
OS Fingerprinting and Tethering Detection in Mobile
Networks

Yi-Chao Chen†, Yong Liao‡, Mario Baldi‡, Sung-Ju Lee‡, Lili Qiu†

†The University of Texas at Austin, ‡Narus Inc.

ABSTRACT

Fingerprinting the Operating System (OS) running on a device based
on its traffic has several applications, such as NAT detection, pol-
icy enforcement in enterprise networks, and billing for shared ac-
cess in mobile networks. In this paper, we propose to utilize sev-
eral features in TCP/IP headers for OS identification, and use real
traffic traces to evaluate the accuracy of fingerprinting. Our trace-
driven study shows that several techniques that successfully finger-
print desktop OSes are not effective for fingerprinting mobile de-
vices. Therefore, we propose new features for fingerprinting OSes
on mobile devices. We also consider NAT/tethering detection, an
important application of OS fingerprinting. We use the presence
of multiple OSes from the same IP address along with TCP times-
tamp, clock frequency, and boot time to detect tethering. Evalua-
tion shows that our approach effectively detects tethering and out-
performs existing schemes.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions – Network monitoring

General Terms

Algorithms, Measurement, Performance

Keywords

OS Fingerprint; Tethering Detection; TCP/IP

1. INTRODUCTION
Identifying the Operating System (OS) running on an end device

based on its traffic is valuable in many contexts. For example, an
enterprise network may restrict the usage of specific OSes for se-
curity reasons. Moreover, OS fingerprinting can be used to detect
NAT/tethering (i.e., multiple devices sharing the Internet connec-
tion of a mobile device), since the presence of multiple OSes shar-
ing the same IP address is an indication of tethering, which may be
prohibited by a wireless network due to resource usage concerns.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

IMC’14, November 5–7, 2014, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-3213-2/14/11 ...$15.00.

http://dx.doi.org/10.1145/2663716.2663745.

Motivated by this need, we examine a series of features in net-
work traffic to understand their effectiveness in detecting the OS
running on an end device. In particular, we consider IP Time-
to-Live (TTL), IP ID monotonicity, TCP window size scale op-
tion, TCP timestamp, clock frequency, and boot time. Among
them, TTL, IP ID, TCP timestamp option, and boot time have
been considered in other contexts, including machine fingerprint-
ing [2, 9, 29, 35, 39, 43]. We also propose several new features: the
stability of the clock frequency, presence of TCP timestamp option,
and the default set of TCP window size scale factors.

Next we apply OS fingerprinting to detect tethering using a sim-
ple probabilistic approach. It consists of two steps: (i) identify-
ing the OS running on a device (i.e., iOS, Android, or Windows)
based on a combination of features, and (ii) determining if there is
a tethering based on the number of OSes along with the number of
distinct TTLs, TCP timestamp monotonicity, standard deviation of
clock frequency, and standard deviation of boot time.

We evaluate our approach using traces we collected in 2013, as
well as publicly available traces [15] collected during OSDI’06 [14]
and SIGCOMM’08 [7]. We find that Apple iOS can be accurately
identified, while Android and Windows are identified with 1.0 pre-
cision (i.e., the fraction of traffic our scheme detected as a given OS
is indeed that OS) and 0.8 recall (i.e., the fraction of traffic from a
given OS is correctly detected by our scheme). Tethering detection
has 0.78∼0.89 recall when the target precision is 0.8.

Our main contributions are as follows:

• We identify new features for OS fingerprinting, such as the
presence of TCP timestamp, TCP window size scale factor, and
standard deviation of clock frequency.

• We quantify the effectiveness of various individual features, in-
cluding both new and previously proposed features. We show
that clock skew, a feature proposed before for fingerprinting
desktops in wired networks, does not work well in mobile net-
works. Existing work assumes that significant clock skew indi-
cates different machines, but it is ineffective in a mobile con-
text due to highly variable clock frequency in iOS devices and
increased estimation error due to short transfers and unstable
connectivity.

• We develop a probabilistic scheme that combines multiple fea-
tures to detect OSes and tethering, and show it outperforms de-
cision tree and linear regression.

2. TRACE DESCRIPTION
We use three packet traces in our study. The first two are WiFi

packet traces captured during SIGCOMM’08 [7] and OSDI’06 [14],
available from CRAWDAD [15]. We also collect our lab trace by
setting up an AP in an office, recruiting users to use the AP for In-

173

Table 1: Summary of the traces.
Trace Time Duration # IPs # pkts # flows

OSDI06 Trace 2006/11 1 day 292 1,408K 3,404

SIGCOMM08 Trace 2008/08 1 day 223 1,107K 2,586

Lab Trace 2013/10 2 hours 56 193K 741

ternet access, and capturing packet headers on the AP. Altogether,
we had 14 captures from 4 different Android phone and tablet de-
vices; 10 captures from iOS devices, including iPhone, iPod touch,
and iPad; and 32 captures from laptops running Windows. Each
capture lasts 10 ∼ 30minutes. Table 1 summarizes the three traces.

3. OS FINGERPRINTING
We introduce a list of relevant features and describe how these

features are used for OS fingerprinting. In this paper, we focus
on identifying Windows, iOS, and Android, since recent market re-
search [23,32] reports that Windows, iOS, and Android account for
12%, 43%, and 44% of the laptop/phone/tablet OSes, respectively.
Our methodology is general and can be easily extended to cover
more OSes.

