
Consolidated Review of 
Scap: Stream-Oriented Network Traffic Capture and 

Analysis for High-Speed Networks
   
1. Strengths 
The paper presents a well-designed and engineered system.  The 
system embodies a well blended synthesize of various known 
techniques: for example migration of functionality into the kernel 
or the use of traditional memory to reduce the number of times 
data is copied.   On a high level, the engineering within this paper 
essentially evolves packet capture techniques to account for 
evolution in processing (multi-core), and evolution in user 
requirements (application level versus packet).  This evolution of 
basic monitoring tools will greatly benefit our community.  
Significant performance improvements over existing tools 

2. Weaknesses 
 Perhaps not so much novelty in terms of ideas (although exposing 
a higher-level API to monitoring apps is a nice systems insight). 

The paper's greatest weakness is two fold: 1. The evaluation 
section and 2. The lack of novelty in the techniques applied. The 
evaluation section uses several unjustified parameters such as the 
inactivity timeout and the throughput of traffic being processed. 
The techniques presented in section 5: using kernel over user 
space, reducing the number of data transfers, and using multiple 
cores are all well known ways to speed up systems. Given, this it 
is not immediately clear what the technical contribution of the 
paper is. 

Potentially an unfair comparison since Scap and Snort have 
different feature sets. If Scap were to support the same set of 
features, it is possible it would have to give up some performance.   

Implementation tweaks mostly take advantage of new hardware 
features (NIC filters, multi-core) that older frameworks have not 
been updated to deal with. A fair comparison would be 
establishing that the old frameworks cannot fundamentally be 
updated to leverage new hardware features, or show that the time 
the authors spent in developing Scap from scratch is significantly 
lower than the time taken to update the old frameworks to 
leverage new hardware features.  

Some details are straightforward and could be omitted.  The main 
result is solid engineering, not a huge conceptual breakthrough. 

3. Comments 
This is a nice paper, with an impressive system that is carefully 
evaluated. Comparisons to other systems are nice, and the overall 
evaluation seems quite solid.  The orchestration between NIC, 
kernel and user is a nice contribution.  The paper has two 
drawbacks: sometimes it goes into more detail than is necessary.  
For example, Table 1 and the API is nice, but there's not much 
there that is surprising that isn't already in the discussion. (I did 
find heavy use of callbacks somewhat surprising, although it's a 
fine choice.)  Another example with is the code in section 3.3. 

 I appreciate the fact that the authors have actually built a 
complete, useful system. I also like the idea of pushing stream 
reassembly into the kernel and exposing a higher-level API to the 
apps.  Only one concern: is it worth designing for the "scarce 
resources" scenario, where apps cannot simply pull all the streams 

they are interested in? I like the cutoff and priority functions, and 
I see how they can make a difference when the monitoring 
platform is short on CPU cycles. But I am wondering whether, in 
practice, a network operator interested in high-speed, 
sophisticated monitoring would not simply buy more processing 
cores.  
Other:  

Why not use polling instead of interrupts to pull traffic into 
memory? I presume that Scap is targeted at platforms that are 
dedicated to network monitoring, so it seems reasonable to 
constantly poll for new traffic.  

The "prioritized packet loss" feature is not really evaluated. I get 
the idea and the analysis, but I cannot put my finger on real 
applications that would benefit from it.  

The evaluation does not consider Scap performance as a function 
of the number of TCP streams. This would be useful, since (I 
presume) a big chunk of Scap processing goes to TCP stream 
reassembly.   

Is there adversarial traffic for Scap? I.e., if an attacker can send up 
to X bps and she wants to make stream reassembly as expensive 
as possible, what kind of traffic would she send?  

It would be interesting to discuss the implications of a kernel level 
implementation especially since kernel changes relatively 
frequently when compared to the APIs exposed to the userland.  
The evaluation, section 6, is filled with many unjustified 
parameters.  For example, it is not clear why the initial bandwidth 
limit or throughput cap for several of the initial experiments if 
6GBit.  Also, it is unclear why one of the experiments switches 
from using 6GB to using 4GB.  Ideally, the experiments should be 
performed with traffic throughput of 10GB as this is the link 
capacity.   Another example of an unjustified parameter is in 
section 6.1: the authors use a 10 second timeout which is contrary 
to the 60 second inactivity time out used in prior work. 
Scap-based NIDS fundamentally can capture fewer classes of 
attacks than packet-filter-based NIDS. Consider classic TCP 
attacks like Ack-splitting, or Daytona attacks. In a packet-filter 
based system user-code can be written to detect the appropriate 
attack packets. In Scap-based NIDS, the Scap library hides the 
packets from user code. If the Scap stream reassembly code works 
like it should, Ack-splitting attacks would be invisible at the user-
code level. Of course, the Scap library could hard-code detection 
of known attacks at/below the TCP level, but that would not help 
detect new attacks, and the Scap API would make it 
fundamentally impossible to write user-code to detect the same 
(unlike in a packet-based API).  An argument can be made that 
TCP attacks are rare, and so the significantly improved 
performance of Scap outweighs the lack of TCP-level attack 
detection. That's a fair argument. But given that argument, the 
performance numbers become meaningless because it compares 
apples and oranges.  An interesting question is how would Snort 
perform if Snort were updated to use NIC filters, and be better 
tuned for multi-core. If these fixes to Snort recover most or some 



of the performance difference, then there is a stronger argument to 
be made for sticking with the updated Snort and still operating on 
packets. The authors have not ruled out this possibility.  
A few questions and suggestions: 

v About details about callbacks:  How are callbacks handled 
from kernel to user?  Or is there a pre-allocated user thread 
for each kernel thread?  How are multiple flows multiplexed 
across a single thread?  How does flow affinity to threads 
work if a user thread is off doing arbitrary (long!) 
computation in a callback?  

