
Removal Policies in Network Caches for World-Wide Web Documents

Stephen Williams, Marc Abrams (Computer Science, Virginia Tech, Blacksburg, VA 24061-0106)

Charles R. Standridge (Industrial Eng., FAMU-FSU College of Eng., Tallahassee, FL 32310)

Ghaleb Abdulla, Edward A. Fox (Computer Science, Virginia Tech, Blacksburg, VA 24061-0106)

fwilliams,abramsg@cs.vt.edu, stand@eng.fsu.edu, fabdulla,foxg@cs.vt.edu

Abstract

World-Wide Web proxy servers that cache documents can
potentially reduce three quantities: the number of requests
that reach popular servers, the volume of network tra�c
resulting from document requests, and the latency that an
end-user experiences in retrieving a document. This paper
examines the �rst two using the measures of cache hit rate
and weighted hit rate (or fraction of client-requested bytes
returned by the proxy). A client request for an uncached
document may cause the removal of one or more cached
documents. Variable document sizes and types allow a rich
variety of policies to select a document for removal, in con-
trast to policies for CPU caches or demand paging, that
manage homogeneous objects. We present a taxonomy of
removal policies. Through trace-driven simulation, we de-
termine the maximum possible hit rate and weighted hit
rate that a cache could ever achieve, and the removal policy
that maximizes hit rate and weighted hit rate. The ex-
periments use �ve traces of 37 to 185 days of client URL
requests. Surprisingly, the criteria used by several proxy-
server removal policies (LRU, Hyper-G, and a proposal by
Pitkow and Recker) are among the worst performing crite-
ria in our simulation; instead, replacing documents based on
size maximizes hit rate in each of the studied workloads.

1 Introduction

It is ironic that what is arguably the most popular applica-
tion of the Internet, namely the World-Wide Web (WWW
or \Web"), is inherently unscalable. The protocol underly-
ing the Web, HTTP [7], is designed for a setting in which
users access a large body of documents, each with a low vol-
ume of readership. However the Web today is characterized
by high volume of access to popular Web pages. Thus iden-
tical copies of many documents pass through the same net-
work links. This has several costs: network administrators
see growing utilization that requires bandwidth upgrades,
Web site administrators see growing server utilization that
requires upgrading or replacing servers, and end users see
longer latency for document requests to be satis�ed.

These problems can be alleviated by widespread migra-
tion of copies of popular documents from servers to points
closer to users. Migration can follow a distribution model,
in which servers control where document copies are stored,
or a cache model, in which copies automatically migrate in
response to user requests. Distribution is popular with com-
mercial users that want to protect material with copyrights,
and will only trust certain sites to keep copies of such mate-
rial. However the cache model is the most popular method
to date: caching at a server (e.g., [10]), caching at a client
(e.g., caches built into Web browsers), and caching in the
network itself through so-called proxy servers (e.g., [11]).
This paper examines the last of these.

In the following, a document is any item retrieved by a
Universal Resource Locator (URL), such as a dynamically
created page or an audio �le. We call a document on a
Web server an original, and a document on a cache a copy.
Consider a client con�gured to use proxy P that requests
document D from Web server S. The client sends an HTTP
GET request message for URL http://S/D to P . Three
cases are now possible: (1) P has a copy of D that it esti-
mates is consistent with the original, (2) P has a copy that
is considered inconsistent, and (3) P does not have a copy.
(Various algorithms not considered here are used to estimate
consistency.) In case (1), P serves the local copy; this is a
hit. In (2), P sends an HTTP conditional GET message to
S containing the Last-Modified time of its copy; if the orig-
inal was modi�ed after that time, S replies to P with the
new version (a miss). Otherwise, P serves the local copy;
this is also a hit. In (3), P either forwards the GET message
to another proxy server (as in [12]) or to S (also a miss).

Proxy caches can dramatically reduce network load. For
example, in one of the �ve Web tra�c workload traces used
in this paper, representing remote client requests for doc-
uments on a network backbone in the Computer Science
Department at Virginia Tech, 88% of the bytes transferred
in a 37 day measurement period were audio. This surprising
result arose because a student created what has been recog-
nized in the WWW as the authoritative Web site for a pop-
ular British recording artist. Unfortunately, every request
worldwide to listen to a song on this Web site consumes
network resources from the client through the Internet to
the university, then over the campus backbone, and �nally
through the department backbone to the server. In contrast,
a campus-wide cache located at the campus's connection to
the Internet would eliminate up to 89.2% of the bytes sent
in HTTP tra�c in the department backbone.

However, proxy caches are not a panacea. First, caching
only works with staticly created and infrequently changing

documents. Dynamically created documents, which are be-
coming more popular with commercial content providers,
currently, cannot be cached. Second, HTTP 1.0 does not
provide a reliable method to identify whether a Web docu-
ment is cacheable (e.g., whether or not it is script generated).
Third, there is no accepted method in the Web of keep-
ing cached copies consistent. Finally, copyright laws could
legislate caching proxies out of existence, without proper
accounting methods. Some possible approaches to caching
dynamic documents are listed in the Conclusions (x5).

Caching proxies can reduce three di�erent criteria: the
number of requests that reach servers, the volume of network
tra�c resulting from document requests, and the latency
that an end-user experiences in retrieving a document. We
consider the �rst two in this paper. Arlitt and Williamson [5]
also consider the �rst two, and observe that \optimizing one
criterion does not necessarily optimize the other. The choice
between the two depends on which resource is the bottle-
neck: CPU cycles at the server, or network bandwidth."

The performance measure we use for the criteria of num-
ber of requests reaching a server is hit rate (HR), or the
number of requests satis�ed by the cache. For the crite-
ria of network volume, several measures are possible. With
proxy caching, an equal number of bytes will be sent to the
client no matter how caching is done; the only question is
how far those bytes have to travel (e.g., from the proxy or
from the server). Possible measures are the number of bytes
not sent by the server, the number of packets not sent by
the server, and the reduction in the distance that the pack-
ets traveled (e.g., hop count). In this paper we consider the
�rst measure | the number of bytes not sent | using the
complementary measure of the fraction of client-requested
bytes returned by the proxy, weighted hit rate (WHR). The
workload traces we use have insu�cient information to de-
termine packets not sent or reduction in distance. Finally,
for the criteria of end-user latency, a measure such as trans-
fer time avoided is appropriate. However our traces have
insu�cient information on timing of requests and responses
to determine transfer time. We can only say that if HR and
WHR are high, and the proxy is not saturated by requests,
than the user will experience a reduction in latency.

We study cache performance by trace-driven simulation
of a proxy cache. Considered in the �rst experiment is the
maximum values of HR and WHR for a given workload,
which is obtained by simulating an in�nite size cache. This
represents the inherent \concentration" (as de�ned in [5])
in URL references by clients, arising when multiple clients
request the same URL, or \temporal locality" by a single
client that requests the same URL multiple times.

Real caches have �nite size, and thus a request for a
non-cached document may cause the removal of one or more
cached documents. The second experiment considers the ef-
fect of removal policies on HR, WHR, and cache size. (We
use the term \removal" policy rather than \replacement"
because a policy might be run periodically to remove docu-
ments until free space reaches a threshold [see x1.3]. Strictly
speaking, the policy is just removing cached documents.)

Unlike CPU caches or virtual memory, which cache ob-
jects of identical size, documents in a proxy cache may have
widely varying sizes | from text �les of a few bytes to videos
of many megabytes. Also document type, such as audio or
image, may be considered by a removal policy, in contrast
to CPU caches, which treat all data as homogeneous. On
the other hand, proxy caches are simpler in that there are
never \dirty" documents to write back.

