple of points in time where there are noticeable peaks in the
amount of sustained change in Internet routing – one peak in mid
2006 and one in late 2012. Initial investigation of these events
shows evidence that system-wide routing changes took place: a
large fraction of all prefixes were affected by next-hop changes dur-
ing these events. A deeper investigation of these events is ongoing.

5.3 Contribution of Sources
Our final set of results aims at answering the following ques-

tion: what is the contribution of each source AS to TRSD? in other
words, are the changes represented by TRSD uniformly spread over
all ASes or are they concentrated in a small set? To start this anal-
ysis we sampled randomly chosen days in 2011 and computed the
contribution of each AS over the total TRSD of that day. Figure
5(a) presents the Complementary Cumulative Distribution Func-
tion (CCDF) of this contribution for the first day of 2011 (results
for other days are similar). The figure shows that the contribution
of ASes is long-tailed, and that most ASes, approximately 90%,
make little or no contribution to TRSD.

In order to inspect whether this is common behavior over time,
for the entire year of 2011 we compute the fraction of ASes that
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are necessary to achieve 90% of TRSD. The result is presented in
Figure 5(b), where we can see that less than 2% of all ASes are in
fact necessary to capture 90% of TRSD. This result holds for the
other datasets with a threshold of 2.5%.

A question that may naturally arise then is: are these heavy-hitter
ASes the same over the time? In order to answer it we counted in
how many days each AS appears during the computation of Figure
5(b), in other words, in how many days each AS was among the
set of sources responsible for 90% of the daily TRSD over 2011.
The Cumulative Distribution Function (CDF) of this quantity is
presented in Figure 5(c). We can see that approximately 40% of
ASes that appear on at least one day, appear in at least 300 days.
Further, there is a group of approximately 20% of ASes that appear
in all days. An initial investigation shows that many of them are in
or are near to the network core.

6. CONCLUSIONS AND FUTURE WORK
In this work we proposed a new way to study the Internet at the

AS level. We introduced a new measure, TRSD, allowing us to
characterize rate of change in the interdomain routing system over
long periods of time.

Using this measure we are able to uncover several interesting as-
pects of the global Internet routing system. First, we showed that
the rate of change in routing decisions has been stable over time,
despite the growth in the network overall. Second, we showed how
to decompose TRSD into components that reflect sustained change
versus churn. We showed that the rate of sustained changes shows a
persistent weekly periodicity suggestive of a tendency of operators
to make sustained (intentional) routing changes in the workweek.
Finally, we showed that the locations of the routing changes in the
Internet are generally concentrated among a small set of ASes, of-
ten those that are near or in the core. Throughout the entire study
we consider various timescales and show how the magnitude of
routing change (both sustained and churn) varies with timescales
from days to months.

Although these are interesting results that characterize the In-
ternet in a new way, it is important to note that this is a work in
progress. In particular, there are several interesting observations
that need further study in order to understand their implications.
Moreover, the results presented here suggest several directions for
future research: i) it may be valuable to group prefixes according to
their TRSD similarity, as prefixes whose routing changes in similar
ways may form important clusters; ii) TRSD may be usefully ap-
plied to individual prefixes, i.e., in a microscopic analysis as com-
pared to the macroscopic view in this study; iii) it may be infor-

mative explore spatial and temporal dimensions at the same time;
iv) TRSD may help understanding types of routing changes and
how an AS’s routing changes affect its neighbors; v) TRSD may be
usufully applied in analyzing router-level topologies. Although a
router-level study is a challenge due to the lack of publicly avail-
able data, an analysis at this granularity would be interesting be-
cause the same AS path may have traffic flowing through different
physical paths. Finally, our long-term goal is to apply the methods
of this paper to identify and understand major structural changes or
reorganizations of the Internet. We hope to create a methodology
that identify “interesting” events in the TRSD time series and find
the responsible sources and prefixes associated with those events.
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