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Abstract

In this paper, we study hierarchical resource management
models and algorithms that support both link-sharing and
guaranteed real-time services with decoupled delay (prior-
ity) and bandwidth allocation. We extend the service curve
based QoS model, which defines both delay and bandwidth
requirements of a class, to include fairness, which is impor-
tant for the integration of real-time and hierarchical link-
sharing services. The resulting Fair Service Curve link-
sharing model formalizes the goals of link-sharing and real-
time services and exposes the fundamental tradeoffs between
these goals. In particular, with decoupled delay and band-
width allocation, it is impossible to simultaneously provide
guaranteed real-time service and achieve perfect link-sharing.
We propose a novel scheduling algorithm called Hierarchical
Fair Service Curve (H-FSC) that approximates the model
closely and efficiently. The algorithm always guarantees the
performance for leaf classes, thus ensures real-time services,
while minimizing the discrepancy between the actual ser-
vices provided to the interior classes and the services de-
fined by the Fair Service Curve link-sharing model. We
have implemented the H-FSC scheduler in the NetBSD en-
vironment. By performing simulation and measurement ex-
periments, we evaluate the link-sharing and real-time per-
formances of H-FSC, and determine the computation over-

head.

1 Introduction

The emerging integrated services networks will support ap-
plications with diverse performance objectives and traffic
characteristics. While most of the previous research on inte-
grated services networks has focused on guaranteeing QoS,
especially real-time requirements, for each individual ses-
sion, several recent work [1, 6, 12] has argued that it is also
important to support hierarchical link-sharing service.
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AWARD under grant number NCR-9624979. Views and conclusions
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With hierarchical link-sharing, there is a class hierarchy
associated with each link that specifies the resource alloca-
tion policy for the link. A class represents some aggregate of
traffic streams that are grouped according to administrative
affiliation, protocol, traffic type, or other criteria. Figure 1
shows an example class hierarchy for a 45 Mbps link that is
shared by two organizations, CMU and University of Pitts-
burgh (U. Pitt). Below each of the two organization classes,
there are classes grouped based on traffic types.

There are several important goals for hierarchical link-
sharing service. First, each class should receive certain min-
imum bandwidth if there are enough demands. In the ex-
ample, CMU’s traffic should receive at least 25 Mbps band-
width during a period when the aggregate traffic from CMU
has a higher arrival rate. Similarly, if there are resource
contentions between traffic classes within CMU, the video
traffic should get at least 10 Mbps. In the case when there
are only audio and video streams from CMU, the audio and
video traffic should receive all the bandwidth that is allo-
cated to CMU (25 Mbps) if the demand is high enough.
That is, if certain traffic classes from CMU do not have
enough traffic to fully utilize its minimum guaranteed band-
width, other traffic classes from CMU will have a higher
priority to use this excess bandwidth than traffic from U.
Pitt. While the above policy specifies that CMU audio and
video traffic classes should use the excess bandwidth unused
by the data traffic, there is still the issue of how the ex-
cess bandwidth 1s distributed between the audio and video
traffic classes. A second goal of hierarchical link-sharing ser-
vice is then to have a proper policy to distribute the excess
bandwidth unused by a class to its sibling classes.

In addition to the two goals mentioned above, it is also
important to support real-time and priority services within
the framework of hierarchical link-sharing. Since real-time
service guarantees QoS on a per session basis; a natural way
to integrate real-time and hierarchical link-sharing services
is to have a separate leaf class for each real-time session.
In the example, the CMU Distinguished Lecture video and
audio classes are two leaf classes that correspond to real-
time sessions. Finally, we would like to support priority ser-
vice in the sense that delay (both average delay and delay
bound) and bandwidth allocations are decoupled. For ex-
ample, even though the CMU Distinguished Lecture video
and audio classes have different bandwidth requirements, it
is desirable to provide the same low delay bound for both
classes. Such a decoupling of bandwidth and delay alloca-
tion is also desirable for interior or leaf classes that corre-
spond to traffic aggregates. For example, one may want to



@

2Mbps E 8 Mbps 128 %ﬁps 3Mbps i 9 Mbps

Distinguished Distinguished
Lecture Lecture

Figure 1: An Ezample Link-Sharing Hierarchy.

provide a lower average delay for packets in CMU’s audio
traffic class than those in CMU’s data traffic class.
A number of algorithms have been proposed to support

hierarchical link-sharing, real-time, and priority services. How-

ever, as discussed in Section 7, they all suffer from important
limitations. The fundamental problem is that with all three
services, multiple requirements need to be satisfied simul-
taneously. This is very difficult and sometimes impossible
to achieve due to conflicting requirements. This problem is
exacerbated by the fact that there is no formal definition
of hierarchical link-sharing service that specifies all the re-
quirements.

In this paper, we consider an ideal model that can pre-
cisely define all the important performance goals of real-
time, hierarchical link-sharing, and priority services. The
basic building block of the framework is the concept of ser-
vice curve, which defines a general QoS model taking into
account both bandwidth and priority (delay) requirements.
In this architecture, each class in the hierarchy is associ-
ated with a service curve. An ideal Fair Service Curve link-
sharing model is to (a) simultaneously guarantee the service
curves for all nodes in the hierarchy, and (b) distribute the
excess bandwidth unused by a class to its sibling classes
fairly. Since the service curves for class nodes are guaran-
teed simultaneously, the QoS for both individual sessions
(leaf nodes in the hierarchy) and traffic aggregates (interior
and possibly leaf nodes in the hierarchy) are satisfied. In
addition, delay and bandwidth allocation can be decoupled
by choosing different shapes of service curves.

Unfortunately, as will be shown in the paper, the ideal
model cannot be realized at all times. In spite of this, the
model serves two important purposes. First, unlike previ-
ous models, the new model explicitly defines the situations
when all performance goals cannot be simultaneously sat-
isfied, thus exposing the fundamental tradeoffs among con-
flicting performance goals. Second, the model serves as an
ideal target that a scheduling algorithm should approximate
as close as possible.

