
Consolidated Review of
Revealing Middlebox Interference with Tracebox

1. Strengths:
The paper is well motivated, and I can imagine using it. Paths are
complicated, middleboxes can cause various behaviors, and
traceroute is widely used: A traceroute-like tool to expose the
complexity and middlebox behavior would be very useful. The
initial steps towards a tool, which is capable of revealing
middleboxes on a path, are promising.

The tool seems quite cool. Tool is available (and includes unit
tests!). The tool seems to bring together flexibility in probing---
via both setting header fields and using more than one packet
(often key). Unlike some earlier work on middlebox discovery,
only needs control of the source. Additionally, the reporting of
what is going on seems cogent and clean. The tool seems like a
good basis for both operational debugging and developing
understanding about middlebox prevalence and behavior in the
research community.

2. Weaknesses
The tool itself is a small incremental improvement of traceroute.

It is unclear how many middleboxes this tool actually misses
(especially stateful ones). The location inference results are weak
due to the dependence on RFC1812 compliancy.

Could be clearer on what the tool does automatically and what
you have to tweak, configure, or hand run.

The measurement study is limited. The correctness of tracebox
has not been validated in controlled experiments (in the wild, or
with real hardware). Validation currently involves only detecting
click elements the authors developed. What are your false-
negatives?

Could be clearer on the limitations of the tool. Does not detect any
middlebox behaviors that first require the 3-way handshake to be
completed (e.g., mangling/hijacking BitTorrent messages to
throttle or stop BT usage)
While the paper does a very workmanlike job at developing
tracebox and producing a nice tool, the techniques aren't
particularly novel. The technique of using packet quotations is
what traceroute has always been based on. The authors just use
more of the packet than the traditional traceroute. Further,
Malone and Luckie used the same sorts of techniques in "Analysis
of ICMP Quotations" in PAM 2007.

3. Comments
Tracebox offers improvements over traceroute. The tool provides
more freedom with respect to the header fields of the probes and
can check whether these header fields changed (only partially,
unless router is RFC1812-compliant). This results in some
significant limitations.

Intuitively a provider would place a middlebox close to the
endpoint (e.g. the last hop before the destination). If this node is
not RFC1812-compliant, you can miss many changes made by
that middlebox (since there is no RFC1812-compliant router after

that one). Also, you might actually miss all modifications if the
node checks the TTL value first and returns the ICMP error
message before making any changes. It seems like, in terms of
debugging problems, understanding behavior near the destination
would be very important.

A substantial fraction of the middleboxes could be located very
close to the source (e.g. first hop is a firewall) but since you need
the response from a compliant router these boxes would likely be
placed in the core (based the router distribution shown in figure
2b).
How did you perform the normalization for Fig 2b? Most
compliant routers seem to be in the core, but I'm not sure I buy
your argument that that is of the highest importance - you'll miss
any changes past that point. Presumably, the vast number of
possible edge networks where we don't have VPs are the places
we'd most like to know about middleboxes.

Where is the first / last RFC1812-compliant node on a path? For
any nodes after the last compliant one you are going to miss most
header modifications. It would be nice to have a non-normalized
graph of the distribution of # hops from source to first compliant
router and # hops from last compliant router to destination. Given
that RFC1812 is almost 20 years old, what hope do we have for
greater deployment? It would be neat to include a longitudinal
study of adoption.

I didn't understand why 3.2 is a use case. Isn't it more of an
assessment of coverage?

The most important deficit: It is not clear how the tool would
detect any interaction with stateful middleboxes (e.g. drop of out-
of-window packets, ACK rewriting, payload rewriting, etc.).
Honda et al. have a solution for this when the user has control
over both server and client. In 3.3, you talk about opening up a
TCP connection, but the description of the tool in 2 doesn't make
it clear if this is part of the tool.

The results about inferring the approximate location of a
middlebox are unclear. Figure 4b uses a normalized distance,
whereas 4c describes absolute distances. It is not possible to draw
conclusions about the accuracy in 4b because of this (should
either use absolute or normalized distances for both plots). In Fig
4c, how many VPs contribute to the large steps at hop 4 and 5?
How many paths are even longer than 13 hops?