We could directly compare removal policies by simulat-

ing various removal policies, such as the �rst-in, �rst-out
(FIFO) [16]; least recently used (LRU) [16]; LRU-MIN [1],
a variant of LRU that considers document size; least fre-
quently used (LFU) [16]; the Hyper-G [3] server's policy;
and the policy proposed in [13], denoted Pitkow/Recker.
But the policies are ad hoc in the sense that little consen-
sus exists among the policies on what factors to consider in
deciding which document to remove, or their relative impor-
tance: document size, time the document entered the cache,
time of last access, number of references, and so on.

Rather than directly compare such policies, the method-
ology in this paper is to develop a taxonomy of removal
policies that views them as sorting problems that vary in
the sorting key used. Policies in the literature represent just
a few of the many possibilities, so our study yields insight
into policies that no one has yet proposed.

Another issue explored is the e�ectiveness of second level
caches. Widespread deployment of caching proxies within a
large organization will lead to some caches handling misses
from other caches. In experiment three we �nd the theoret-
ical maximum HR and WHR of a second level cache.

The fourth and �nal experiment considers a question
raised in [10]: Video and audio �les often represent a small
fraction of requests in a workload, but due to their large �le
sizes may represent a majority of bytes transferred. Thus
large video and audio �les could displace many smaller doc-
uments of other types in a cache. Should a cache be par-
titioned by media type? The fourth experiment considers
this question for the workload described earlier with a high
volume of audio bytes transferred.

1.1 De�nition of a Hit in Simulation

Earlier we de�ned a hit as a URL reference that goes to
a cache that has a copy of the requested document that
is consistent with the Web server named in the URL. Be-
cause three of the �ve studied workloads are derived from
common-format proxy log �les, there is no data on �le mod-
i�cation times. Instead, the simulation estimates whether a
cached copy is consistent in the following manner.

If a URL appears twice in a trace �le, but with di�erent
sizes, then the named document must have changed between
the two references, and hence the cached document copy is
inconsistent with the Web server. Therefore during simu-
lation, a cache hit is a match in both URL and size. The
case of the size of a given URL changing occurs infrequently
in our traces { the fraction of non-dynamically generated
URLs in each trace used here that occurred earlier in the
trace but with a di�erent size ranges from 0.5% to 4.1%.

However, a document could be modi�ed between succes-
sive occurrences of a URL in a trace, even though its size
remains the same. Examples of this include a minor update
to a text document that does not change its length, and a
replacement inline GIF image in a document whose charac-
teristics are identical (e.g., dimension, color frequency, color
depth, etc). In such cases our simulation will mistakenly
regard the cached copy as consistent. The mistake will not
occur often, because all but the most trivial changes to text
�les and almost any change to a non-text �le that is com-
pressed will change the document length. To assess the like-
lihood of the mistake, we examined two workloads (denoted
later as BR and BL) for which the trace contained the HTTP
Last-Modified �eld and found that the �le was modi�ed in
only 1.3% of references in which the �le size remained the
same. Thus our simulation would incorrectly calculate a hit
when a real cache would miss in 1.3% of the references for

two of the �ve workloads used here.

1.2 Removal Algorithms Studied

As stated above, our methodology for comparing removal
policies is a taxonomy de�ned in terms of a sorting proce-
dure.

A removal policy is viewed as having two phases. First, it
sorts documents in the cache according to one or more keys
(e.g., primary key, secondary key, etc.). Then it removes
zero or more documents from the head of the sorted list until
a criteria is satis�ed. In this paper, the criteria is that the
amount of free cache space equals or exceeds the incoming
document size. (Alternatives are considered in x1.3.) The
keys studied here are listed in Table 1.

Consider a cache of size 42.5kB. Table 2 exempli�es re-
moval policies viewed as sorting algorithms. The upper ta-
ble contains a sample trace for URLs, denoted A�H. After
time 15, the cache is 100% full. Suppose a previously unseen
URL with size 1.5kB, denoted I, is referenced just after time
15. Which document(s) will be removed to accommodate I?

The middle table lists the values of each key from Table 1
just after time 15. The lower table shows the sorted list
that would result from several combinations of primary and
secondary keys. Multiple �les listed between two vertical
lines in 2 indicates instances where the primary key value
is equal; the numbers are then ordered by the secondary
key. Asterisks denote which documents are removed. For
example, LRU (equivalent to primary key of ATIME) will
�rst remove document B, freeing up 1.2kB of cache space,
but this is insu�cient for document I of size 1.5kB. LRU
then removes E to free 8kB more, and I can now be loaded.

Certain combinations of the sorting keys in Table 1 cor-
respond to removal policies from the literature, as shown in
Table 3. FIFO is equivalent to sorting documents by in-
creasing values of the time each document entered the cache
(e.g., ETIME), so that the removal algorithm removes the
document with the smallest cache entry time (e.g., the �rst
of the set to enter the cache). LRU is equivalent to sorting
by last access time (ATIME). LFU is equivalent to sorting
by number of references (NREF). The Hyper-G policy starts
by using LFU (i.e., by using NREFS as the primary key),
then breaks ties by using LRU (i.e., last access time as the
secondary key), and �nally size as the tertiary key. (In re-
ality, before considering these three keys, Hyper-G uses a
fourth binary key indicating if the document is a Hyper-G
document, but our traces contain no Hyper-G documents.)

Two policies cannot be represented exactly in Table 3.
First, the Pitkow/Recker algorithm uses a di�erent primary
key depending on whether or not all cached documents have
been accessed in the current day (e.g., DAY(ATIME) is the
current day). But our study will explore both primary keys
used by the Pitkow/Recker policy. Also, the Pitkow/Recker
policy is also run at the end of the day; this is considered in
x1.3. The other policy that cannot be represented exactly is
LRU-MIN. LRU-MIN �rst tests whether there are any doc-
uments equal or larger in size than the incoming document;
if there is, choose one of them by LRU. Otherwise, consider
all documents larger than half the size of the incoming doc-
ument; if there is, choose one of them by LRU. If not, repeat
using one quarter the document size, and so on. LRU-MIN
is like using blog

2
(SIZE)c as the primary key (to obtain fac-

tors 1/2, 1/4, : : :) and ATIME as the secondary key in the
sense that large �les tend to be removed from the cache
�rst, followed by LRU to select among similar sized �les.
However, they are not identical because in blog

2
(SIZE)c the

factors are not based on the incoming �le size; blog
2
(SIZE)c

will tend to discard larger �les more often than LRU-MIN.
Therefore results on the combination of blog

2
(SIZE)c and

ATIME later in the paper examine the value of combining
size and LRU, not the speci�c performance of LRU-MIN.

Table 1 contains six sorting keys: SIZE, blog
2
(SIZE)c,

ETIME, ATIME, DAY(ATIME) and NREF. Our method-
ology is an experiment design with three factors | primary
key, secondary key, and workload | and two response vari-
ables | hit rate and weighted hit rate. An equal primary
and secondary key is useless. We additionally use random
replacement as a secondary key. We always use random as
a tertiary key, because we expect that a tie on both the
primary and the secondary key is very rare. This gives 36
combinations of primary and secondary keys, and thus 36
policies. By simulating each key combination, we identify
the most e�ective key combinations for our workloads.

1.3 Unexplored Removal Policies

This paper does not explore the implications of two policy
issues for removal policies: when to replace and how many
documents to remove. The question of when to run the
removal policy has been addressed in the following ways in
the literature:

On-demand: Run policy when the size of the requested
document exceeds the free room in a cache.