With the ideal service model defined and the fundamen-
tal tradeoffs exposed, we propose an algorithm called Hier-
archical Fair Service Curve (H-FSC) that achieves the fol-
lowing three goals:

e guarantee the service curves of all leaf class nodes,

e minimize the short-period discrepancy between the to-
tal amount of services provided to interior node class
and 1its service curve,

e allocate the excess bandwidth to sibling classes, with
bounded fairness

Notice that we made the architecture level decision that
whenever there is a conflict, the performance guarantees of
the leaf class nodes take priority. We believe this is the right
tradeoff as the performance of leaf classes are most related
to the performance of individual applications. In particular,
since a session is always a leaf class, guaranteed real-time
services can be provided on a per session basis with this
framework.

The rest of the paper is organized as follows. Section 2
presents the Fair Service Curve link-sharing model and dis-
cusses the fundamental tradeoffs in approximating this model.
Section 3 presents our solution, the Hierarchical Fair Service
Curve (H-FSC) scheduler, followed by a discussion on its im-
plementation complexity in Section 4. We analyze the delay
and fairness properties of H-FSC in Section 5, and evaluate
its performance based on both simulation and measurement
experiments in Section 6. We discuss related work in Sec-
tion 7 before conclude the paper in Section 8.

2 Fair Service Curve Link-Sharing Model

In this section, we first define the service curve QoS model
and motivate the advantage of using non-linear service curves
to decouple delay and bandwidth allocation. We then ex-
tend the concept of fairness to service curve based sched-
ulers. Finally, we present the ideal Fair Service Curve link-
sharing model and discuss the fundamental tradeoffs in-
volved in designing a scheduler that approximates the model.

2.1 Service Curve Based QoS Model

As discussed in Section 1, we will use the service curve ab-
straction proposed by Cruz [4, 5] as the building block to
define the idealized link-sharing model.

A session ¢ is said to be guaranteed a service curve Si(~),
if for any time t3, there exists a time #; < ¢z, which is the be-
ginning one of session ¢’s backlogged periods (not necessarily
including ¢2), such that the following holds

Si(t2 - tl) < wi(tlat2)a (1)
where wi(tl, t2) is the amount of service received by session
i during the time interval (¢1,%2]. For packet systems, we
restrict ¢2 to be packet departure times.

One algorithm that supports service curve guarantees is
the Service Curve Earliest Deadline first (SCED) policy [11].
With SCED, a deadline is computed for each packet using a
per session deadline curve D;(-) and packets are transmitted
in increasing order of their deadlines. The deadline curve
D;(-) is computed such that in an idealized fluid system,
session t’s service curve will be guaranteed if by any time
t, at least D;(¢) amount of service is provided to session 1.
Based on Eq. (1), it follows that

Di(t) = min(Si(t - 1) + wi(1), (2)
1

where the minimization is over all the beginnings of session

i’s backlogged periods t1’s, and w;(t1) = w;(0, ¢1) is the total

amount of service session @ receives till time ¢;. This gives

the following iterative algorithm to compute D;(-). When



session ¢ becomes backlogged for the first time, D;(-) is ini-
tialized to its service curve Si(-). Subsequently, whenever
session 1 becomes backlogged again at time ¢, after an idling
period, D;(-) is updated according to the following:

Di(t) = min(D;(t), Si(t — ta) + wi(ta)), V> Di_l(wi(ta)).
The reason for which D;(-) is defined only for ¢ > Di_l(ci) is

because this is the only portion that is used for subsequent
deadline computation. Since D);(-) may not be an injection,
its inverse function may not be uniquely defined. Here, we
define Di_1 (y) to be the smallest value ¢ such that D;(z) =
y. Based on D;(-), the deadline for a packet of length L¥ at
the head of session ¢’s queue can be computed as follows,
di = D7 (wi(t) + L7) (4)

The guarantees specified by service curves are quite gen-
eral. For example, the guarantees provided by Virtual Clock
and various Fair Queueing algorithms can be specified by lin-
ear service curves with zero offsets.!. Since a linear service
curve is characterized by only one parameter, the slope or
the guaranteed bandwidth for the session, the delay require-
ment cannot be specified separately. As a consequence, even
though delay bounds can be provided by algorithms guaran-
teeing linear service curves, there is a coupling between the
guaranteed delay bound and bandwidth, which results in in-
flexible resource allocation. With non-linear service curves,
both priority (delay) and bandwidth allocation are taken
into account in an integrated fashion, yet the allocation poli-
cies for these two resources are decoupled. This will increase
the resource management flexibility and the resource utiliza-
tion inside the network.

To illustrate the advantage of decoupling delay and band-
width allocation with non-linear service curves, consider the
example in Figure 2 where a video and an FTP session share
a 10 Mbps link served by a SCED scheduler. Let the video
source sends 30 8KB frames per second, which corresponds
to a required bandwidth of 2 Mbps. The remaining 8 Mbps
is reserved by a continuously backlogged FTP session. For
simplicity, let all packets be of size 8 KB. Thus, it takes
roughly 6.5 ms to transmit a packet. Let both video and
FTP sessions be active at time 0. Then the sessions’ dead-
line curves are also their service curves. First, consider the
case in Figure 2(a) where linear service curves are used to
specify the sessions’ requirements. The arrival curve A;(-)
represents the cumulative number of bits received by session
1. The deadline of a packet of session ¢ arriving at time u is
computed as the time ¢ such that S(¢) equals A(u). As can
be seen, the deadlines of the video packets occur every 33 ms,
while the deadlines of the FTP packets occur every 8.2 ms.
This results in a delay of approximately 26 ms for a video
packet. In the second scenario as illustrated in Figure 2(b),
we use two-piece linear service curves for characterizing the
sessions’ requirements. The slope of the first segment of the
video session’s service curve is 6.6 Mbps, while the slope of
the second segment is 2 Mbps. The inflection point occurs at
10 ms. The FTP session’s service curve is chosen such that
the entire remaining capacity is used. As can be seen, the
delay of any video packet is no more than 10 ms in this case.
It is important to note that the reduction in the delays for
video packets does not come for free: as a result, the delays
for FTP packets increase. However, this is acceptable since

In theory, Fair Queueing and its corresponding fluid algorithm
GPS can support more general service curves than linear curves [10,
16]. However, in practice, such a resource assignment has a number
of limitations. See Section 7 for a detailed discussion.

throughput rather than per packet delay is more important
to the FTP session.

