
Consolidated Review of
RILAnalyzer: A Comprehensive 3G Monitor on Your Phone

1. Strengths:
Paper is very well written and easy to follow.

The tool provides RNC state information for a device without
relying on captures from cellular infrastructure or external energy
measurements. The tool does not require root access or
modifications to the phone's firmware. This paper introduces an
open-source and much-needed tool to analyze cellular networks
for many researchers who do not have access to the internal
components of cellular networks. RILAnalyzer pretty clearly
advances the state of the art for collecting control- and data-plane
information for analyzing wireless application interactions. It
appears to be a very powerful and useful tool, and will be released
to the community. Tool is open-source and available for user and
improvement.

The authors ascertain the RNC state machine for four different
cellular networks and correlate RNC state machine transitions
with specific applications without complex analyses or inference
algorithms
The authors discovered interesting inefficiencies.

2. Weaknesses
The tool only works for mobile chipsets whose special commands
for extracting state information are known (currently only one
chipset). It would be very interesting to see the results collected
by the tool from a diverse set of popular mobile handsets
including iPhones.

The small number of users in the study makes me question the
accuracy of the frequency of RNC state machine transitions
induced by specific applications.

The paper contains many unexplained details, especially for non-
experts in this area. The case studies especially contain references
to details that not explained well or at all, making the paper pretty
hard to digest (especially RNC state machine discussion).

Insufficient detail describing validation of the tool (ironic,
considering so much detail in other parts of the paper).

Lack of strong motivation and sell; what recommendations does
this tool actually provide for telcos?

The tool doesn't seem to offer much novelty in terms of
engineering/design; it extends existing work a bit and probes with
the right (hidden) parameters.

3. Comments
First off, the paper is very clearly written and easy to follow. A
nice story is presented, revolving around the tool, and there are
some useful insights obtained from the smart use of graphics and
figures. The tool seems solid and easy to run by many
individuals.

I was immediately intrigued why the backdoor access that is
available to RNC state machines on some chipsets, and I
immediately went to try it on my own Samsung Galaxy S II.
Although your tool only works for a limited set of devices, I think
it is still important to let the research community know about this
valuable, albeit hidden, source of data.

It was not clear how you were improving on existing approaches
until after I read about your tools design in the beginning of
Section 3. Section 2 talks about limitations of other approaches,
but makes no forward reference as to how you are proposing to
overcome these limitations or what specific problem you are
targeting.

The front half of the paper, particularly the introduction, does not
motivate or sell the tool very well. Specifically, the reader does
not get a clear understanding of exactly how this tool is going to
help solve, or provide recommendation for, the well-known
problems of cellular networks. It would be more satisfying if
there were a handful of major recommendations to telcos, derived
from the problems found by the tool, right up front. The
introduction does not clearly present the problem being addressed
or provide useful forward references into how your tool addresses
the problem nor does it talk about the measurements you gathered.
The first two paragraphs of the introduction do not add any value
to the paper The third paragraph of the introduction talks about
correlating information between different layers, but you really
only talk about two pieces of information---RNC state and packets
sent by applications.

 There’s a lot more information that other applications have
gathered (signal strength, location, CPU usage, energy usage,
etc.), but you don't gather any of this. If you only think network
information is important, then you should be more clear about
why you focus on this.
In the first paragraph of Section 3 you say that you don't rely on
collecting data from the OS, but you do not clearly explain why
such an approach is limited or problematic. I would have liked to
see support for more chipsets, or at least something that would
convince me that other chipsets could be amenable to being
supported in your tool. You say that Qualcomm provides a
licensed monitoring tool; is it possible to reverse engineer this?
Why or why not? Also, what other common chipsets exist that
your tool should target?

When verifying the accuracy of data packets reported by
RILAnalyzer, this paper uses a small set of experiments with
lightweight traffic load. It is desirable to perform some stress tests
here to see whether RILAnalysis is capable of accurately
capturing packets during heavy traffic load. The current version
of RILAnalyzer supports a single chipset.

What is the road map of supporting other chipsets and mobile
handsets? I believe many researchers would like to deploy such
tools on both Android phones and iPhones across different
cellular networks in North America and Asia.

During the idle experiments, RILAnalyzer consumes an average
of 22MB of physical memory, while it consumes only 42MB of
memory during the stress test. What is the reason of such a high
memory usage during the idle condition? This paper uses a small-
scale user study to evaluate the developed tool. Given the
popularity of Android-based mobile handsets, this paper could
expand the scale of the deployment.

Table 1 (and the entire paper) uses the term U-plane, i.e., user
plane, while Table 2 uses the term "data plane". For consistency,
Table 2 should also use the term "user plane".