Periodically: Run policy every T time units, for some T .

Both on-demand and periodically: Run policy at the
end of each day and on-demand (Pitkow/Recker [13]).

The question of how many documents to remove from the
cache has been answered in two ways in policies proposed so
far. For on-demand, one policy is to stop when the free cache
area equals or exceeds the requested document size. For
periodic, one policy is to replace documents until a certain
threshold (Pitkow and Recker's comfort level) is reached.

We did not study these choices because our simulation
model is designed to compute document hit rates, but not
timings of accesses and removals. However, another reason
for not simulating the decisions is that there is no clear ad-
vantage of periodic removal.

The argument for using periodic removal is that if a
cache is nearly 100% full, then running the removal policy
only on-demand will invoke the removal policy on nearly all
document requests. If removal is time consuming, it might
create a signi�cant overhead. This overhead would be re-
duced by removing periodically until the free space reaches
a threshold. However, periodic removal also reduces hit rate
(because documents are removed earlier than required and
more are removed than is required for the minimal space
criteria).

Two arguments suggest that the overhead of simply using
on-demand replacement will not be signi�cant. First, the
class of removal policies in x1.2 maintains a sorted list. If
the list is kept sorted as the proxy operates, then the removal
policy merely removes the head of the list for removal, which
should be a fast and constant time operation. Second, a
proxy server keeps read-only documents. Thus there is no
overhead for \writing-back" a document, as there is in a
virtual memory system upon removal of a page that was
modi�ed since being loaded.

Table 1: Set of sorting keys that underlie the cache removal policies studied.

Key De�nition Sort Order
SIZE size of a cached document (in bytes) largest �le removed �rst
blog

2
(SIZE)c oor of the log (base 2) of SIZE one of the largest �les removed �rst

ETIME time document entered the cache oldest access removed �rst (FIFO)
ATIME time of last document access (recency [13]) least recently used �les removed �rst (LRU)
DAY(ATIME) day of last document access �les last accessed the most days ago removed �rst
NREF number of document references least referenced �les removed �rst (LFU)

Table 2: Example of removal policy for 42.5kB cache. Top: Sample trace. Middle: Key values at time 15+. Bottom:
Resultant sorted lists, with documents (indicated by asterisks) selected for removal to make room for new 1.5kB document.

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
URL A B C B B A D E C D F G A D H

Size(kB) 1.9 1.2 9 1.2 1.2 1.9 15 8 9 15 0.3 1.9 1.9 15 5.2

URL A B C D E F G H

SIZE 1.9 1.2 9.0 15.0 8.0 0.3 1.9 5.2
blog

2
(SIZE)c 10 10 13 13 13 8 10 12
ETIME 1 2 3 7 8 11 12 15
ATIME 13 5 9 14 8 11 12 15
NREF 3 3 2 3 1 1 1 1

Primary Key Secondary Key Sorted list of URLs at time 15+

SIZE ATIME D* C E H G A B F

blog
2
(SIZE)c ATIME E* C D H B G A F

ETIME n/a A� B C D E F G H

ATIME n/a B* E* C F G A D H

NREF ETIME E* F G H C A B D

2 Workloads Used in This Study

We can characterize tra�c traces used in Web studies in
the literature as server-based, client-based, or proxy-based.
A server-based study examines logs from individual Web
servers [5, 10, 13]. A client-based study examines logs col-
lected by instrumenting a set of Web clients [9]. Server-
based tra�c usually contains a much higher request rate
than client-based tra�c, but server-based tra�c is more ho-
mogeneous because it names a single server. We use a proxy-
based study, using a trace of the URL requests that reach a
certain point in a network, representing either a proxy log or
a tcpdump log. Proxy-based tra�c can be similar to server-
based tra�c if it monitors tra�c from clients throughout the
Internet to a few servers (e.g., workload BR below) or it can
be similar to client-based tra�c if it monitors tra�c from
clients within a network to servers anywhere in the internet
(e.g., workloads U, C, G, and BL below).

Five workloads are used in this study, all collected at
Virginia Tech. All of the workloads except BR represent the
usage patterns of 33 faculty/sta� members, 369 undergradu-
ates, and 90 graduate students in the Computer Science De-
partment. They used about 185 Ethernet-connected com-
puters and X-terminals in the department plus additional
computers in homes and dormitories, connected by SLIP
over modems or Ethernet. There are typically 12 HTTP
daemons running within the department. The Web is used

to make materials available to students from 20 undergrad-
uate and 10 graduate courses, such as syllabi, course notes,
assignments and tests.

Undergrad (U): About 30 workstations in an undergrad-
uate computer science lab for the 185 day period from
April to October 1995, containing 188,674 accesses
requiring transmission of 2.26GB of static web doc-
uments. This workload may be representative of a
group of clients working in close con�nes (i.e., within
speaking distance).

Classroom (C): Twenty-six workstations in a classroom
on which each student runs a Web browser during four
class sessions on multimedia per week, in spring 1995,
containing 13,127 accesses requiring transmission of
152.6MB of static web documents. This workload may
be representative of clients in an instructional setting,
which tend to make requests when asked to do so by
an instructor.

Graduate (G): A popular time-shared client used by grad-
uate computer science students, representing at least
25 users, containing 45,400 accesses requiring trans-
mission of 555.2MB of static web pages for most of the
spring 1995 semester. This workload may be represen-
tative of clients in one department dispersed through-
out a building in separate or in common work areas.

Table 3: Removal policies from the literature, de�ned by equivalent sorting procedures.

Key 1 Key 2 Key 3
Policy Name Value Removal Order Value Order Value Order
FIFO ETIME Remove smallest n/a n/a n/a n/a
LRU ATIME Remove smallest n/a n/a n/a n/a
LFU NREFS Remove smallest n/a n/a n/a n/a
Hyper-G NREF Remove smallest ATIME smallest SIZE largest
Pitkow/Recker If DAY(ATIME)6=today n/a n/a n/a n/a

then Key1=DAY(ATIME), Remove smallest
else Key1=SIZE, Remove largest

Remote Client Backbone Accesses (BR): Every URL
request appearing on the Ethernet backbone of domain
.cs.vt.edu with a client outside that domain naming a
Web server inside that domain for a 37 day period in
September and October 1995, representing 227,210 re-
quests requiring transmission of 9.38GB of static Web
pages. This workload may be representative of a few
servers on one large departmental LAN serving docu-
ments to world-wide clients.

Local Client Backbone Accesses (BL): Every URL re-
quest appearing on the Computer Science Department
backbone with a client from in the department, nam-
ing any server in the world, for a 37 day period in
September and October 1995, representing 91,188 ac-
cesses requiring transmission of 641.8MB of static Web
pages. The requests are for servers both within and
outside the .cs.vt.edu domain.

Workloads G and C are identical to those used in [1],
while workload U in [1] is a subset of workload U used here.

There are a few caveats in the interpretation of our data
based on these workloads. Only workload U represents ex-
actly the requests that a single proxy would cache, because
it is a trace from an operational caching proxy acting as a
�rewall and because no Web servers ran on the network to
which the clients were connected. Workload C is represen-
tative of a proxy that is positioned within a classroom to
serve student machines in the classroom. It would be rea-
sonable for a proxy to cache all requests, even on-campus
requests, because there are no servers in the room, and even
on-campus requests go to a di�erent campus building in a
di�erent sub-domain. Thus results for workload C are prob-
ably representative of a real proxy's performance.