While in theory any non-decreasing functions can be used
as service curves, in practice only linear or piecewise lin-
ear functions are used for reasons of simplicity. In general,
a concave service curve will result in a lower average and
worst case delay for a session than a linear or convex service
curve with the same guaranteed rate. However, it is impos-
sible to have concave service curves for all sessions and still
reach high average utilization. Intuitively, this is easy to
understand as priority is relative and it is impossible to give
all sessions high priority (low delay). Formally, the SCED
algorithm can guarantee all the service curves if and only
if Zl Si(t) < S(t) holds for any ¢ > 0 where S(t) is the
amount of service the server provides during a time period
of t. That is, the sum of the service curves over all sessions
should be no more than the server’s service curve.

2.2  Service Curve and Fairness

While the service curve is very general in specifying the
minimum amount of service (both bandwidth and priority)
guaranteed to a session or a class, it does not specify how
the excess service, which is the extra capacity of the server
beyond that is needed to guarantee the service curves of
all active sessions, should be distributed. It is possible to
have different scheduling algorithms that provide the same
service curve guarantees but use different policies for dis-
tributing excess service. For example, while Virtual Clock
and Weighted Fair Queueing (WFQ) can provide identical
linear service curve guarantees, they have different fairness
properties. In particular, with Virtual Clock, it is possible
that a session does not receive service for an arbitrary long
period because it receives excess service in a previous time
period. On the contrary, the maximum period that an active
session does not receive service in a WFQ server is bounded.

While the fairness property has been extensively studied
for scheduling algorithms that only use sessions’ rates as pa-
rameters and there are several formal definitions of fairness
properties, such as the relative fairness given by Golestani [8]
and the worst-case fairness given by Bennett and Zhang [2],
it 1s unclear what fairness means and why it is important
in the context of scheduling algorithms that decouple the
delay and bandwidth allocation. In this section, we discuss
the semantics of fairness and argue that it is important to
have the fairness property even for scheduling algorithms
that provide performance guarantees. We then give a sim-
ple example to illustrate that SCED is an unfair algorithm,
but can be extended to be fair.

There are two aspects of the fairness property that are of
interest: (1) what is the policy of distributing excess service
to each of the currently active sessions? (2) whether and
to what extent a session receiving excess bandwidth in a
previous time period will be penalized later?

For rate-proportional scheduling algorithms, a perfectly
fair algorithm will distribute the excess service to all back-
logged sessions proportional to their minimum guaranteed
rates. In addition, it will not punish any session for receiv-
ing excess bandwidth in a previous time period. Generalized
Processor Sharing (GPS) is such an idealized fair algorithm.

For scheduling algorithms based on general service curves,
a fair algorithm should (a) distribute excess bandwidth ac-
cording to a well defined policy, and (b) not penalize a ses-
sion that uses excess bandwidth. Though these two aspects
of the fairness property are usually considered together in
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Figure 2: An example illustrating the benefits of delay-bandwidth decoupling.
a formal fairness definition, they are actually orthogonal is-
sues. While different policies can be used to distribute excess Sy (1) = at, ift<T (5)
service, in this paper we simply distribute excess bandwidth W= pt, ift>T
according to the service curves. It is the second aspect of the and gt it<T
fairness property, i.e., a session that receives excess service = Bt
property, i.e., S2(t) at, ift>T (6)

in a previous time period should not be penalized, that we
would like to emphasize in this paper.

There are two reasons why it is important to have such a
fair scheduler. First, even in a network that supports guar-
antees, it is still desirable to let end systems statistically
share the fraction of resources that are either not reserved
and/or not currently being used. A network service should
encourage a source to opportunistically send more traffic
than the minimum guaranteed amount, provided that the
guarantees for all other sessions are not affected by the extra
traffic. That is, a network should not penalize a session that
uses more service than guaranteed if the additional service
it uses is the excess service allotted by the server. Fairness
is also important when we want to construct a hierarchi-
cal scheduler to support hierarchical link-sharing. In [1], it
has been shown that the accuracy of link-sharing and delay
bounds provided by Hierarchical Packet Fair Queueing (H-
PFQ) is closely tied to the fairness property of PFQ server
nodes used to construct the H-PFQ scheduler.

While the SCED algorithm can guarantee all the service
curves simultaneously, it does not have the fairness prop-
erty. Consider the example shown in Figure 3(a). Session 1
and 2 have two-piece linear service curves Si(-) and Sz(-),
respectively, where

In addition, let the server rate be one, and assume the follow-
ings hold: o < §, i.e., S1() is convex and Sz(-) is concave,
a4+ < 1, i.e., both service curves can be guaranteed by
using SCED, and 28 > 1, 1.e., it is not possible to guarantee
the peak rates of both sessions simultaneously.

Also, for simplicity, assume that the packets are of unit
length, and once a session becomes active it remains con-
tinuously backlogged. Under these assumptions, the dead-
line of the k-th packet of session ¢ under SCED is sim-
ply S7'(k) + 1., where % is the time when session i be-
comes active. Similarly, the deadline of the last packet of
session ¢ that has been transmitted by time ¢ (¢ > t}) is
Si_l(wi(t,ts)) + t%. Note that since session 7 is not active
until ¢, we have w;(t) = w;i(0, %) + wi(t%, 1) = wi(t, t).

Now consider the scenario in which session 1 becomes
active at time 0 and session 2 becomes active at time ¢g.
Since session 1 1s the only session active during the time
interval [0,%o], it receives all the service provided by the
server, i.e., wi(t) = ¢, for any 0 <t < ty (see Figure 3(b)).
Also, the deadline of the last packet of session 1 that has
been transmitted by time ¢ is Sl_l(wl (to)) = Sl_l(to).

Next, consider at time o, when the second session be-
comes active (see Figure 3(c)). Since the deadline of the k-th
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Figure 3: An ezample illustrating the “punishment” of a session under SCED policy: (c) session 1 does not receive any service
during (to, t1], after session 2 becomes active at to. (d) A modified version of SCED that tries to not penalize session 1 at all,

but violates session 2’s service curve.

packet of session 2 is S;l(k) + to and packets are served in
increasing order of their deadlines,; it follows that as long
as S;l(k) 4+t < Sl_l(to), only the packets of session 2 are
transmitted. Thus, session 1 does not receive any service
during the time interval (to, {1], where ¢; is the smallest time
such that S; ' (w2(t1)) 4 to > ST (to).