3.1 Features
We identify the following features for OS fingerprinting.

IP Time-To-Live: The TTL value in the IP header specifies the
maximum number of hops a packet can traverse. Different OSes
set different initial TTL values; Windows uses 64 or 128, while
iOS and Android use 64 by default.

IP ID Monotonicity: The identification field in the IP header is
primarily used in IP de-fragmentation. We observe that IP IDs in
packets from Windows machines consistently increase monotoni-
cally over time. iOS devices always randomize the IP ID of each
packet. Interestingly, some Android devices completely randomize
the IP IDs, while others monotonically increase them for some time
and periodically reset to random values.

TCP Timestamp Option: The TCP timestamp option [25] is used
for measuring roundtrip time and protecting against wrapped se-
quence numbers. Most packets from Windows do not have TCP
timestamp options, whereas packets from iOS and Android usually
do [13].

TCP Window Size Scale Option: This option allows increasing
TCP receiver window size beyond 65, 535 bytes. The scale value is
negotiated during the TCP three-way handshake. Our traces reveal
that the scale values vary across OSes: Windows uses 1, 4, or 256;
iOS uses 16; and Android uses 2, 4, or 64.

Clock Frequency: The clock frequency of a machine should be
relatively stable. We observe that this holds true mostly for Win-
dows and Android machines. Interestingly, the clock frequency
of iOS varies over time. From the trace we collected from multi-
ple iOS devices, we see that their clock frequency varies between
920Hz to 1000Hz. We suspect that iOS might dynamically adjust
the clock frequency for power saving.

We estimate the clock frequency as follows. Let t1 and t2 denote
the capturing time of two packets from the same device, and T1

and T2 be the logic timestamps (e.g., TCP timestamp) embedded in
those two packets. We compute clock frequency as T2−T1

t2−t1
.

If the standard deviation of the estimated clock frequency from a
flow is large (i.e., ≥ 3 in our evaluation), it implies the estimation
frequency is unstable and is likely to be an iOS machine. Note that
for OS detection, this heuristic may not be accurate since large stan-
dard deviation could be caused by multiple machines instead of one
iOS machine. We will quantify the error through evaluation later.

Table 2: Probability of identifying OS witch each feature.

threshv1=0.05, threshv2=0.40, thresht=0.05, and threshc=3.
OSa is Android; OSi is iOS; and OSw is Windows. We exam-

ine the distribution of values of each feature for different OSes

and select the threshold yielding less than 10% false positive.

Feature fi Pr(OSa|fi) Pr(OSi|fi) Pr(OSw|fi)

TTL= 128 0 0 1

TTL 6= 128 0.43 0.30 0.27

IP ID monotonicity viola-
tion ratio < threshv1

0.18 0 0.82

IP ID monotonicity viola-
tion ratio ∈ [threshv1,

threshv2]
0.75 0 0.25

IP ID monotonicity viola-
tion ratio ≥ threshv2

0.22 0.78 0

TCP TS Opt ratio <

thresht

0 0 1

TCP TS Opt ratio ≥
thresht

0.59 0.41 0

TCP WS Opt = 4 0.1 0 0.9

TCP WS Opt = 16 0 1 0

TCP WS Opt = 64 0.82 0 0.18

TCP WS Opt = 256 0 0 1

clock freq std <

threshc

0.67 0.27 0.07

clock freq std ≥
threshc

0 1 0

Interestingly, this heuristic has better accuracy for tethering detec-
tion. When the large estimated frequency variation is due to multi-
ple OSes instead of iOS, our scheme wrongly identifies iOS in the
tethered traffic. However, because other OS fingerprinting features
(e.g.IP TTL, TCP timestamp option, and TCP window size scale
option) can still identify the correct OS, our scheme will identify
iOS and non-iOS devices by combining results from all features.
Since two or more OSes implies tethering usage, our scheme can
still detect tethering correctly.

3.2 Using the Features
Exploiting each feature fi listed in Section 3.1 to detect OSes

requires an important probability Pr(OSx | fi), i.e., the probabil-
ity of being OS x when feature fi is present. We use Bayes’ rule

to derive Pr(OSx | fi) = Pr(fi|OSx)Pr(OSx)
Pr(fi)

, where Pr(fi |

OSx) and Pr(fi) are empirically computed using our lab trace;
Pr(OSx) is the probability ofOSx derived from the training traces.
Pr(fi) denotes the fraction of IP addresses having feature fi. An
IP is considered to have feature fi if its feature value exceeds the
corresponding threshold (e.g., the fraction of packets with TCP
timestamp exceeds a threshold).

We divide each trace into a training set and a testing set. Be-
low we describe how we empirically determine the threshold for
each feature using the training set. We later use the testing trace to
evaluate the accuracy of our detection in Section 5.

IP Time-To-Live: From our training set, we learn that Android
and iOS use 64 as the default TTL, while Windows uses 64 or 128.
We can thus use the TTL value to identify Windows (i.e., an initial
TTL of 128) with high confidence. This rule accurately catches all
Windows machines as shown in row 1 of Table 2. When the default
TTL is not 128, it could be any OS. Because only a small number of
packets from Windows set TTL other than 128 and there are more
Android than iOS in the training set, the probability of being an
Android is higher as shown in row 2 of Table 2.