v Reading section 3 left me some questions that weren't 
answered until section 4:   

o In 3.2: are callbacks in kernel or user space?  
o Is chunk sharing in shared memory?   

v In section 4.1, how are events triggered to the user?  (Do user 
threads poll a socket, or something else?)  In section 6.1, 
does replaying your trace while loading the next segment 
change traffic locality?  Should you change the flow-ids each 
replay to prevent this?  If you did, would that change your 
graphs?   

v In your experiments, how long is each data point, or how 
many repetitions?  How reproducible are the results if 
redone?  (The graphs look smooth suggesting you don't have 
a lot of statistical variation, but it would be nice to get 
confirmation.)  

v In figure 4: it looks like you stop at 6Gbps, which is exactly 
your saturation.  Can you take figure 4a further? 

4. Summary from PC Discussion 
The paper was briefly discussed. The reviewers who gave low 
scores thought that the evaluation left room for improvement. 
However, even they agreed that the paper presented a nicely 
designed and useful system. In the end, this was considered a 
sufficient reason for accepting the paper. 

5. Authors’ Response 
We thank the IMC reviewers for their insightful reviews and their 
valuable feedback for improving our paper. We identified four 
main points that the majority of the comments focus on: (i) 
experimental evaluation, (ii) attacks detected only by packet-
based analysis, (iii) implementation details, and (iv) need for 
overload control and existence of adversarial traffic. We have 
tried to address these concerns in the final version of our paper: 

1. Regarding the comments on evaluation, reviewers noted that 
we had not experimentally evaluated the prioritized packet 
loss with stream priorities and Scap with varying number of 
streams. To this end, we performed a new experiment 
comparing Scap with Snort and Libnids while varying the 
number of concurrent streams. The results in Section 6.4 
and Figure 5 show that in contrast with existing systems, 
Scap scales very well with the number of concurrent 
streams. To evaluate prioritized packet loss, we ran a new 
experiment with the Scap-based pattern matching 
application by assigning a higher priority to streams with 
source or destination port 80. The results in Section 6.7 and 
Figure 9 show that although the application drops high 
percentages of packets in high traffic rates, the high-priority 
streams are not affected. Moreover, there were two 
questions about the 10 seconds inactivity timeout we used 
and the maximum rate of 6 Gbit/s. Although the large 
majority of TCP flows close explicitly with a TCP FIN or 
RST, we use an inactivity timeout to expire the small 
percentage of UDP flows or TCP flows that do not close 

normally. As we replay our trace at much higher rates than 
its captured rate, we believe that 10 seconds is a reasonable 
choice for the inactivity timeout. We have explained this 
choice at the end of Section 6.1. We acknowledge that 
replaying higher rates than 6 Gbit/s would be helpful. The 
reason we stopped at 6 Gbit/s is that it was the higher rate 
for which we could accurately replay real network traffic. 
We believe that sending real traffic is the best way to 
evaluate TCP stream reassembly implementations. Also, we 
found that existing single-threaded stream reassembly 
systems can handle up to 2.5 Gbit/s in our setup without any 
further processing, so 6 Gbit/s was enough to saturate them. 

2. Another concern was the detection of TCP attacks like ACK 
splitting, which require packet-level processing. Scap 
already provides support for delivering the packets of each 
stream, if needed by the application. This is achieved by 
keeping the necessary metadata per each packet. To address 
this concern we have explained in more detail the packet 
delivery mechanism in Sections 3.2 and 5.7, noting that 
Scap can be used for packet-level processing and detection 
of TCP attacks as well. In order to evaluate the performance 
of Scap with packet delivery, we have added the case of 
pattern matching in the individual packets of each stream in 
Section 6.5. The results are presented in Figure 6 and 
discussed in Section 6.5.3, and they show that the 
performance of Scap remains the same with packet delivery. 

3. Reviewers also asked for more implementation details 
regarding callback handling and event generation. Our 
system consists of one worker thread per each core that 
polls an event queue and executes a respective callback 
(registered by the application) for each event. The events are 
generated by a respective Scap kernel thread, running on the 
same core and processing the packets received at the 
respective hardware queue. We have added more detailed 
description of our system in Sections 2.4, 4, and 5. Two 
more questions were about the use of polling instead of 
interrupts and frequent kernel changes. Regarding interrupts 
versus polling, we used an existing NIC driver with 
interrupt coalescing. Scap can benefit from other existing 
NIC drivers that use polling as well. Regarding frequent 
kernel changes, we implemented the kernel part of Scap as a 
loadable kernel module, so it does not require any kernel 
patch and does not depend on kernel changes. 

4. Two other concerns raised by the reviewers were about our 
choice to design for an overload scenario, and about 
possible adversarial traffic for Scap. Regarding the first 
concern, although a monitoring system can be provisioned 
to handle the worst case, e.g., by buying more cores, an 
attacker may still be able to overload this system, e.g., by 
sending adversarial traffic to exploit unknown algorithmic 
complexity attacks. Thus, we believe that overload control 
is necessary for the correct and secure operation of such 
monitoring systems that can be abused by attackers. We 
have discussed this issue in several parts of the paper. 
Adversarial traffic can be detected in Scap applications by 
the processing time of each stream, and can be handled by 
giving lower priority or discarding streams with adversarial 
traffic. We have explained this capability in Section 3.2. 
Moreover, in Section 6.4 we show that Scap can tolerate 
attacks trying to overwhelm the flow table up to the extent 
that there is available memory in the system. 

We have also incorporated other suggestions from the reviews.