As shown in Figure 3(c), for any time ¢, wi(¢) > S1(t)
and wa(t) > S2(t — to) hold, i.e., the SCED algorithm guar-
antees the service curves of both sessions. However, SCED
punishes session 2 for receiving excess bandwidth during
[0,t0] by keeping it from receiving service during (to,t1].
This behavior makes it difficult to use SCED in a hierarchi-
cal server. To see why, consider a simple two-level hierarchy
where the bandwidth is shared by two classes, characterized
by the service curves Si(-), and Sa(+), respectively. Then, if
one of class 1’s child classes becomes active at some point
between to and t¢1, it will not receive any service before 17,
no matter how “important” this session is!

It is interesting to note that in a system where all the
service curves are simple lines, SCED reduces to the well-
known Virtual Clock discipline. While Virtual Clock is un-
fair [10, 17], there exists algorithms (such as the various PFQ
algorithms) that not only provide the same service curve
guarantees as Virtual Clock but also achieve fairness. In
PFQ algorithms, each session is associated with a virtual
time function that represents the normalized amount of ser-
vice that has been received by the session. The algorithm
then achieves fairness by minimizing the differences among
the virtual time functions of all sessions. Since Virtual Clock
is a special case of SCED, it 1s natural to use the same idea
for achieving fairness in SCED with general service curves.
This is achieved by associating with each session a general-
ized virtual time function, and servicing the session that has
the smallest virtual time function. While we will describe
the detailed algorithm in Section 3, we use the example in
Figure 3(d) to illustrate the concept. The main modifica-
tion to SCED would be to use S2(t — do) in computing the
packets’ deadlines for session 2, instead S>(t — tg). It can
be easily verified that if S;(¢) = r1t and Sa2(t) = rat, where
r1 and ro are the rates assigned to sessions 1 and 2 respec-
tively, the above algorithm results in identical behaviors as
in WFQ. Figure 3(d) shows the allocation of the service time
when this discipline is used. Note that, unlike the previous
case, session 1 is no longer penalized when session 2 becomes
active.

In summary, fairness can be incorporated into service
curve based schedulers such that (a) the excess bandwidth is
distributed according to the service curves of active sessions,

and (b) a session using excess service will not be penalized
later. Unfortunately, this does not come for free. As shown
in Figure 3(d) the service curve of session 2 is violated imme-
diately after time #o. This underlines the difficulty of simul-
taneously achieving fairness, while guaranteeing the service
curves. In fact, as we will see in the next section, in general
this is not possible.

2.3 Fair Service Curve Link-Sharing Model

As discussed at the beginning of the paper, the important
goals of hierarchical link-sharing are: guaranteed QoS for
each class, priority or decoupled delay and bandwidth al-
location among classes, and proper distribution of excess
bandwidth.

Since the service curve abstraction provides a general
definition of QoS with decoupled delay and bandwidth allo-
cation, and can be extended to include fairness property for
the purpose of excess bandwidth distribution, it is natural
to use service curves to define the performance goals of link-
sharing and real-time services. In a Fair Service Curve link-
sharing mode, there is a service curve associated with each
node in the link-sharing hierarchy. The goal is then to (1)
satisfy the service curves of all nodes simultaneously, and (2)
distribute the excess service fairly as defined in Section 2.2.
Note that (1) is a general requirement that subsumes both
link-sharing and real-time performance goals. A real-time
session 1s just a leaf node in the hierarchy, and its perfor-
mance will be automatically guaranteed if the Fair Service
Curve link-sharing model is realized.

Unfortunately, with non-linear service curves, there are
time periods when either (a) it is not possible to guarantee
the service curve for all classes, or (b) it is not possible to
simultaneously satisfy both the service curves and fairness
property.

To see why (a) is true, consider the hierarchy in Fig-
ure 4(a). For simplicity, assume the service curve assigned
to an interior class is the sum of the service curves of all its
children. Also, assume all sessions are continuously back-
logged from time 0 except session 1, which is idle during
[0,?] and becomes backlogged at time ¢. During [0, ¢], since
session 1 is not active, its entire service is distributed to ses-
sion 2 according to the link-sharing semantics. At time t,
session 1 becomes active. In order to satisfy session 1’s ser-
vice curve, at least Sl(At) service need to be allocated for
session 1 for any future time interval (¢,¢ + At]. However,
as shown in Figure 4(b), since the sum of all the service
curves that need to be satisfied during (¢,¢ + At] is greater
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Figure 4: An ezample illustrating why it is not possible to guarantee the service curves of all the classes in the hierarchy. (a)
The hierarchy and the service curves of each node. (b) The service received by each session when sessions 2, 3, and 4 become

active at time 0; session 1 becomes active at time to.

than the server’s service curve, it is impossible to satisfy all
the service curves simultaneously during this period. Since
decoupling delay and bandwidth allocation is equivalent to
specifying a non-linear service curve, this translates into a
fundamental conflict between link-sharing and real-time ser-
vice when the delay and bandwidth allocation is decoupled.

To see the fundamental conflict between fairness and
real-time requirements with decoupled delay and bandwidth
allocation, consider the example in Figure 3 again. As shown
in Figure 3(d), if fairness is to be provided, the service curve
of session 2 will be violated, i.e., wz(t) < S2(t—1to), for some
t > to. This is because after ¢o both sessions receive service
at a rate proportional to their slope, and since immediately
after time to their slopes are equal, each of them is served
at a rate of 1/2, which is smaller than §, the service rate
required to satisfy Sa(-).

Therefore, there are time periods when the Fair Service
Curve link-sharing model cannot be realized. In spite of
this, the model serves two purposes. First, unlike previous
models, this model explicitly defines the situations when all
performance goals cannot be simultaneously satisfied. This
exposes the fundamental architecture tradeoff decisions one
has to make with respect to the relative importance among
the conflicting performance goals. Second, the model serves
an ideal target that a scheduling algorithm should approx-
imate as closely as possible. We believe that a scheduler
should guarantee the service curves of the leaf classes all the
time while trying to minimize the discrepancy between the
service allocated to each interior class and its fair service
according to the model.

3 Hierarchical Fair Service Curve (H-FSC)

In this section, we propose a new scheduling algorithm called
Hierarchical Fair Service Curve (H-FSC) that closely ap-
proximates the ideal Fair Service Curve link-sharing model
as defined in the previous section.