IP ID Monotonicity: In our training set, we observe that Win-
dows devices increase IP ID monotonically, iOS devices use ran-
dom IP IDs, and their violation ratio (i.e., the current packet’s IP
ID is smaller than the previous IP ID) is around 50%. There are

174

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1F
ra

c
.

h
o

s
ts

 w
it
h

 r
a

ti
o

 <
 x

Ratio of packets violating IP ID monotonicity

Android
iOS

Windows

(a) Violation ratios across OSes

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1F
ra

c
.

h
o

s
ts

 w
it
h

 r
a

ti
o

 <
 x

Ratio of packets violating IP ID monotonicity

our traces
OSDI06

SIGCOMM08

(b) Violation ratios in the traces

Figure 1: CDF of ratio of packets violating IP ID monotonicity.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

F
ra

c
.
h
o
s
ts

 w
it
h
 r

a
ti
o
 >

 x

ratio of pkts with TCP Timestamp Option

Android
iOS

Windows

Figure 2: CCDF of ratio of packets with the timestamp option.

about 20% of Android devices randomizing the IP IDs. But 80%
of Android devices have 40% or lower violation ratio. Figure 1(a)
shows the ratio of packets violating IP ID monotonicity for three
types of OSes in our training set.

Rows 3∼5 in Table 2 show that requiring IP ID monotonicity
identifies Windows machines fairly accurately while significant vi-
olations of IP ID monotonicity can be used to identify iOS. So we
derive the following rule. When the violation ratio is less than 5%,
most likely it is a Windows device. When the violation ratio is
greater than 40%, it is iOS. When the violation ratio is in between
(e.g., 5% ≤ ratio < 40%), it is likely to be Android.

Figure 1(b) shows that the violation ratios are smaller than 5%
on 72% of machines in SIGCOMM’08 trace. This implies that a
large number of machines are likely to be Windows. In our lab
trace and OSDI’06 trace, violation ratios are smaller than 5% on
42% and 44% of machines, respectively. These machines are likely
Windows machines, as well.

TCP Timestamp Option: As shown in Figure 2, the ratios of
packets with TCP Timestamp option are more than 10% and 14%
for iOS and Android devices, respectively. ForWindows machines,
the ratio is smaller than 5%. Hence, 5% is a good threshold to
distinguish Windows machines from others. If the ratio of packets
with TCP Timestamp option is smaller than 5%, we conclude that
it is a Windows device. Rows 6 and 7 in Table 2 show the coverage
of using the presence of TCP timestamp option for identifying the
OS: it accurately identifies Windows. The accuracy for detecting
Android and iOS is lower.

TCP Window Size Scale Option: The scale factor is determined
by the maximum receiving buffer space and cannot be changed af-
ter the connection is opened. Figure 3(a) shows the scale factors
selected by different OSes. We observe that only iOS uses 16; Win-
dows and Android use 2, 4, 64 and 256. Figure 3(b) shows that no
scale factor is set to 16 in OSDI’06 dataset. Since iOS was first re-
leased in 2006, it implies that 16 is unique for iOS devices. Hence
we derive the following rule: a TCP window scale factor of 16 is
iOS, 64 is Android, and 256 is Windows. Rows 8∼11 in Table 2
show it is fairly accurate for determining the OSes.

Clock Frequency and Boot Time Estimation: Figure 4 shows
that the standard deviation of clock frequency in 90% of Windows
machines is less than 1, and that of 90% of Android devices is less
than 3. Therefore when the clock frequency exceeds 3, we conclude
it is iOS. Row 13 in Table 2 shows that we identify all iOS correctly
based on unstable clock frequency.

WS=1

WS=2

WS=4

WS=8

WS=16

WS=64

WS=256

0.0

0.2

0.4

0.6

0.8

1.0

Android iOS Windows

R
a

ti
o

(a) Ratio in OSes

0.0

0.2

0.4

0.6

0.8

1.0

our traces OSDI06 SIGCOMM08

R
a

ti
o

(b) Ratio in data sets

Figure 3: Ratio of selected TCP window scale option.

0.0

0.2

0.4

0.6

0.8

1.0

 0 5 10 15 20 25 30 35 40F
ra

c
.
h
o
s
ts

 w
it
h
 s

td
 >

 x

Stdev of clock frequency

Android
iOS

Windows

Figure 4: CCDF of clock frequency std in OSes.

3.3 Combining Features
So far, we have focused on using individual features. As we ob-

served in Section 3.2, different features may work well in different
scenarios. This motivates us to develop a technique to leverage
multiple features to improve accuracy. We design a probability-
based technique by applying the navïe Bayes classifier to effec-
tively combine multiple features. Specifically, given the set of ob-
served features f1 ∼ fk, the probability of being OSx can be com-
puted as Equation (1) if features f1 ∼ fk are independent.

Pr(OSx | f1, ..., fk) = Pr(OSx)
Pr(fi, ..., fk | OSx)

Pr(fi, ..., fk)

= Pr(OSx)

∏k
i=1 Pr(fi | OSx)∏k

i=1 Pr(fi)
. (1)

Pr(OSx) and Pr(fi|OSx) are learned from the training traces.
We then compute Pr(fi) based on all packets from an IP address
in the testing trace and use Equation 1 to compute the probability
that the IP uses OSx. The OS is then identified as the one with the
highest probability.