However results for workloads BR, BL, and G are upper
bounds for what real proxies would experience, because a
real proxy would probably not cache requests from clients
in .cs.vt.edu to servers in .cs.vt.edu. In particular, workload
BR is representative of a cache that is positioned at the point
of connection of the Virginia Tech campus to the Internet.
Such a cache is useful because it avoids consuming band-
width on the campus backbone and within the .cs.vt.edu
sub-domain. However, 29% of the client requests in the
workload are from clients inside the vt.edu domain, which
would not be cached by a proxy in this position. In work-
loads BL and G, a cache would be positioned at the con-
nection from the .cs.vt.edu network to the campus (.vt.edu)
backbone. However in BL and G a majority of cache hits
are to local servers, and hence would not be cached.

2.1 Workload Collection Procedure

Workloads U, C, and G were collected using a CERN proxy
server. Mosaic clients in workload G and Netscape clients
in workload C were con�gured to point to a proxy server
running within domain .cs.vt.edu. Workload C client ma-
chines were regularly checked to ensure the proxy pointers
were in place, whereas workload G clients were unable to
modify the proxy pointers. Workload U clients, running on
Unix workstations within a lab, were required to point to a
CERN proxy server running on a �rewall.

Workloads BR and BL were collected at the same time
as follows: We ran tcpdump on our department backbone
to record the pre�x of the data �eld of all packets that
list TCP port 80 as either endpoint of a connection. This
trace is then passed through a �lter (available from http://-
www.cs.vt.edu/~chitra/www.html) that decodes the HTTP
packet headers and generates a log �le of all non-aborted
document requests in the \common log format" used by
NCSA and CERN servers, augmented by additional �elds
representing header �elds not present in common format
logs. (The use of the common log format allows our traces
to be post-processed by various programs developed for log
�le analysis.) This collection method is transparent, simple
to use because it requires no modi�cation of user preferences
or source code of Web clients, and comprehensive in that it
collects all HTTP packets that appear on our backbone.

2.2 Workload Characteristics

Simulation results depend on the traces used as input; hence
this section characterizes the traced workloads.

Workloads U, G, and C have average request rates under
2000 per day for spring and fall, although the request rate
in U soared to about 5000 per day at the beginning of fall
semester. The combined BL and BR workloads represent
3000 to 6000 requests per day.

Table 4 shows the distribution of �le types arising in each
workload, listed by fraction of references and by fraction of
bytes transferred. File types are grouped by �lename exten-
sion (e.g., �les ending in .gif, .jpg, .jpeg, etc. are considered
\graphics"). Those �les whose �lename extension do not �t
into one of the other categories form category \unknown."

The most frequently requested document type was graph-
ics, followed by text (including HTML) in all workloads but
one (namely C), where text was �rst and graphics second.
In contrast, there was much more diversity in �le type distri-
bution by number of bytes transferred: in workloads U and
BL graphics and text accounted for most bytes transferred
(78% and 76%, respectively), but graphics and video ac-
count for 74% of the bytes transferred in workload C, while

Table 4: File type distributions for workloads used, expressed as percentage of references and bytes transferred.

U G C BR BL
File type %Refs %Bytes %Refs %Bytes %Refs %Bytes %Refs %Bytes %Refs %Bytes

Graphics 53.00 47.43 51.45 35.39 40.78 35.42 61.66 8.09 51.13 46.26
Text/html 41.46 31.05 45.23 26.56 56.06 19.63 34.11 4.01 43.38 29.30
Audio 0.09 3.15 0.07 1.47 0.21 2.93 2.57 87.78 0.25 17.91
Video 0.19 18.29 0.35 25.77 0.34 39.15 0.00 0.04 0.04 3.58
CGI 0.13 0.08 0.15 0.12 0.12 0.03 0.22 0.00 0.95 0.05
Unknown 5.12 28.23 2.76 10.58 2.49 2.84 1.44 0.07 4.25 2.89

the byte tra�c to workload G was more evenly distributed
with graphics, text, and video accounting for 88% of the
bytes requested. Meanwhile audio and graphics represented
96% of the bytes transferred in workload BR.

The workloads illustrate a phenomena noted elsewhere
(e.g., [10]) that a media type may account for a small frac-
tion of references but a large fraction of bytes transferred.
For example, video is less than 1% of references in work-
loads G and C, but 26% and 39% of the bytes transferred,
respectively; audio is almost 3% of workload BR, but 88%
of bytes transferred (Table 4).

To better understand the distribution of requests, we
consider how many servers and unique URLs are requested
in the backbone local client tra�c (BL). Fig. 1 shows the
distribution of requests to the 2543 unique servers referenced
in the trace; 10 or fewer requests went to 1666 servers, while
100 or more requests went to only 84 servers (13 of the
top 20 servers were outside the \vt.edu" domain and would
bene�t from caching). Fig. 1 suggests that the number of
requests to each server in workload BL follows a Zipf distri-
bution. (In comparison, the requested URL in traces studied
elsewhere [4, 9] also follows a Zipf distribution.)

1

10

100

1000

10000

100000

1 10 100 1000 10000

N
o.

 R
eq

ue
st

s

Server: Ranked by number of requests

Backbone Local Traffic for Sep17-Oct31 1995

Figure 1: Distribution of requests for particular servers for
workload BL.

Many clients in Fig. 1 are requesting URLs from a few
servers, suggesting a high degree of concentration in work-
load BL. An alternate view is the distribution of number
of bytes transferred (Fig. 2), which represents the volume
of tra�c returned by servers. For the period September
17 through October 31, approximately 290 URLs of 36,771
unique URLs referenced returned 50% of the total requested
bytes.

The concentration of requests to and bytes transferred

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1 10 100 1000 10000 100000

N
o.

 B
yt

es

URL: Ranked by total bytes transferred

Backbone Local Traffic for Sep17-Oct31 1995

Figure 2: Distribution of bytes transferred for each URL for
workload BL.

from a few servers means that this workload contributes sub-
stantially to the packet arrival rate at certain Web servers.
Therefore, Figs. 1 and 2 suggest that widespread proxy
caching in networks with workloads like ours could dramat-
ically reduce the load on popular Web servers.

3 Experiment Objectives and Design

3.1 Objectives

Our experiments assess the following:

1. What is the maximum possible WHR and HR that
a cache could ever achieve, no matter what removal
policy is used?

2. How large must a cache be for each workload so that
no document is ever removed?

3. What removal policy maximizes weighted hit rate for
each workload over the collection period?

4. How e�ective is a second level cache?

5. Given a �xed amount of disk space for a cache, should
all document types be cached together, or should the
cache be partitioned by document type? (A parti-
tioned cache would avoid the situation where one very
large �le displaces all other �les in the cache [10], pos-
sibly increasing overall hit rate.)

3.2 Experiment Design

Table 5 de�nes four experiments. Experiment 1 addresses
objectives 1 and 2 in x3.1. To compute the maximum pos-
sible weighted hit rate, we simulate each workload with an
in�nite size cache. The cache size at the end of simulation
is then the size needed for no document replacements to
occur, denoted MaxNeeded, and addressing objective 2. Ex-
periment 2 addresses objective 3 through simulation of each
workload with all combinations of keys listed in Table 1 as
primary and secondary keys with two cache sizes, either 10%
or 50% of MaxNeeded. Experiment 3 addresses objective 4,
by simulating a two level cache, whose �rst-level size is either
10% or 50% of MaxNeeded, and using an in�nite size sec-
ond level cache to derive the maximum possible second level
hit rate. Finally, experiment 4 investigates objective 5 on a
cache whose size is 10% of MaxNeeded, using one workload,
BR. BR is the studied workload because 88% of the bytes
transferred are audio. In the experiment, the cache is di-
vided into two partitions, with one partition exclusively for
audio and the other for non-audio document types. The par-
tition size is varied so that the audio partition size is either
1/4, 1/2, or 3/4 of the whole cache size, with the non-audio
partition equal to the remainder. In all experiments, three
response variables are measured: hit rate, weighted hit rate,
and the maximum cache size needed during the simulation.