3.1 Overview of the Algorithm

The scheduling is based on two criteria: the real-time crite-
ria that ensures the service guarantee of all leaf classes, and
the link-sharing criteria that aims to satisfy service curves of

interior classes and fairly distribute the excess bandwidth.
The real-time criteria is used to select the packet only if
there is a potential danger that the service guarantees for
leaf nodes are violated. Otherwise, the link-sharing criteria
is used. Such a policy ensures the real-time guarantee of the
leaf classes while at the same time minimizing the discrep-
ancy between the actual services received by interior nodes
and those defined by the ideal link-sharing model.

With H-FSC, each leaf class 1 maintains a triplet (e;, d;, v;),
while each interior class j maintains only v;, where e; and
d; represents the eligibility time and the deadline associated
with the first packet of class ¢’s queue, and v; and v; are vir-
tual times for the classes. The deadlines are assigned such
that if the deadlines of all packets of a session are met, its
service curve i1s guaranteed. The eligibility times are used to
arbitrate which one of the two scheduling criteria to use for
selecting the next packet. The packet at the head of session
1’s queue is said to be eligible if e; < ¢, where t is the cur-
rent time. Eligibility times are computed such that at any
given time when there are eligible packets in the system,
there is a danger that the deadline of at least one packet is
to be violated if the link-sharing instead real-time criteria is
used, i.e., there is a potential conflict between link-sharing
and real-time goals. Since the real-time goal is more impor-
tant, whenever there are eligible packets, the algorithm will
always use the real-time criteria, which is to select, among
all eligible packets, the one with the smallest deadline. At
any given time when there are no eligible packets, 1.e., there
are no possible conflicts between link-sharing and real-time
goals, the algorithm will apply the link-sharing criteria re-
cursively, starting from the root class and stopping at a leaf
class, selects, among all child classes, the one with the small-
est virtual time. While deadline and eligibility times are
associated only with leaf classes, virtual times are associ-
ated with both interior and leaf classes. The virtual time
of a class represents the normalized amount of service that
has been received by the class. In a perfect fair system, the
virtual times for all sibling classes should be identical. The
objective of the link-sharing criteria is then to minimize the
discrepancies between virtual times for sibling classes. The
pseudo code of H-FSC is given in Figure 5. In computing
eligibility time, deadline, and virtual time, the algorithm
uses three curves, one for each parameter: the eligible curve



receive_packet (i, p) /+ session i has received packet p */
enqueue(queue;, p);
if (1 ¢ A) /* if i was not active */

update_ed(s, p, next_p)
if (1 ¢ A)

/* session i is about to become active [*

update_ed(s, 0, p); /* update E;(-), Di(-), compute e;, di */
update_v(i, p); /* update V(-) for i and its ancestors */
A =AU {i}; /* mark i active x/

get_packet() /+ get next packet to send */

D;(-) =update_DC(i); /+ update deadline curve */
E;i(-) =update_EC(i); /+ update eligible curve */

¢i = ¢i + length(p);
e; = E7'(¢i); /* update eligible time +/
d; = Di_1 (ci + length(next_p)); /+ update deadline */

it =ming, {i € A|e; <t}; [* select by real-time criteria x/
if (1 £ 0) /+ does such session exists ? */
p =dequeue(queue;);
update_v(i, p); /* update virtual time */
if (queue; # 0)
update_ed(s, p, head(queue;));
else
A = A\ A{i}; /* mark i passive */
else /x select active ses. by link-sharing criteria /
i = miny,; A;
p =dequeue(i);
update_v(z, p)
if (queue; # 0)
update_d(i, p, head(queue;)) [+ update d; only */
else
A=A\ {i};
send_packet(p);

Figure 5: The Hierarchical Fair Service Curve (H-FSC) al-
gorithm. The receive_packet function is executed every
time a packet arrives; the get_packet function is executed
every time a packet departs (to select the next packet to
send).

E;(-), the deadline curve D;(-) , and the virtual curve V;(-).
The exact algorithms to update these curves are presented
Section 3.2 and Section 3.3.

There are several noteworthy points about the algorithm.
First, while H-FSC needs to use two packet selection crite-
ria to support link-sharing and real-time services, the other
hierarchical algorithm, Hierarchical Packet Fair Queueing
(H-PFQ) [1], selects packet solely based on the link-sharing
criteria, and yet, it can support both link-sharing and real-
time services. This is because H-PFQ guarantees only linear
service curves, and it is feasible to guarantee all linear service
curves simultaneously in a class hierarchy. In contrast, H-
FSC supports decoupled delay and bandwidth allocation by
guaranteeing non-linear service curves. As we have shown in
Section 2, it is infeasible to guarantee all non-linear service
curves simultaneously in a class hierarchy. Consequently, H-
FSC uses two separate criteria for each of the link-sharing
and real-time goals, and employs the mechanism of eligi-
bility time to determine which criteria to use. Second, the
algorithm uses three types of time parameters: deadlines,
eligibility times, and virtual times. While leaf nodes main-
tain all three parameters, the interior nodes maintain only
the virtual time parameter. This is because deadlines and
eligibility times are used for the purpose of guaranteeing
the service curves, and H-FSC provides guarantees service
curves only for leaf classes. On the other hand, virtual times
are used for the purpose of hierarchical link-sharing that
involves the entire hierarchy, and therefore are maintained
by all classes in the hierarchy. A third point to notice is
that while all three parameters are time values, they are
measured with respect to different clocks. Deadlines and
eligibility times are real times in the sense that they are

Figure 6: The function which updates the deadline and the
eligible curves, and computes the deadlines and the eligible
times for each session.

measured with respect to the physical real-time clock. The
absolute values are important as they need to be compared
with the real-time clock. In contrast, the virtual time of a
class is measured with respect to the total amount of ser-
vice provided by its parent class.? The relative differences
between virtual times of sibling classes are more important
than the absolute values of the virtual times. Finally, we
note that in addition to the advantage of decoupling delay
and bandwidth allocation by supporting non-linear service
curves, H-FSC provides tighter delay bounds than H-PFQ
even for class hierarchies with only linear service curves.
The key observation is that in H-PFQ, packet scheduling
is solely based on link-sharing criteria, which needs to go
recursively from the root class to a leaf class when select-
ing the next packet for transmission. The net effect is that
the delay bound provided to a leaf class increases with the
depth of the leaf in the hierarchy [1]. In contrast, with H-
FSC, the delay bound of a leaf class is determined by the
real-time packet selection criteria, which considers only the
leaf classes. Therefore, the delay bound is independent of
the class hierarchy.