4. TETHERING DETECTION
The OS fingerprinting result can be used for tethering detection.

To that end, we present a few more features specifically related to
tethering detection and how tethering detection is conducted.

4.1 Features
If multiple types of OSes are detected from the traffic coming

from an IP address, it is considered as tethering. In addition, the
following features can also be used for tethering detection.

Number of TTL Values: If packets from an IP address has differ-
ent TTL values, it is likely to be tethering.

TCP Timestamp Monotonicity: Packets generated by the same
machine tend to monotonically increase TCP timestamp values,
whereas packets from different machines usually have mixed TCP
timestamp due to different clock offsets across machines.

Clock Frequency: If the standard deviation of clock frequency
estimated using the packets from an IP address is too large, it is
likely to be tethering.

Boot Time: Machine boot time can be inferred from TCP times-
tamp values in packets sent from that machine. Most OS implemen-

175

Table 3: Probability of having tethering when the feature

is observed (i.e., Pr(T |fi)), where all thresholds are derived

from the training traces. threshv = 0, threshc = 35, and
threshb = 1455.

Feature fi lab trace osdi06 sigcomm08

distinct TTL= 1 0.33 0.24 0.24

distinct TTL> 1 0.96 0.95 0.92

TCP TS monotonicity violation ratio
≤ threshv

0.33 0.40 0.29

TCP TS monotonicity violation ratio
> threshv

1 1 1

clock freq std < threshc 0.18 0.53 0.55

clock freq std ≥ threshc 1 1 0.67

boot time std < threshb 0.1 0.36 0.66

boot time std ≥ threshb 1 1 0.88

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.02 0.04 0.06 0.08 0.1F
ra

c
.

h
o

s
ts

 w
it
h

 r
a

ti
o

 <
 x

Ratio of packets violating TCP TS monotonicity

Ours:tethering
Ours:untethered

OSDI06:tethering
OSDI06:untethered

SIGCOMM08:tethering
SIGCOMM08:untethered

Figure 5: CDF of ratio of packets that violate TCP timestamp

monotonicity.

tations use a random number as the starting value of TCP times-
tamps after booting. Hence the estimated boot time is not the real
one. However, the value can still quite uniquely identify a machine
because different machines have distinct boot times and distinct
initial TCP timestamp values [39].

Note that TCP TS monotonicity, clock frequency, and the boot
time are effective even when the tethered devices use the same OS,
as the feature values vary across devices instead of OSes.

4.2 Using the Features
We describe how to use each feature for tethering detection. Sim-

ilar to Section 3.2, we use the Bayes’ rule to empirically compute
Pr(T |fi) (i.e., the probability of tethering under feature fi) ac-
cording to the training traces. To facilitate the empirical study,
we simulate tethering activities in each trace by randomly mixing
packets from different IPs and modifying the source IP address to
make them look like from the same IP address. We assume that
there is no tethering in the original traces. This assumption should
hold in our lab trace due to the way in which they are collected.
For OSDI’06 and SIGCOMM’08 traces, it is likely to be true since
there is no reason for tethering when free WiFi is available (other
literature [34] also makes a similar observation). For each trace, we
select packets from 80% of the source IPs as the training traces to
derive the threshold and use the remaining 20% as testing to quan-
tify the accuracy of tethering detection in Section 5.3.

IP TTL: Based on the TTL analysis in Section 3.2, we conclude
that there is tethering if the number of distinct TTLs in all packets
from an IP address is more than one. From our training set, we find
that this heuristic accurately identifies tethering: its coverage (i.e.,
the fraction of traffic our scheme detected as tethering is indeed
tethering) ranges from 0.92 to 0.96 in three different traces.

TCP TimestampMonotonicity: Figure 5 shows the ratio of pack-
ets that violate TCP timestamp monotonicity. We see that unteth-
ered traffic have no violations, while 95% (our lab trace), 20%
(OSDI), and 41% (SIGCOMM) of tethering machines have vio-
lation ratios larger than zero. Therefore, we conclude that the prob-

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500F
ra

c
.

h
o

s
ts

 w
it
h

 s
td

 >
 x

Stdev of calculated frequency

Ours:tethering
Ours:untethered

OSDI06:tethering
OSDI06:untethered

SIGCOMM08:tethering
SIGCOMM08:untethered

Figure 6: CCDF of clock frequency standard deviation in teth-

ering/untethered devices.
Ours:tethering
Ours:untethered
OSDI06:tethering

OSDI06:untethered
SIGCOMM08:tethering
SIGCOMM08:untethered

0.0

0.2

0.4

0.6

0.8

1.0

10
-2

10
0

10
2

10
4

10
6

10
8

F
ra

c
.
h
o
s
ts

 w
it
h
 s

td
 >

 x

Boot time stdev

Figure 7: CCDF of boot time std in tethering and untethering

traffic.

ability of tethering is one if the violation ratio of TCP timestamp
monotonicity is larger than zero. When there is no violation of
TCP timestamp monotonicity, the tethering probabilities are 0.33,
0.40, and 0.29 in our lab trace, OSDI’06 trace, and SIGCOMM’08
trace, respectively. The false negative cases are mainly due to two
reasons. First, TCP timestamp option is not available in most of
Windows devices. Second, sometimes flows from tethered devices
do not overlap in time, and thus no violation is observed.