All experiments are initiated with an empty cache and
run for the full duration of the workload. The simulation
reports WHR and HR for each day separately. There is great
variation in daily hit rates; thus graphing the daily rates
produces curves with so much uctuation that it is di�cult
to see trends and compare curves. Therefore we apply a
7-day moving average to the daily hit rates before plotting.
We chose a one week period because it was large enough to
cover the typical \cycle" of activity without removing longer
term trends in access patterns. In particular, each plotted
point in a hit rate graph represents the average of the daily
hit rates for that day and the six preceding days. No point
is plotted for days zero to �ve, which are the days without
six preceding days.

4 Experiment Results

4.1 Experiment 1: Maximum Possible Hit Rate

Figures 3 to 7 show WHR and HR for workloads U, G, C,
BR, and BL. In each workload, HR ranges from 20% to just
over 98%, and WHR ranges from 12% to 98%. HR is usually
equal to or greater than WHR in workloads U, G, and C. In
workload BR, HR and WHR reach the same value.

Some seasonal variations are present in the longest trace
(workload U), in Fig. 3. The temporary drop in WHR and
HR around day 50 is the week between the spring and sum-
mer semesters. Around day 155 the hit rates permanently
decline; this is the start of the fall semester. New users
and a dramatic increase in the rate of accesses are the most
probable causes for the decline in hit rate.

In contrast to U, the observation periods for workloads
G and C are entirely contained in the spring semester. The
hit rates for workload G (Fig. 4) tend to increase over the
semester to a maximum between 80% and 90% (the sudden
drop from day 66 to day 71 is due to the \time-shared client"
machine being down). We expected workload C (Fig. 5) to
exhibit some of the highest rates, because in a classroom set-
ting students often follow the teacher's instructions in open-
ing URLs or following links. Instead, the graph shows hit
rates uctuate between extremes throughout the semester.

0

20

40

60

80

100

0 50 100 150 200

P
er

ce
nt

Days Since April 1

Infinite Cache Hit Rate for Undergrad Clients

Hit Rate

Weighted Hit Rate

Figure 3: Maximum achievable hit-rate for workload U.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

P
er

ce
nt

Days Since January 20

Infinite Cache Hit Rate for Graduate Clients

Hit Rate

Weighted Hit Rate

Figure 4: Maximum achievable hit-rate for workload G.

0

20

40

60

80

100

0 20 40 60 80 100

P
er

ce
nt

Days Since January 16

Infinite Cache Hit Rate for Classroom Clients

Hit Rate

Weighted Hit Rate

Figure 5: Maximum achievable hit-rate for workload C.

Table 5: Factor-level combinations for all experiments.

Levels
Factor Experiment 1 Experiment 2 Experiment 3 Experiment 4

Cache levels 1 1 2 1
L1 cache size in�nite 10, 50% of MaxNeeded 10, 50% of MaxNeeded 10% of MaxNeeded
L2 cache size n/a n/a in�nite n/a
Workloads U,G,C,BR,BL U,G,C,BR,BL U,G,C,BR,BL BR
Keys (Prim.,Sec.) n/a (All in Table 1, Random); (Best in Exp. 2, (Best in Exp. 2,

(blog
2
(SIZE)c, All in Table 1 Random) Random)

but blog
2
(SIZE)c)

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

P
er

ce
nt

Days Since September 16

Infinite Cache Hit Rate for Local Backbone Clients

Weighted Hit Rate Hit Rate

Figure 6: Maximum achievable hit-rate for workload BL.

(The horizontal lines in the curves of Fig. 5 arise because
classes met on four days each week, and there were no URLs
traced for the other three days each week. The class also,
occasionally, took �eld trips, reducing the number of collec-
tion days further. Every plotted point is the average of hit
rates for however many class days occurred in that day and
the preceding six days.)

Workload BR achieves the highest hit rates by far | over
98% for most of the collection period. Two reasons account
for the high rates. First, all URLs named one of a small set
of Web servers in domain .cs.vt.edu, unlike other workloads,
where URLs could name servers anywhere in the world. Sec-
ond, as mentioned earlier, tra�c to popular Web pages with
audio �les on a single server dominated the tra�c.

For caches to have su�cient size to never replace a docu-
ment, they must have the following sizes: 191 Mbytes for
workload C, 388 Mbytes for G, 403 Mbytes for BL, 431
Mbytes for BR, and 631 Mbytes for U.

4.2 Experiment 2: Removal Policy Comparison

4.3 Primary Key Performance

The preceding experiments give the maximum theoretical
hit rates, because the simulation uses in�nite cache size and
hence no removals occur. In Experiment 2 we simulate a
�nite cache size to investigate what removal policy performs
best. Recall from Table 5 that we compare results for a
cache that is half or one tenth of the size needed for no
replacement. Rather than plotting WHR in our graphs, we
will plot the ratio of WHR in Experiment 2 to the value
obtained in Experiment 1 (the theoretical maximum). The

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

P
er

ce
nt

Days Since September 16

Infinite Cache Hit Rate for Remote Backbone Clients

Weighted Hit Rate

Hit Rate

Wt. Hit Rate
Hit Rate

Figure 7: Maximum achievable hit-rate for workload BR.

resulting fraction reports how close to optimal a replacement
policy performs: the closer a curve is to the line y = 1
the closer the policy is to the theoretical maximum WHR.
To interpret the graphs, the reader may want to compare
the corresponding Experiment 2 and Experiment 1 graphs,
to determine whether the absolute HR and WHR that a
replacement policy yields is high or low.

Consider �rst the case generating the most replacement,
namely cache size equal to 10% of MaxNeeded. Figures 8
to 12 shows results for various primary keys with a secondary
key of random. To simplify the graphs, keys blog

2
(SIZE)c

and DAY(ATIME) are not shown. With one exception (days
60-70 of workload G) blog

2
(SIZE)c always yields equal or

slightly higher WHR than SIZE. DAY(ATIME) is within
about 5% of ATIME, except in workload BR when it is al-
ways worse than ATIME but never as bad as NREF.

The results for a cache whose size is 50% of MaxNeeded
are not shown, because the curves follow the same trend
as in the 10% graphs. However the magnitude of di�erence
between the WHR curves is smaller at 50%. Also the results
are similar with respect to HR, except that key NREFS
yields a clearly lower hit rate than any other policy.

Each of the sorting keys plotted is discussed below.

SIZE: Remarkably, in four of the workloads (U, G, C,
and BR), some replacement policy achieves a WHR that is
over 90% of optimal most of the time, even though the cache
size is only 10% of MaxNeeded. The second surprise is that
replacement based on either SIZE or blog

2
(SIZE)c always

outperforms any other replacement criteria.
Why does SIZE work well? The histogram for workload

0

20

40

60

80

100

0 50 100 150 200

P
er

ce
nt

 o
f I

nf
in

ite
 C

ac
he

 W
H

R

Days Since April 1

Primary Sort Key Performance: 10% Cache Size, Undergrad Workload

SIZE

ATIME

ETIME NREF

SIZE
ETIME
ATIME
NREF

Figure 8: Ratio of WHR for various primary keys and cache
size of 10% of MaxNeeded to WHR of Fig. 3 in workload U.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

P
er

ce
nt

 o
f I

nf
in

ite
 C

ac
he

 W
H

R

Days Since January 20

Primary Sort Key Performance: 10% Cache Size, Graduate Workload

SIZE

ATIME

ETIME

NREF

SIZE
ETIME
ATIME
NREF

Figure 9: Ratio of WHR for various primary keys and cache
size of 10% of MaxNeeded to WHR of Fig. 4 in workload G.