3.2 Eligible Time and Deadline

In this section, we present the algorithm to compute the
deadline and the eligible time for each leaf class.

For each leaf class ¢, the algorithm maintains two curves,
one for each parameter: the eligible curve E(-) and the dead-
line curve D(-). In addition, it keeps a variable ¢;, which is
incremented by the packet length each time a class ¢ packet
is selected using the real-time criteria. Thus ¢; represents
the total amount of service that the class has received when
selected under the real-time criteria. Like SCED, the dead-
line curve D;(-) is initialized to its service curve S;(-), and
updated each time session ¢ becomes active at time £, ac-
cording to the following:

Dl(t) = min(Di(t),Si(t — ta) + Ci), Vi> Dl_l(cz) (7)

This is the same as Eq. (3) except that ¢; is used instead
of w;. Since ¢; does not account for the service received
by the session via the link-sharing criteria, the deadlines of
future packets will not be affected due to the fact that the
session receives excess service from the link-sharing hierar-
chy. This is the essence of the “non-punishment” aspect of
the fairness property.

While deadlines are used to guarantee service curves for
leaf classes, eligibility times are used to arbitrate which one

?For simplicity of notation, the parent of the root class is the server
itself.



of the two scheduling criteria is to be applied to choose the
next packet for service. The key observation is that with
non-linear service curves, sometimes 1t is not possible to
achieve perfect link-sharing and guarantee all service curves
at the same time. A typical situation is when a session
with a concave service curve becomes active at t,, joining
sessions that have convex service curves. Before session @
joins, the other sessions receive the excess service, but their
deadline curves are not updated. When session ¢ becomes
active, if the sum of the slopes of all active sessions’ deadline
curves at time ¢ is larger than the server rate, it is impossible
to satisfy the service curves of all sessions.

The only solution is to have the server allocate active ses-
sions “enough” service in advance using the real-time criteria
such that the server has sufficient capacity to satisfy the ser-
vice curves of all sessions when new sessions become active.
However, whenever a packet is served using the real-time cri-
teria but another packet has a smaller virtual time, there is
a departure from the ideal link-sharing distribution. There-
fore, to minimize the discrepancy from the ideal link-sharing
model, we want to serve packets using the link-sharing crite-
ria whenever there is no danger that the guarantees for leaf
classes will be violated in the future.

In H-FSC, eligibility times are used to arbitrate which
one of the two criteria is to be applied to select the next
packet. To give more insight on the concept of eligibility, let
E(t) be the minimum service that all active sessions should
receive by time ¢, such that irrespective of the arrival traffic,
the aggregate service time required by all sessions during
any future time interval (¢,t'] cannot exceed R x (¢’ — 1),
i.e., cannot exceed the server capacity, R. Note that this is
a necessary condition: if the active sessions do not receive
at least E(t) service by time ¢, then there exists a scenario
in which the service curve of at least one session will be
violated in the future. Intuitively, the worst case scenario
occurs when all sessions are continuously active after time
t [15]. Because the above condition holds for any future time
t', we have

E(t) = Y Dit)+[max( Y (D) = Di(t)) (8)

>t
TEA(E) i€ A(L)
+ Y (DHE) = DY) = Rx (' = )Y,
1EP(t)

where D} represents the deadline curve of a passive session
i that becomes active at time ¢, and [2]T denotes max(z, 0).
The above equation reads as follows. In the worst case, when
all passive sessions become active at time ¢, the maximum
service requested by all sessions during the time interval
(t,%'] while all of them remain active is: ZieA(t)(Di(t/) —

Di()) + T (DF(X) = Di(D).

receive at most R x (¢ —t) service during the interval (¢,¢'],
and since by time ¢ the active sessions should have received
at least ZieA(t) D;(t) in order to satisfy their service curves,

the above equation follows.

Thus, E(t) represents the minimum service that should
be allocated to the active sessions by time ¢ using the real-
time criteria in order to guarantee the service curves of all
sessions in the future. The remaining (excess) service can
be allocated by the link-sharing criteria. Further, it can be
shown that the SCED algorithm is optimal in the sense that
it can guarantee the service curves of all sessions by allo-
cating exactly E(t) service by time ¢. With this a possible
algorithm would be simply to allocate E(t) service by using

Since all sessions can

SCED, and redistributing the excess service according to the
link-sharing criteria. The major challenge in implementing
such an algorithm is computing E(t) efficiently. Unfortu-
nately, this is difficult for several reasons. First, as shown in
Eq. (8), E(t) depends not only on the deadline curves of the
active sessions, but also on the deadline curves of the passive
ones. Since according to Eq. (7), the deadline curve depends
on the time when a session becomes active, this means that
we need to keep track of all these possible changes, which
in the worst case is proportional to the number of sessions.
Second, even if all deadline curves are two-piece linear, the
resulting curve E(¢) can be n piece-wise linear, which is dif-
ficult to maintain and implement efficiently. Therefore, we
choose to trade complexity for accuracy, by overestimating
E(t). The first step in the approximation is to note that
(see Eq. (7)):

D)= Dit) < Si(t' =), Vi >t (9)
By using this inequality and the fact that Zl Si(t) < Rxt,
for any ¢, Eq. (8) becomes:

()< Y Du(t)+ Imax( Y (Dilt) = Dift) = St = )1

tEA(L) tEA(L)

< Y (Di(t) + [max(Di(t) = Di(t) = Si(t' = )]h).

>t
1EA(L)

Finally, we define the session’s eligible curve to be

Ei(t) = Di(t) + [lg}gf(Dz‘(t') = Di(t) = Si(t' = 0)IF, (10)
Vit> D ().