Clock Frequency: Figure 6 shows that the standard deviation in
90% of untethered traffic is smaller than 35 (lab trace), 9 (OSDI),
and 12 (SIGCOMM). Therefore we conclude that there is tethering
if the standard deviation is larger than 35.

Boot Time: Figure 7 shows standard deviation of estimated boot
time. Using a large standard deviation of boot time can reliably
detect tethering. When the standard deviation of boot time is larger
than 1455, the probabilities of tethering are 1 for our lab trace and
OSDI’06 trace, and 0.88 for the SIGCOMM’08 trace.

Table 3 is a summary of Pr(T |fi), i.e., the probabilities of teth-
ering we learned from our training data sets. Note that while the
probabilities reported here may not always hold for other traces,
the features we use and our methodology of deriving the thresholds
for the features can be applied in general to other traces.

4.3 Combining the Features
We use two steps to compute tethering probability. First, we use

features f ′
i for OS fingerprinting to derive the probability of having

multiple OSes from an IP address, Pr(multiOS|f ′
1, ..., f

′
k), as

Pr(multiOS|f ′
1, .., f

′
k)

= 1−
m∑

x=1

Pr(OSx|f
′
1, ..., f

′
k)

y 6=x∏

y=1..m

(1− Pr(OSy |f
′
1, ..., f

′
k)),

wherem is the number of different OSes, and probabilityPr(OSx|f
′
1, ..., f

′
k)

can be computed from Equation (1).
We then treat Pr(multiOS|f ′

1, .., f
′
k) as one of the features for

tethering detection, denoted as g, and use it along with the addi-
tional features presented in Section 4.2 to compute Pr(T |f1, ..., fn, g)
based on the Bayes’ rule similar to Section 3.3.

176

Precision Recall F-score

0.0

0.2

0.4

0.6

0.8

1.0

Android iOS Windows

V
a

lu
e

(a) TTL

0.0

0.2

0.4

0.6

0.8

1.0

Android iOS Windows

V
a

lu
e

(b) IP ID monotonicity

0.0

0.2

0.4

0.6

0.8

1.0

Android iOS Windows

V
a

lu
e

(c) TCP window scale

0.0

0.2

0.4

0.6

0.8

1.0

Android iOS Windows

V
a

lu
e

(d) Clock frequency stability

Figure 8: Accuracy of detecting OSes via individual features.

0.0

0.2

0.4

0.6

0.8

1.0

Android iOS Windows

V
a

lu
e

Precision Recall F-score

Figure 9: OS detection using combined method.

5. EVALUATION

5.1 Evaluation Metrics
We quantify the detection accuracy using three metrics: (i) pre-

cision, i.e., the fraction of traffic our scheme detected as tether-
ing (or have a given OS) is indeed tethering (or have that OS), (ii)
recall, i.e., the fraction of tethered traffic (or traffic from a given
OS) are correctly detected by our scheme, and (iii) F-score, which
is the harmonic mean of precision and recall (i.e., F − score =

2

1/precision+1/recall
). For all three metrics, larger values indicate

higher accuracy.

5.2 OS Detection Accuracy
We first evaluate how effective each individual feature is in de-

tecting OSes using our lab trace, in which we have the ground truth
on which OS generated each capture. We consider four OS specific
features in this evaluation: TTL, IP ID monotonicity, TCP window
scale, and clock frequency stability.

From Figure 8(a), we see that the precision of identifying Win-
dows via TTL feature is high, because only Windows sets default
TTL to 128. However, since Windows can also use 64 as its TTL,
the recall is low. Android and iOS do not use 128 as the default
TTL. When the TTL is not 128, the device is identified as Android
because the probability of being Android is highest as shown in
Table 2. Therefore, the recall of Android is one while recall and
precision of iOS are both zero.

iOS has unique behaviors for IP ID monotonicity and TCP win-
dow scale, and thus we see from Figure 8(b) and 8(c) that both
features identify iOS accurately. Although iOS devices are also
distinguishable by having unstable clock frequency, some of the
iOS packet captures in our lab trace are too short to reliably com-
pute clock frequency. Therefore, we see from Figure 8(d) that the
recall of identifying iOS via clock frequency is low.

The benefit of combining multiple features via our probability-
based classifier is depicted in Figure 9. We see that our approach
accurately identifies the OSes of most machines. The improvement
is especially significant for identifying Android.

lab trace osdi06 sigcomm08

0.0

0.2

0.4

0.6

0.8

1.0

TTL
TS monotonicity

freq stdev

boot time stdev

OS detection

Combine

R
e
c
a
ll

maxmax

(a) Precision > 0.95

0.0

0.2

0.4

0.6

0.8

1.0

TTL
TS monotonicity

freq stdev

boot time stdev

OS detection

Combine

R
e
c
a
ll

max

(b) Precision > 0.8

Figure 10: The recall of individual and combined technique

when the precision is fixed to 0.95 and 0.8.