In section 2, end of paragraph 4, a comment is made about the
inaccuracy of using reverse DNS lookups for identifying
applications, and that you "prove" in section 4 this inaccuracy.
Are you referring to the fact that some apps rely on other
infrastructures (e.g., Google) for some services (like push
notifications), thus rendering reverse DNS approaches unable to
identify the app correctly? The connection to the statement in
section 2 isn't clearly made in section 4, and that would be helpful
for overall coherency. Why no explicit comparison of packet
timestamps (Section 3.1, validation)? Inaccuracy is mentioned,
but it would have been nice to actually see the differences. While
the inaccuracies did not affect the specific case studies described
in this paper, it seems like they could have detrimental impact on
other kinds of experiments using RILAnalyzer output. For
comparing RIL state change info (Section 3.1, validation), does
using the cell testbed have an impact on the rate or nature of state
changes you'd see versus what you'd see in a live environment?
Some additional details of the testbed experiments would have
been helpful to understand the validation approach better.

However, there are some questionable measurements presented by
the authors, such as using 47% of the CPU under heavy load (as
an aside, it may also have been useful to translate that to battery
life lost). This may be a tool limitation (the authors specifically
mention logging by iptables), which could be optimized by the
open source community. The other limiting factor is the specific
hardware required; although, as a proof-of-concept, this is fine.
There are a few somewhat unspecific recommendations scattered
throughout the paper, such as "These observations suggest that to
reduce the energy and network overheads of mobile traffic, it is
essential to control downlink traffic…” The user study was done
with real phones, over real networks, using real apps, leading
strong credence to the results. Many of the results are interesting,
such as the RNC state transitions and the impact that CDNs and
other backend infrastructure can have. The validation in 3.1 has
no data/graphs associated with it; however, it was thorough of the
authors to perform this type of validation. While the tool seems
interesting, I question the overall contribution to the research
community. Discovering the correct codes to enter into the dialer
seemed to be the most tricky part of the whole system, and in fact
that seems to be the only step necessary to obtain the control-
plane data. This seems like a fantastic and useful open-source
project and engineering effort, but a questionable research
contribution. Overall, it seems like a nice tool that can be
expanded on, and I hope it continues to provide useful
information.

4. Summary from PC Discussion
The PC discussion focused on how useful this tool was likely to
be, both now and longer term. We discussed which current cell
phones could run this tool and concluded it was certainly useful
now and decided that was sufficient to accept.

Is root access needed to use your tool? The PC wondered about
how this would be used? If root access is needed, this may limit
how useful the tool is. The author should clarify this. The PC

wanted the authors to provide more details on which phone
models this tool applies to, and whether those are popular models.

5. Authors’ Response

The tool, as described in the text, is intended as a detailed cross-
layer debugging/analysis/monitoring tool on the handset, rather
than a tool for long-term analysis. Many issues arise in the latter
case that need to deal with users’ privacy and the need to build an
scalable online logging capability. We would like to explore this
in the future.

At the moment, the tool only works for the XGold chipsets, as
described in the paper. Extending the tool to other handsets
requires time to identify the chipset-specific commands and we
would like to have support from the open source community to
extend the capabilities of this tool. We hope that this paper will
motivate open APIs to access this information, nowadays
restricted, directly on mobile handsets for research, development
and network deployment purposes.

Regarding the content of the paper itself, we have modified the
introduction to better describe the content of the paper, as well as
a new section that includes some basic knowledge about cellular
networks. We also described better the limitations of our tool as it
only works for rooted Android handsets with XGold chipsets
(only tested for Samsung Galaxy S2 and S3 devices).
Furthermore, Section 4 already describes the different memory
and CPU overheads, caused by the need to poll all the information
from the radio chipset and the OS. In particular, the reason why
Rilanalyzer consumes 22 MB of physical memory even at low
traffic loads is due to the need to have multiple components
monitoring different aspects simultaneously. Each one of them
takes some space. Furthermore, the traces are collected, batched
and saved in memory for post-processing, being written to the
SDCARD once the OS has enough resources to do it. Although a
high CPU load is not desirable due to the associated energy costs,
this is a limitation imposed by platform/chipset support.

We also explained in S2 and S6 the limitations associated to
Reverse DNS techniques on identifying the process that has
generated a given packet. The main reason is that many mobile
apps use 3rd party online services such as Google’s Push
Notification, analytics, advertisement and even content delivery
networks. Many applications do not have a monolithic backend,
making the identification of an app’s traffic difficult.
Furthermore, the inaccuracy on the incoming timestamps is a
NFLOG limitation (Kernel). This has been already explained in
the paper. The same timestamps are also reported by tcpdump. If
reviewer’s point is related to the inaccuracy of the RNC transition
and the 1 second sampling rate, we explain also that it is not
necessarily a limitation and that it can be only improved with
newer APIs.

The settings for RNC promotions and demotions, as well as the
RNC state machine, are configurable and we have observed that
in different settings in different networks (Figure 4). The testbed
allowed us to have a controlled environment to validate what the
handset reported.