The eligible curve El() determines the maximum amount
of service received by session ¢ at time ¢ by the real-time
criteria. Since ZieA(t) Ei(t) > E(t), we have a sufficient

but necessary condition. F;(-)is updated every time session
1 becomes active by the function update_EC according to
the above formula. It is important to note that even though
the formula, which applies to algorithms with service curves
of arbitrary shape, looks complicated, the eligibility curves
are actually quite simple to compute in the specific cases
that we are interested in. For example, for sessions with
concave service curves the eligibility curve is the same as
the deadline curve. Intuitively this is easy to understand as
the minimum service rate for sessions with concave service
curves will not increase in the future, thus there is no need to
provide future service for it. Similarly, for sessions with two
piece-wise linear convex service curve (first slope «, second
slope (3, where § > «), the eligibility curve is the linear
curve with the slope of £.

3.3 Virtual Time

The concept of virtual time was first proposed in the con-
text of Packet Fair Queueing (PFQ) and Hierarchical Packet
Fair Queueing (H-PFQ) algorithms to achieve fairness, real-
time, and hierarchical link-sharing. In H-FSC, we will use
a generalized version of virtual time to achieve hierarchical
link-sharing.

Each Fair Queueing algorithm maintains a system virtual
time v°(-). In addition it associates to each session ¢ a virtual
start time s;(-), and a virtual finish time f;(-). Intuitively,
v°(t) represents the normalized fair amount of service time
that each session should have received by time ¢, s;(t) rep-
resents the normalized amount of service time that session ¢



update_v (i, p)
n = parent(i);
if (1 ¢ A) /x 1s class/session i active ? x/
v; = max(v;, v;(i))
update_VC(i);
if (active(:) = TRUE)

return;
else
w; = w; + length(p);
v =Vl (ws);

if (n #£ ROOT)
update_v(n, p);

Figure 7: The function which updates the virtual time curves
and the virtual times in H-FSC.

has received by time ¢, and f;(t) represents the sum between
vi(t) and the normalized service that session ¢ should receive
for serving the packet at the head of its queue. Since s;(t)
keeps track of the service received by session ¢ by time ¢,
si(t) is also called the virtual time of session ¢, and alterna-
tively denoted v;(t). The goal of all PFQ algorithms is then
to minimize the discrepancies among v;(¢)’s and v(¢). In a
H-PFQ system, each class keeps a virtual time function and
the goal is to minimize the discrepancies among all sibling
nodes in the hierarchy. Various PFQ algorithms differ in two
aspects, the computation of the system virtual time func-
tion, and the packet selection policy. Examples of system
virtual time functions are the start time of the packet being
currently served [9], the finish time of the current packet be-
ing currently served [8], and minimum of the start times of
all packets at head of currently backlogged queues [1]. Ex-
amples of packet selection policies are: Smallest Start time
First (SSF) [9], Smallest Finish time First (SFF) [8], and
Smallest Eligible Finish time First [1, 14]. The choice of
different system virtual time functions and packet selection
policies will affect the real-time and fairness properties of
the resulted PFQ algorithm.

Similar to H-PFQ, for each class ¢ in the hierarchy, H-
FSC maintains a virtual time function vi(t) that represents
the normalized amount of service time that class ¢ has re-
ceived by time ¢. In H-FSC, virtual times are used by the
link-sharing criteria to distribute service along the hierar-
chies according to the classes’ service curves. The link-
sharing criteria is used to select the next packet only when
the real-time criteria is not used. Since the real-time guar-
antees for leaf classes are ensured by the real-time packet
selection criteria, the effect on performance by having dif-
ferent system virtual time functions and packet selection al-
gorithms in the link-sharing criteria is less critical. In H-FSC
we use the SSF policy and the following system virtual time
function: v = (Vi min + Vi, max)/2, where v; min and v; max
are the minimum and maximum virtual start times among
all class ¢’s currently active child classes. By doing this, we
ensure that the discrepancy between the virtual times of any
two active sibling sessions is bounded (see Section 5). It is
interesting to note that by taking v to be either v; mn or
Vi, maxz results in a discrepancy proportional to the number
of sessions.

In H-FSC, v;(t) is iteratively computed by using the pre-
vious virtual time function and the session’s service curve.
Virtual times are updated when a packet finishes service or
a class becomes active. The function update_v is shown

in Figure 7. Notice that update_v recursively updates the
virtual time and the virtual time function by following child-
parent link in the hierarchy till it reaches the root or a parent
class that is active before time t.

In the algorithm, we actually maintain a virtual curve
Vi(+), the inverse function of v;(-), instead of v;(:). Vi(-) is
updated by using the update_VC function every time a
class becomes active:

Vi(t) = min(Vi(t), Si(t — vyi)) + wi), V>V, (wi), (11)

where w; is the total amount of service received by class ¢ by
time ¢, and v;(i) is the system virtual time for class ¢’s parent
class. Finally, it is worth noting that in the particular case
when S;(-) is a straight line with slope r;, from Eq. (11)
we have Vi(t) = r;t. Then, the virtual time v; is simply
vl (w;) = w;/r;, which is exactly the virtual time of session
1 in the PFQ algorithms.

4 Implementation Issues and Complexity

The functions receive_packet and get_packet described
in Figure 5 are called each time an event occurs in the
real system, i.e., a packet arrives or departs. In our cur-
rent implementation we maintain two requests per session,
one characterized by the eligible time and deadline, called
real-time request, and the other characterized by the virtual
time, called link-sharing request. For maintaining the real-
time requests we can use either an augmented binary tree
data structure as the one described in [13], or a calendar
queue [3] for keeping track of the eligible times in conjunc-
tion with a heap for maintaining the requests’ deadlines.
While the former method makes possible to perform inser-
tion and deletion (of the eligible request with the minimum
deadline) in O(log n), where n is the number of active ses-
sions, the latter method is slightly faster in the average case.
The link-sharing requests are stored in a heap based on their
virtual times.

Besides maintaining the request data structures, the al-
gorithm has to compute the various curves, and update the
eligible time, the deadline, and the virtual time. While it is
expensive to update general service curves, in practice this
complexity can be significantly reduced by considering only
piece-wise linear curves.

In our model, each session ¢ is characterized by three pa-
rameters: the largest unit of work, denoted u;"**, for which
the session requires delay guarantees, the guaranteed delay
d**? and the session’s average rate r;. As an example, if
a session requires per packet delay guarantees, then u)*®®
represents the maximum size of a packet. Similarly, a video
or an audio session can require per frame delay guarantees,
by setting »."“* to the maximum size of the frame. The ses-
sion’s requirements are mapped to a two-piece linear service
curve, which for computation efficiency is defined by the fol-
lowing three parameters: the slope of the first segment m},
the slope of the second segment m?, and the z-coordinate
of the intersection between the two segments z;. The map-
ping (u/"** d7*" r;) — (mi,z;, m?) for both concave and
convex curves is illustrated in Figure 8.