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.3 0.6 0.9

P
re

c
is

io
n
 /
 R

e
c
a
ll

Classifier threshold

Precision
Recall

F-score

(a) our lab trace

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.3 0.6 0.9

P
re

c
is

io
n
 /
 R

e
c
a
ll

Classifier threshold

Precision
Recall

F-score

(b) OSDI’06

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.3 0.6 0.9

P
re

c
is

io
n
 /
 R

e
c
a
ll

Classifier threshold

Precision
Recall

F-score

(c) SIGCOMM’08

Figure 11: Average detection accuracy as the classifier thresh-

old is varied in our probability-based classifier.

5.3 Tethering Detection Accuracy
Next we evaluate the accuracy of applying the OS fingerprint-

ing technique to tethering detection. Figure 10 shows combining
multiple features using our probability-based classifier. We fix the
targeted precision to be 0.95 and 0.80, and evaluate the average
and maximal recall of detecting tethering via individual features
and our probability-based classifier (depicted as “combine” in Fig-
ure 10).

Figure 10 provides a few interesting insights. First, our probability-
based classifier consistently outperforms the schemes using indi-
vidual features. Second, the clock frequency and boot time features
are not effective in OSDI’06 and SIGCOMM’08 traces, because (i)
the ratios of packets with TCP timestamps in two traces are small,
and thus the clock frequency and boot time can be estimated in
only a small number of devices, and (ii) the two traces have mostly
short flows, which increase the error in clock frequency estima-
tion. Moreover, we observe that OS detection is very effective in
our traces but not in the other two. The main reason is that we do
not have the ground truth on which OSes were used in OSDI’06
and SIGCOMM’08 traces and the probabilities learned from our
lab trace may not work well for other traces.

The results shown in Figure 10 also demonstrate the trade-off be-
tween precision and recall in detecting tethering via our probability-
based classifier. When we relax the target precision to 0.8, the re-
call of our probability-based classifier increases from 0.68∼0.85 to
0.78∼0.89. As we expect, the recall measurement will be higher
when a lower precision is targeted.

In addition, Figure 11 shows the trade-off between precision and
recall by varying the classification threshold. The probability-based
classifier detects tethering when the probability is larger than a clas-
sification threshold. Determining the threshold itself is a challeng-
ing problem [12,34]. A higher threshold implies higher confidence
on whether the device is tethering. Therefore, when we increase the
classifier threshold, the precision becomes higher while the recall
becomes lower.

Next we compare our probability-based classifier with two well-
known classifiers: linear regression and decision tree. In linear
regression, each feature takes its actual value (e.g., the number of
distinct TTL, clock frequency standard deviation), and tethering

177

probability-based decision tree linear regression

0.0

0.2

0.4

0.6

0.8

1.0

P
re

cisio
n

R
e
ca

ll

F
1
-sco

re

M
e

a
n

(a) our lab trace

0.0

0.2

0.4

0.6

0.8

1.0

P
re

cisio
n

R
e
ca

ll

F
1
-sco

re

M
e

a
n

(b) OSDI’06

0.0

0.2

0.4

0.6

0.8

1.0

P
re

cisio
n

R
e
ca

ll

F
1
-sco

re

M
e

a
n

(c) SIGCOMM’08

Figure 12: Comparison between decision tree and regression-

based classifiers.

is presented as a binary indicator. The linear regression classifier
learns the weight of each feature from the training data such that
the weighted sum of all features best approximates the binary teth-
ering indicator. We estimate the weight by solving a linear inverse
problem using min L2, which performs the least square fit. For the
decision tree, we use an existing implementation from Weka [21].
For all three schemes, we select the classifier thresholds to max-
imize their F-scores. As we see from Figure 12, our probability-
based classifier consistently outperforms decision tree by 5∼21%
and linear regression by 6∼18% in the F-score measurement.

6. DISCUSSION

Other Features: Different OSes adopt different TCP congestion
avoidance algorithms, referred to as TCP flavors. For example,
OSX and iOS use New Reno [22] by default; Android and Linux
use CUBIC [20] since kernel 2.6.19; Linux up to kernel 2.6.18
uses BIC [40]; Windows XP and earlier versions use New Reno;
and Windows Server 2008 uses Compound TCP [38]. TCP flavors
can be inferred by estimating the congestion window and how it
changes in response to losses and RTT [26, 33]. It can be incor-
porated into our probability-based approach by adding another fea-
ture: Pr(OSx|flavory) from the training data. It is challenging
to accurately infer TCP flavor from mobile network traces, because
most flows are short and the throughput is usually limited by the
lack of data to send [26] instead of congestion control algorithms.

The destination of the connection can also be used to identify
OSes. For example, if a device connects to a Windows Update
server, it is likely to be Windows. Similarly, connecting to Google
Play or Apple App Store can also suggest Android and iOS devices.

Network Time Protocol (NTP) can also reveal the OS and teth-
ering usage. The intervals between NTP messages vary from 64s
to 1024s [3]. An interval less than 64s or changing dramatically
can imply tethering. Besides, the default NTP servers are differ-
ent across OSes and can be used to identify OSes (e.g., time.
windows.com or time.apple.com).

Tracking intervals between DNS queries sent from an IP address
to the same hostname may be useful for tethering detection. NTP
and DNS queries have not been considered for OS and device fin-
gerprinting in the existing work. We will explore their effectiveness
in the future work.