In Fig 4d, how do you know it was a middlebox and not the server
itself? Are you not including probes that actually reach the
target? Unclear how to read Fig 4d, given that each VP
performed its own DNS resolution, so might be probing a
different target.

Section 4.1 is somewhat out of place. The rest of the paper talks
about middlebox detection whereas this one anecdotally describes
a client configuration problem.

4.2: Which destinations was the proxy operating for?

4.2: While the loop might not be ideal, is it that big of a deal if the
destination only wants to receive port 80 traffic? It's operating as a
poorly setup firewall, in effect.

As you note, PlanetLab is not the most interesting testbed for
studying middleboxes. Could you instead deploy on something
like Project BISMark? Why did you only use 72 PlanetLab sites?
How did you pick them?

I am sort of on the fence about how to balance the strength of the
nicely developed tool with the weakness of a fairly thin
methodological contribution. It seems to me that this paper's fate
depends on the submission pool and where the bar will ultimately
fall. I liked the range of problems was able to find. By only real
concern with tracebox is with its (lack of) validation. Currently,
the authors were able to detect the click software elements the
authors built; while that shows that tracebox doesn't have obvious
bugs, that doesn't establish the degree of accuracy of the results
tracebox generates in the wild.

Middleboxes have been known to do all kinds of weird stuff (incl.
mangling quoted packets inside the ICMP). It should be easy to
validate tracebox by subjecting a bank of (off-the-shelf)
middleboxes to it, and manually validating the outcomes.
Alternatively, it would be great if the PIs of the Planetlab nodes
tracebox found to be behind unsavory middleboxes could validate
whether they indeed are behind middleboxes with the inferred
behavior. Without some real-world validation it is hard to take
tracebox's results at face value.
4. Summary from PC Discussion
This is flagged as quick accept, but to post a short summary as
discussion lead:

I think we generally all agree on strengths/weaknesses: a useful
tool, although one with limitations and little technical novelty.

Strengths:
v Important problem
v Useful tool that they make available (Mark: tool is here

http://www.tracebox.org/)
v Various reviewers had more specific strengths, but they

mostly boil down to the two above

Weaknesses:
v Little technical contribution
v Lack of validation outside of unit tests
v While useful in some cases, limited in terms of what

middlebox behavior it can uncover (only stateless) and in
terms of localization

v Paper is unclear on limitations, unclear on to what degree the
tool works automatically vs. needing a lot of tweaking of
parameters to uncover behavior

v Small measurement study is interesting to read but not
conclusive about general middlebox behavior (preliminary,
small, limited to PlanetLab

5. Authors’ Response
We are graceful to anonymous reviewers for their relevant
feedback. We took most of their comments into account for the
camera ready version of our paper.
One of the reviewers' key points is about the lack of clarity on
tracebox limitations. We tackle this in the camera ready version of
the paper, specially in Sec. 2. We also provide deeper
explanations on tracebox and how it works (Sec. 2). Sec. 3 has
been renamed ("Validation & Use Cases") to better reflect its
content. Sec. 3.3. ("TCP Sequence Number Interference") has
been strongly improved in terms of writing and results.

One of the reviewer pointed out the uselessness of Sec. 4.1. We
think the result discussed in Sec. 4.1 is interesting as all of the
websites were based in China which makes us believe that the
interference was due to a middlebox sold by a Chinese
manufacturer. Moreover, our result shows the implication on new
TCP extensions as they can be impacted by such a behavior. We
clarify discussions in Sec. 4.1.
Finally, it is worth to notice that this paper does not aim at
providing a complete bestiary of middleboxes and their behavior.
Rather, this paper aims at presenting tracebox and how it could be
used by researchers and operators to identify middleboxes along a
path and, possibly, to debug strange behavior. Next steps should
improve our understanding of middleboxes (behavior, types, ...)
by largely deploying tracebox. For instance, we are currently
discussing with BISMark to deploy tracebox in their measurement
infrastructure (as well as SamKnows). We are also deploying
tracebox in IPv6 networks.