0

20

40

60

80

100

0 20 40 60 80 100

P
er

ce
nt

 o
f I

nf
in

ite
 C

ac
he

 W
H

R

Days Since January 16

Primary Sort Key Performance: 10% Cache Size, Classroom Workload

SIZE

ATIME

ETIME

NREF
SIZE

ETIME
ATIME
NREF

Figure 10: Ratio of WHR for various primary keys and cache
size of 10% of MaxNeeded to WHR of Fig. 5 in workload C.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45

P
er

ce
nt

 o
f I

nf
in

ite
 C

ac
he

 W
H

R

Days Since September 16

Primary Sort Key Performance: 10% Cache Size, Local Backbone Clients

SIZE

ETIME

ATIME

NREF

SIZE
ETIME
ATIME
NREF

Figure 11: Ratio of WHR for various primary keys and cache
size of 10% of MaxNeeded to WHR of Fig. 6 in workload BL.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45

P
er

ce
nt

 o
f I

nf
in

ite
 C

ac
he

 W
H

R

Days Since September 16

Primary Sort Key Performance: 10% Cache Size, Remote Backbone Clients

SIZE
ATIME ETIME

NREF
SIZE

ETIME
ATIME
NREF

Figure 12: Ratio of WHR for various primary keys and cache
size of 10% of MaxNeeded to WHR of Fig. 7 in workload BR.

BL in Fig. 13 shows that most requests in the trace are
for small documents; generally similar results for workloads
U and G are reported in [2, Figs. 1,2,4]. The fact that
SIZE keeps small �les in the cache makes HR high for two
reasons: most references go to small �les, and removal of a
large �le makes room for many small �les, which increases
the percentage of URLs in the cache that can be hit.

The fact that most requests are for small document sizes
is not surprising for three reasons. First, users probably tend
to avoid using large documents due to the time required to
download them. Second, many popular Web pages are cre-
ated by professional designers who keep graphics small to
increase their usability. It is also apparent from the size dis-
tribution and �le type distribution [2] that a many URL ref-
erences are for embedded iconic images. Third, even in the
case that users make frequent use of multi-page documents,
it may be that users prefer to print the documents and re-
peatedly reference hard-copy rather than on-line copies.

The time between references is also important as it is
typically the primary measure for determining which �le to
delete from a cache (e.g., in LRU). Figure 14 plots one point
for each request in workload BL. There are a fairly large
number of references to �les in the 1-2MB range. However,
the removal of one 2MB �le would make room in the cache
for 1000 2kB �les, and 1000 2kB �les referenced 1000 times
each will yield a higher WHR than one 2MB �le being ref-
erenced ten times.

0

500

1000

1500

2000

2500

3000

5000 10000 15000 20000

N
o.

_o
f_

R
eq

ue
st

s

URL_Size_in_bytes

Backbone_Local_Traffic_for_Sep17-Nov7_1995

Figure 13: Distribution of document sizes in workload BL.

1

10

100

1000

10000

100000

1e+06

10 100 1000 10000 100000 1e+06 1e+07

In
te

rr
ef

er
en

ce
 T

im
e

(s
ec

)

Size (bytes)

Backbone Local Traffic for Sep17-Oct16 1995

Figure 14: Scatter plot of size and time since last reference
of each URL referenced two or more times in workload BL.

ATIME: The center of mass in Fig. 14 lies in a region with
relatively small size (just over 1kB) but large interreference
time (about 15,000 seconds or 4.1 hours). This implies that
the ATIME key (and hence LRU) discards many �les that
will be referenced in the future. If ATIME was a good pol-
icy, then a trace should exhibit temporal locality: frequent
references to the same document within a short interval of
time. We could test for temporal locality by plotting a his-
togram of the interreference time of each URL referenced
two or more times, and checking whether its mass is con-
centrated at short times with a tail at long times. Such
a histogram could be derived from Fig. 14 by counting how
many points lie on every horizontal line that could be drawn
through the graph. Most points lie on lines roughly in the
range y = 1000 to y = 100000. So the histogram would have
a tail as interreference time goes to 0. Therefore, we expect
ATIME to be a poor sorting key, and this turns out to be the
case in Figures 8 to 12. This result is also consistent with
[5], which observes that LRU is not a good server cache re-
moval policy, and concludes that temporal locality does not
exist in requests reaching a server because servers multiplex
requests of many clients and because client-side caching re-
moves temporal locality from the reference stream.

NREFS and ETIME: ETIME performs about the same as
ATIME for all workloads. In workloads U and G NREFS
performs about the same as ATIME and ETIME. However,
in workload C key NREFS �rst performs signi�cantly worse

and later better than ETIME and ATIME. At the end of
the course from which C was collected, students reviewed
important Web pages to prepare for the �nal, so it appears
that the number of references earlier in the semester corre-
lated with importance of a page and hence performed better
than ETIME or ATIME. In workloads BR and BL, NREFS
performed signi�cantly worse than ETIME and ATIME.

4.4 Secondary Key Performance

Next consider the choice of secondary key. As listed in Ta-
ble 5, we consider the question with respect to one primary
key: blog

2
(SIZE)c. (We consider one primary key because

\size" keys outperform all others, so it is pointless to con-
sider other keys. Furthermore, blog

2
(SIZE)c yields more ties

than SIZE, and hence would exercise the secondary key more
than SIZE.)

How much better (or worse) does each possible secondary
key do compared to a random secondary key? To answer
this, we plot in Fig. 15 the ratio of WHR obtained for each
possible secondary key to the WHR obtained with random
as a secondary key for one workload, G. (The �gures shows a
cache size of 10% of MaxNeeded; using 50% yields a similar
plot.) If the ratio is consistently larger than 1, then a non-
random secondary key is useful; otherwise random is as good
as any other secondary key. DAY(ATIME) yields the high-
est hit rate, followed by SIZE, ETIME, ATIME, and NREF.
Also ATIME and NREF both occasionally yield worse hit
rates than random selection. However, this graph is atyp-
ical, because for the other four workloads (not shown) no
key consistently outperforms random. Therefore there is no
conclusive evidence to use a non-random secondary key with
blog

2
(SIZE)c as a primary key.

We did examine the LFU policy by considering a pri-
mary key of NREF and all possible secondary keys, again
with workload G. In contrast to Fig. 15, all secondary keys
at some point during simulation performed worse than ran-
dom. The best secondary key was blog

2
(SIZE)c. The best

performing key from Fig. 15, DAY(ATIME), performed er-
ratically { doing better as often as it did worse than random.
The lesson is that using SIZE or blog

2
(SIZE)c as a primary

or secondary key is a good idea.

95

100

105

110

115

120

125

130

10 20 30 40 50 60 70

P
er

ce
nt

 o
f R

an
do

m
 S

ec
on

da
ry

 K
ey

 W
H

R

Days Since January 20

Secondary Sort Key Performance: 10% Cache Size, Graduate Workload

SIZE
ETIME
ATIME
NREF

Day(ATIME)

Figure 15: Ratio of WHR for various secondary keys and
cache size of 10% of MaxNeeded to WHR with random sec-
ondary key (workload G, primary key blog

2
(SIZE)c).