Hiding the Tethering Usage: Some tethering tools (e.g. tether-
way [36], MyWi [1], PdaNet [4], etc.) camouflage the tethered
traffic by changing packet headers, manipulating flow behaviors,
or using VPN. The cost of camouflaging includes slowing down
the traffic and consuming more power. Its cost will be higher as we
identify more features.

In addition, some features are hard to be camouflaged, such as
TCP flavors. Although we do not include this feature in our eval-
uation, our probability-based method is flexible and can easily in-
corporate new features.

Evaluation with a Larger Data Set: We apply our probability-
based tethering detection method in a one week long campus trace.
The trace includes 297, 000 flows collected from 12, 600 users at
the beginning of 2013. We use the first day trace for training and
trace of remaining days for testing. The tethering detection results
are similar to those reported in Section 5.3: the precision is 0.86,
the recall is 0.74, and the F-score is 0.8.

7. RELATED WORK
TCP/IP fingerprinting has been an active research area. Active

probing of targeted system is adopted by [2,5,19,27,30,33,41,43].
Passive and hybrid schemes are studied as well [18, 26]. Inferring
tethering via exploiting different TCP/IP fingerprinting features has
been extensively studied [2, 9, 13, 28, 29, 31, 35, 39, 43]. Combin-
ing multiple features improves the inferring accuracy. The p0f
tool [43] includes five features in TCP/IP header as its signatures in
OS detection. The Nmap tool [2] uses a set of nine tests to detect
different OSes from network packets. Further optimization tech-
niques to combining multiple features are studied [10, 37]. Our
work complements the previous efforts by (i) providing the first
comprehensive quantitative study on the effectiveness of passive
TCP/IP fingerprinting to OS and tethering detection; (ii) identify-
ing new features for OS fingerprinting and tethering detection; and
(iii) designing a method to effectively combine multiple features.

There are other techniques for detecting OSes or tethering activi-
ties, which utilize information in high level protocols, such as appli-
cation layer features [11,24] and web browser fingerprints [8,16,17,
42]. Unlike TCP/IP fingerprinting, those techniques require Deep
Packet Inspection (DPI). DPI not only has non-negligible over-
head in packet processing, but also raises privacy concerns when
adopted by service providers [6]. Besides, increasing adoption of
encryption makes high level protocol information unavailable to
use. Due to those practical issues, our study focuses on the features
in TCP/IP headers.

8. CONCLUSION
This paper develops and evaluates a methodology that uses sev-

eral features in network traffic for identifying the OS on the send-
ing device. This OS fingerprinting can be used for detecting teth-
ering and more generally deployment of network address transla-
tion. The proposed methodology includes a probabilistic approach
to combine multiple features to enhance detection accuracy. We
evaluate the effectiveness of individual features and find TTL, TCP
timestamp, and TCP window size scale factor are more accurate,
while clock frequency and boot time are less accurate. Further-
more, the proposed probabilistic approach significantly improves
the accuracy over using individual features. It can detect iOS sys-
tems deterministically, and detect Android andWindows with 100%
precision and 0.8 recall. The recall of tethering detection is 0.68∼0.85
when the target precision is 0.95, and 0.78∼0.89 when the target
precision is 0.8.

Acknowledgements

We are grateful to our shepherd Theophilus Benson and anonymous
reviewers for their constructive feedback.

178

time.windows.com
time.windows.com
time.apple.com

9. REFERENCES
[1] MyWi. http://intelliborn.com/mywi.html.

[2] Nmap Security Scanner. http://nmap.org/.

[3] ntpd(8) - Linux man page. http://linux.die.net/man/
8/ntpd.

[4] PdaNet+. http://pdanet.co/.

[5] Snacktime: A Perl Solution for Remote OS Fingerprinting.
http://www.planb-security.net/wp/snacktime.

html.

[6] British Internet provider drops online tracking plans, 2009.
http://goo.gl/FHtct2.

[7] CRAWDAD data set umd/sigcomm2008. Downloaded from
http://crawdad.org/umd/sigcomm2008/, Mar. 2009.

[8] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses,
F. Piessens, and B. Preneel. FPDetective: dusting the web for
fingerprinters. In Proc. of ACM CCS, 2013.

[9] S. M. Bellovin. A technique for counting NATted hosts. In
Proc. of ACM IMW, 2002.

[10] R. Beverly. A Robust Classifier for Passive TCP/IP
Fingerprinting. In Proc. of PAM, 2004.

[11] J. Bi and J. Wu. Application Presence Information based
Source Address Transition Detection for Edge Network
Security and Management. IJCSNS International Journal of
Computer Science and Network Security, 7(1), Jan. 2007.

[12] V. Brik, S. Banerjee, M. Gruteser, and S. Oh. Wireless device
identification with radiometric signatures. In Proc. of ACM
MobiCom, 2008.

[13] E. Bursztein. Time has something to tell us about network
address translation. In Proc. of NordSec, 2007.

[14] R. Chandra, V. Padmanabhan, and M. Zhang. CRAWDAD
data set microsoft/osdi2006 (v. 2007-05-23). Downloaded
from http://crawdad.org/microsoft/osdi2006/,
May 2007.

[15] CRAWDAD. http://crawdad.cs.dartmouth.edu.

[16] P. Eckersley. How unique is your web browser? In Proc. of

PETS, 2010.

[17] E. Flood and J. Karlsson. Browser Fingerprinting. Master’s
thesis, University of Gothenburg, May 2012.

[18] F. Gagnon and B. Esfandiari. A Hybrid Approach to
Operating System Discovery Based on Diagnosis. Int. J.
Netw. Manag., 21(2):106–119, Mar. 2011.

[19] L. G. Greenwald and T. J. Thomas. Toward undetected
operating system fingerprinting. In Proc. of USENIX WOOT,
2007.

[20] S. Ha, I. Rhee, and L. Xu. CUBIC: A new TCP-friendly
high-speed TCP variant. ACM SIGOPS Operating Systems

Review, 42(5), July 2008.

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: An update.
SIGKDD Explor. Newsl., 11(1):10–18, Nov. 2009.

[22] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The
NewReno modification to TCP’s fast recovery algorithm,
2012. RFC 6582: http://tools.ietf.org/html/
rfc6582.

[23] Ingrid Lunden. Gartner: Device shipments break 2.4b units
in 2014, tablets to overtake PC sales in 2015. http://
goo.gl/1kUHwm.

[24] Y. Ishikawa, N. Yamai, K. Okayama, and M. Nakamura. An
Identification Method of PCs behind NAT Router with Proxy
Authentication on HTTP Communication. In Proc. of IEEE
SAINT, 2011.

[25] V. Jacobson, R. Braden, and D. Borman. TCP extensions for
high performance, 1992. RFC 1323: http://tools.ietf.
org/html/rfc1323.

[26] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley. Inferring TCP Connection Characteristics
through Passive Measurements. In Proc. of IEEE
INFOCOM, 2004.

[27] A. Khakpour, J. Hulst, Z. Ge, A. Liu, D. Pei, and J. Wang.
Firewall Fingerprinting. In Proc. of IEEE INFOCOM, 2012.

[28] T. Kohno, A. Broido, and K. Claffy. Remote Physical Device
Fingerprinting. In IEEE Symposium on Security and Privacy,
2005.

[29] G. Maier, F. Schneider, and A. Feldmann. NAT Usage in
Residential Broadband Networks. In Proc. of PAM, 2011.

[30] J. P. S. Medeiros, A. M. Brito, and P. S. M. Pires. A new
method for recognizing operating systems of automation
devices. In Proc. of IEEE ETFA, 2009.

[31] S. B. Moon, P. Skelly, and D. Towsley. Estimation and
removal of clock skew from network delay measurements. In
Proc. of IEEE INFOCOM, 1999.

[32] NetMarketShare. Operating system market share.
http://www.netmarketshare.com/operating-system-market-
share.aspx.

[33] J. Pahdye and S. Floyd. On Inferring TCP Behavior. In Proc.
of ACM SIGCOMM, 2001.

[34] J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and
D. Wetherall. 802.11 user fingerprinting. In Proc. of ACM
MobiCom, 2007.

[35] P. Phaal. Detecting NAT devices using sflow. http://www.
sflow.org/detectNAT/.

[36] S. Schulz, A.-R. Sadeghi, M. Zhdanova, H. Mustafa, W. Xu,
and V. Varadharajan. Tetherway: a framework for tethering
camouflage. In Proc. of ACM WISEC, 2012.

[37] K. Straka and G. Manes. Passive Detection of NAT Routers
and Client Counting. Advances in Digital Forensics II,
222:239–246, 2006.

[38] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound
TCP approach for high-speed and long distance networks. In
Proc. of IEEE INFOCOM, 2006.

[39] A. Tekeoglu, N. Altiparmak, and A. S. Tosun.
Approximating the Number of Active Nodes Behind a NAT
Device. In Proc. of IEEE ICCCN, 2011.

[40] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion
Control for Fast, Long Distance Networks. In Proc. of IEEE
INFOCOM, 2004.

[41] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu. TCP
Congestion Avoidance Algorithm Identification. In Proc. of
IEEE ICDCS, 2011.

[42] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host
fingerprinting and tracking on the web: Privacy and security
implications. In Proc. of NDSS, 2012.

[43] M. Zalewski. P0f. http://lcamtuf.coredump.cx/
p0f3/.

179

http://intelliborn.com/mywi.html
http://nmap.org/
http://linux.die.net/man/8/ntpd
http://linux.die.net/man/8/ntpd
http://pdanet.co/
http://www.planb-security.net/wp/snacktime.html
http://www.planb-security.net/wp/snacktime.html
http://goo.gl/FHtct2
http://crawdad.org/umd/sigcomm2008/
 http://crawdad.org/microsoft/osdi2006/
http://crawdad.cs.dartmouth.edu
http://tools.ietf.org/html/rfc6582
http://tools.ietf.org/html/rfc6582
http://goo.gl/1kUHwm
http://goo.gl/1kUHwm
http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/rfc1323
http://www.sflow.org/detectNAT/
http://www.sflow.org/detectNAT/
http://lcamtuf.coredump.cx/p0f3/
http://lcamtuf.coredump.cx/p0f3/

	Introduction
	Trace Description
	OS Fingerprinting
	Features
	Using the Features
	Combining Features

	Tethering Detection
	Features
	Using the Features
	Combining the Features

	Evaluation
	Evaluation Metrics
	OS Detection Accuracy
	Tethering Detection Accuracy

	Discussion
	Related Work
	Conclusion
	References