4.5 Experiment 3: E�ectiveness of Two Level Caching

Experiment 3 (from Table 5) uses the best policy from Ex-
periment 2 (SIZE) for the primary key and random for the
secondary key. The primary cache is set to one of two sizes,
10% or 50% of MaxNeeded, and the second level cache has
in�nite size. When a document request is a miss in the pri-
mary cache, the request is sent to the second level cache. If
the second level cache has the document, it returns a copy
of the document to the primary cache; otherwise the second
level cache misses and the document is placed in both the
second level and primary cache. This implies that when a
primary cache removes a document, the document will al-
ways be in the second level cache; this represents a possible
implementation strategy of a primary cache sending replaced
documents to a larger second level cache.

Figures 16 to 18 show the three trends that emerged
from the �ve workloads. In all three �gures with a primary
cache size of 50% the second level cache makes virtually
no di�erence, because its HR and WHR are both less than
3%, except workload G where WHR jumps to 10% briey.
However, in a memory-starved primary cache (the 10% of
MaxNeeded case), the second level cache reaches a maxi-
mum 9-35% HR, and a 15-55% WHR. Therefore the second
level cache is playing an important role of an \extended
memory" for a small primary cache. In particular, because
SIZE is the primary key for the primary cache, larger docu-
ments will be displaced to the second level cache. This ex-
plains why WHR is larger than HR | primary cache misses
that are hits in the secondary cache are for large �les.

The only di�erences among the three graphs are whether
the 10% WHR curves level out and to what extent the sec-
ond level cache is utilized. In Fig. 16 the WHR levels o� at
between 10% and 15%. In contrast, Fig. 17 shows a work-
load whose \working set" of documents can �t in the pri-
mary cache of only 10% of MaxNeeded for over a month, af-
ter which the second level cache experiences a rapid growth
in HR and WHR. Fig. 18 shows a WHR that uctuates
throughout the collection period. Each increase in the sec-
ond level cache WHR correspond to sharp increases in the
in�nite cache hit rate that could not be handled by the lim-
ited 10% primary cache (see Fig. 4).

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45

P
er

ce
nt

Days Since September 16

Second Level Cache Performance, Local Backbone Clients

HR- 50% Primary Cache Size
HR- 10% Primary Cache Size

WHR- 50% Primary Cache Size
WHR- 10% Primary Cache Size

Figure 16: HR and WHR second level cache in workload BL
with �rst level cache size of 10% and 50% of MaxNeeded.

4.6 Experiment 4: E�ectiveness of Partitioned Caches

Recall from Table 4 that most of the bytes transferred in
the BR workload are audio. Do clients that listen to music

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

Days Since January 16

Second Level Cache Performance, Classroom Clients

HR- 50% Primary Cache Size
HR- 10% Primary Cache Size

WHR- 50% Primary Cache Size
WHR- 10% Primary Cache Size

Figure 17: HR and WHR for second level cache in workload
C with �rst level cache size of 10% and 50% of MaxNeeded.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

P
er

ce
nt

Days Since January 20

Second Level Cache Performance, Graduate Clients

HR- 50% Primary Cache Size
HR- 10% Primary Cache Size

WHR- 50% Primary Cache Size
WHR- 10% Primary Cache Size

Figure 18: HR and WHR for second level cache in workload
G with �rst level cache size of 10% and 50% of MaxNeeded.

degrade the performance of clients using text and graphics?
Could a partitioned cache with one portion dedicated to
audio, and the other to non-audio documents increase the
WHR experienced by either audio or non-audio documents?

In Experiment 4, a one-level cache with SIZE as the pri-
mary key and random as the secondary key was used with
three partition sizes: dedicate 1/4, 1/2, or 3/4 of the cache
to audio; the rest is dedicated to non-audio documents.
Comparing Figures 19 (the audio partition) and 20 (non-
audio) reveals that periods of heavy audio use overwhelm
even a 3/4 audio partition with a 10% cache size, and there
is very little di�erence between the 3/4 and 1/2 non-audio
partition hit rate. Therefore, for this workload, splitting the
cache into two partitions of equal size would increase the au-
dio WHR substantially, while maintaining a high WHR on
other �le types. Note that in Figs. 19 and 20, the HR and
WHR reported are those within the category (i.e., audio HR
is the number of audio hits for all audio references).

5 Conclusions and Future Work

Removal policies in network caches for WWW documents
that use size clearly outperform any other removal criteria.
Consistently, in our simulations of all �ve workloads, pri-
mary keys SIZE and blog

2
(SIZE)c achieve a higher hit rate

and weighted hit rate than any other policy. This behavior
is con�rmed by histograms of how many references went to

0

5

10

15

20

25

0 5 10 15 20 25 30 35

P
er

ce
nt

Days Since September 16

Remote Backbone: Partitioned Cache with Audio Files

Infinite Cache Audio WHR
1/4 of Cache Space has Audio
1/2 of Cache Space has Audio
3/4 of Cache Space has Audio

Figure 19: WHR for audio requests in workload BR for par-
titioned cache with total size of 10% of MaxNeeded.

0

20

40

60

80

100

0 5 10 15 20 25 30 35

P
er

ce
nt

Days Since September 16

Remote Backbone: Partitioned Cache with Non-Audio Files

Infinite Cache Non-Audio WHR
1/4 of Cache Space has Non-Audio
1/2 of Cache Space has Non-Audio
3/4 of Cache Space has Non-Audio

Figure 20: WHR for non-audio requests in workload BR for
partitioned cache with total size of 10% of MaxNeeded.

�les of di�erent sizes, where the mass is concentrated in �le
sizes of under 1KB (Fig. 13).

Therefore the previously proposed LRU-MIN policy [1]
(that uses a primary key like blog

2
(SIZE)c) is one of the

best policies, but the computationally simpler rule of just
using SIZE as a key also works well. The popular LRU
policy, equivalent to using primary key ATIME, ranks next
in performance, but with much lower hit and weighted hit
rates. A primary key of NREF, which is used as the primary
key in the Hyper-G policy, performs the worst of all primary
keys in our study.

In fact, Hyper-G's policy uses NREF, ATIME, and SIZE
as the primary, secondary, and tertiary keys. Based on
our study we suggest reversing the ranking: use SIZE, then
ATIME, then NREF.

Finally, the Pitkow/Recker policy, designed as a server
cache policy but investigated here as a proxy cache policy,
uses DAY(ATIME) as a primary key if there are documents
older than one day in the cache, and otherwise using SIZE.
While it is intuitively attractive to replace documents that
have not been used for days, in our study, DAY(ATIME)
is one of the worst performing primary keys (although it is
the best performing secondary key in one workload). Re-
placing days-old �les dramatically reduced HR and WHR in
our study. Therefore the Pitkow/Recker policy would work
better if it simply used SIZE alone as a key.

The use of SIZE as a primary key blends well with a two

level cache hierarchy in which documents that the primary
cache replaces are sent to a larger second level cache. The
arrangement is natural, because SIZE as a primary key will
always transmit the largest document from primary to sec-
ond level cache. Coupling the results from Experiments 3
and 4, a primary key of SIZE in the primary cache keeps
the primary cache weighted and unweighted hit rates high,
while a second level cache for large documents that overow
primary caches signi�cantly boosts the weighted hit rate of
byte-intensive media types (see Fig. 19).

A number of open problems on proxy caching remain:

1. Certain sorting keys for removal algorithms have never
been explored in caching proxy implementations or
simulation studies to our knowledge, but have intu-
itive appeal. The �rst is document type. A sorting key
that puts text documents at the front of the removal
queue would insure low latency for text in Web pages,
at the expense of latency for other document type. The
second sorting key is refetch latency. To a user of inter-
national documents, the most obvious caching criteria
is one that caches documents to minimize overall la-
tency. A European user of North American documents
would preferentially cache those documents over ones
from other European servers to avoid using heavily uti-
lized transatlantic network links. Therefore a means
of estimating the latency for refetching documents in
a cache could be used as a primary sorting key.

2. A second open problem is how caching can help dy-
namic documents. Today, caches cannot cache dy-
namic documents. On closer inspection, a cache is
only useless for dynamic documents if the document
content completely changes; otherwise a portion but
not all of the cached copy remains valid. Therefore
one solution we envision is an HTTP protocol change
to allow caches to request the di�erences between the
cached version and the latest version of a document.
For example, in response to a conditional GET a server
could send the \di�" of the current version and the
version matching the Last-Modified date sent by the
client; or a speci�c tag could allow a server to \�ll-
in" a previously cached static \query response form."
Another approach to changing semi-static pages (i.e.,
pages that are HTML but replaced often) is to allow
Web servers to preemptively update inconsistent doc-
ument copies, at least for the most popular �les. The
issue is discussed in [6].

3. We observed a 15% to 55% WHR in a second level
cache with a primary cache that is 10% of the size
needed for no replacement. How would this hit rate
change if a single second level cache handled misses
from a set of primary caches? Whereas we observed
concentration in each individual workload of the �ve
we studied, how much commonality exists between the
workloads if they share a single second level cache?
An interesting future study would be simulation of a
multi-level cache more complex than the single �rst
and second level con�guration used here.

4. A �nal open problem is to study the interaction of re-
moval algorithms with algorithms that identify when
cached copies may be inconsistent, such as expiration
times or the time of last modi�cation for documents.
For example, the Harvest cache [8] tries to remove ex-
pired documents �rst.

Caching has a bright future because Web users do not
aimlessly and randomly request Web pages, according to
our workloads. In fact, there is a signi�cant (and to us un-
expected) amount of concentration exhibited by all of the
collected workloads. One workload | o� campus clients re-
questing documents from Web servers in our department |
reaches a surprising weighted hit rate of 95% (averaged over
all days in the trace). This is the e�ect of a popular single
Web site, and the fact that a large group of clients is access-
ing a small group of servers. More telling are three other
workloads (U, G, and C), which all have mean weighted and
unweighted hit rates of around 50% (averaged over all days
in a trace) allowing a cache to cut in half their bandwidth
and server access demands. Another indication of locality
is that the server accessed appears to follow a Zipf distribu-
tion. In the BL trace, most requests went to a small number
of servers, and a small number of the URLs used accounted
for most bytes transferred over the network. This suggests
either that each user tends to access the same servers and
URLs over and over, or that many users request the same
set of servers or URLs at the same time.

6 Acknowledgements

We thank Je�rey Mogul, Carey Williamson, and the refer-
ees for their many comments and suggestions on this paper;
Laurie Zirkle for help in setting up our network monitors;
and Leo Bicknell and Carl Harris for providing the work-
load U trace logs. This work was supported in part by
the National Science Foundation through CISE Institutional
Infrastucture (Education) grant CDA-9312611, CISE RIA
grant NCR-9211342, and SUCCEED (Cooperative Agree-
ment No. EID-9109853). SUCCEED is an NSF-funded
coalition of eight schools and colleges working to enhance
engineering education for the twenty-�rst century.

References

[1] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams,
and E. A. Fox. Caching proxies: Limitations and po-
tentials. In 4th International World-wide Web Confer-
ence, pages 119{133, Boston, Dec. 1995. <URL: http:-
//ei.cs.vt.edu/~succeed/WWW4/WWW4.html>.

[2] M. Abrams, S. Williams, G. Abdulla, S. Patel, R. Ri-
bler, and E. A. Fox. Multimedia tra�c analysis using
Chitra95. In Proc. ACM Multimedia '95, pages 267{
276, San Francisco, Nov. 1995. ACM.

[3] K. Andrews, F. Kappe, H. Maurer, and K. Schmaranz.
On second generation hypermedia systems. In Proc.
ED-MEDIA 95, World Conference on Educational
Multimedia and Hypermedia, Graz, Austria, June
1995. <URL: http://www.ncsa.uiuc.edu/SDG/IT94/-
Proceedings/DDay/cla�y/main.html>.

[4] M. F. Arlitt. A performance study of internet web
servers. Master's thesis, Computer Sci. Dept., Univer-
sity of Saskatchewan, Saskatoon, Saskatchewan, May
1996.

[5] M. F. Arlitt and C. L. Williamson. Web server workload
characterization: The search for invariants. In Proc.
SIGMETRICS, Philadelphia, PA, Apr. 1996. ACM.

[6] T. Berners-Lee. Propagation, replication and caching.
<URL: http://www.w3.org/hypertext/WWW/Propa-
gation/Activity.html>, Mar. 1995. World Wide Web
Consortium.

[7] T. Berners-Lee, R. Fielding, and H. Frystyk. Hyper-
text transfer protocol {
HTTP 1.0. <URL: http://www.w3.org/pub/WWW/-
Protocols/HTTP/1.0/spec.html>, Feb. 1996.

[8] A. Chankhuthod, P. Danzig, C. Neerdaels,
M. Schwartz, and K. Worrel. A hierarchical internet
object cache. <URL: ftp://ftp.cs.colorado.edu/pub/-
cs/techreports/schwartz/HarvestCahce.ps.Z >.

[9] C. R. Cunha, A. Bestavros, and M. E. Crovella. Charac-
teristics of www client-based traces. Technical Report
TR-95-010, Computer Sci. Dept., Boston Univ., July
1995.

[10] T. T. Kwan, R. E. McGrath, and D. A. Reed. NCSA's
world wide web server: Design and performance. IEEE
Computer, 28(11):68{74, Nov. 1995.

[11] A. Luotonen and K. Altis. World-Wide Web prox-
ies. Computer Networks and ISDN Systems, 27(2),
1994. <URL: http://www1.cern.ch/PapersWWW94/-
luotonen.ps>.

[12] R. Malpani, J. Lorch, and D. Berger. Making World
Wide Web caching servers cooperate. In 4th Inter-
national World-wide Web Conference, pages 107{117,
Boston, Dec. 1995.

[13] J. E. Pitkow and M. M. Recker. A simple yet robust
caching algorithm based on dynamic access patterns. In
Proc. 2nd Int. WWW Conf., pages 1039{1046, Chicago,
Oct. 1994.

[14] A. A. B. Pritsker. Introduction to Simulation and
SLAM II. John Wiley, Halsted NY, third edition, 1987.

[15] L. Schruben. Simulation modeling with event graphs.
Commun. ACM, 26:957{963, 1988.

[16] A. Silberschatz and P. B. Galvin. Operating Systems
Concepts. Addison Wesley, Reading, MA, fourth edi-
tion, 1994.

Appendix: Proxy Cache Simulator

A discrete event world view simulation model, available from
http://www.cs.vt.edu/~chitra/www.html, was developed us-
ing event graphs [15] and implemented using the SLAM II
simulation language [14]. Output measures include sum-
maries for time from request to end of �le transfer, �le trans-
fer rate, cache hit rate, cache hit rate from input �le, �le size
from input �le, in-bound transmission rate, time in cache,
time in cache, �le size in cache at end of simulation �le size
for hits, �le size for misses, number of �les with the same
primary key value on initial input to the cache, percent of
URL ties on the primary key, and number of references to
�les in the cache. Traces can also be created for transmis-
sion time, hit rate, transmission rate, �les in cache at end of
simulation (time in cache), and �les leaving the cache (time
in cache).