It can be easily verified from Eq. (7) that any dead-
line curve that is initialized to a service curve of one of the
two types discussed above remains a two-piece linear service
curve after each updating operation. It is worth noting that
although all two-piece linear concave curve exhibits this nice
property, this is not true for all convex curves. In fact, it can
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Figure 8: The service curve associated with a session i char-
acterized by mazimum delay d7"**, mazimum unit of work
ui**?, and average rate v;. If ui"*T [d7**" > r;, the service

curve is concave (a); otherwise, it is convex (b).

update_DC(3)
if (mi > m?) and (c¢; + yZ —yi > m? x (ta + z? — z:)))
/* Di(-) concave and intersects Si(- — ta) + ¢; */
a =y; —miz;; [* compute intersection point */
2 = (¢, — m} x (xis—l—ta) —a)/(mi —m});
yi =mizi +a;

else
xi:ta—l—xis;
yi =i+ y7;

Figure 9: The function which updates the deadline curve D;.
(Service curve parameters are identified by superscript S.)

be shown that only the two-piece linear convex service curve
which have their first segment parallel with the z-coordinate
have this propriety (which is our case). Since the first seg-
ment of a deadline curve does not necessarily intersect the
origin, we need an extra parameter to uniquely character-
ize a deadline curve. We take this parameter to be the y-
coordinate of the intersection between the two segments and
denote it y;. The pseudocode to update the deadline curve
of session ¢ is presented in Figure 9. The only parameters
that are modified are the coordinates of the segments inter-
section «; and y;, the slopes of the two segments, m; and
m?2, remain unchanged. It is important to note that the
deadline curve, as well as the virtual and eligible curves, is
updated only when the state of the session changes from
passive to active. As long as the session remains active, no
curves need to be updated.

The update operation of the virtual curve is similar to
the one for the deadline curve. The only difference is that
instead of using ¢; and t,, we use the total service w; and
the virtual time v;(i), respectively.

Although from Eq. (10) it appears that the computation
of the eligible curve is quite complex, in our case it turns out
that it can be done very efficiently: if the deadline curve is
concave, then the eligible curve simply equals to the deadline
curve; if the deadline curve is two-piece linear convex, then
the eligible curve reduces to a line that starts from the same
point with the first segment of the deadline curve, and has
the same slope as its second segment.

Thus, updating the deadline, eligible and virtual curves
takes constant time. Computing the eligible time, deadline
and virtual time reduces to the computation of the inverse of
a two-piece linear function, which takes also constant time.
Consequently, H-FSC takes O(logn) per packet arrival or
packet departures, which is similar to other packet schedul-
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Figure 10: Class Hierarchy.

ing algorithms [1].

5 Delay and Fairness Properties of H-FSC

In this section, we present our main theoretical results on
the delay and fairness properties of H-FSC. The proofs can
be found in [15]. For the rest of discussion, we consider the
arrival time of a packet to be the time when its last bit was
received, and the departing time to be the time when its last
bit has been transmitted.

The following theorem shows that by computing the dead-
lines of each packet, based on D;(:), as defined by Eq. (7),

we can indeed guarantee the service curve Sl() of session 1.

Theorem 1 With H-FSC, the service curve of a session is
guaranteed, if each of its packets is transmitted before its

deadline.

The next theorem gives tight delay bounds for H-FSC. In
conjunction with the previous lemma, this result shows that
the service curves are guaranteed within the size of a packet
of maximum length.

Theorem 2 The H-FSC algorithm guarantees that the dead-
line of any packet is not missed by more than Tmas, where
Tmaz Tepresents the time to transmit a packet of maximum
length.

It should be noticed that, unlike H-PFQ, the delay bounds
do notdepend on the number of levels in the hierarchy. This
is simply because the computation of the deadlines are based
on the service curves of the leaf classes only, and packet
selection using the real-time criteria is independent of the
hierarchy structure.

Next, Theorem 3 characterizes the fairness of our algo-
rithm, by giving bounds on the discrepancy in the service
time distribution from the ideal link-sharing model.

Theorem 3 In H-FSC, the difference between the virtual
times of any two sibling sessions that are simultaneously ac-
tive is bounded by a constant.

From the theorem, the following corollary immediately
follows:

Corollary 1 in H-HSC, for any two sibling classes v and
7 that are continuously backlogged during a time interval
(t1,t2], the following holds,

| (vi(t2) = vi(t1)) = (v;(t2) — v;(t2)) |< B, (12)

where B is a positive constant.
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In other words, the difference between the normalized ser-
vice time that each session should receive during the interval
(t1,t2] is bounded. It can be easily shown that when the ser-
vice curves for classes ¢ and j are linear, B reduces to the
fairness metric defined by Golestani [8].

6 Performance Evaluation

We have implemented H-FSC in a simulator and in the ker-
nel of NetBSD 1.2 on the Intel 1386 architecture. We use
a calendar queue in conjunction with a heap to maintain
the real-time requests, and a heap at each interior class to
maintain the link-sharing requests. The two implementa-
tions use nearly identical code. The only difference is that
in the NetBSD implementation, we use the CPU clock cycle
counter provided by the Intel Pentium Pro processor as a
fine grain real-time clock for all eligible time and deadline
computations. In the NetBSD, besides the scheduler, we
have also implemented a packet classifier that maps IPv4
packets to appropriate classes in the hierarchy.

We evaluate the H-FSC algorithm using both simulation
and measurement experiments. The experiments are per-
formed on a 200 MHz Intel Pentium Pro system with 256
KB on-chip L2 cache, 32 MB of RAM, and a 3COM Ether-
link IIT ISA Ethernet interface card. We instrumented the
kernel such that we can record a log of events (such as en-
queue and dequeue) with time-stamps (using the CPU clock
cycle counter) in a system memory buffer while the experi-
ments are running, and later retrieve the contents of the log
through an ioctl system call for post-processing and analy-
sis. In the rest of the section, we present results to evaluate
H-FSC’s performance in three aspects: (1) H-FSC’s abil-
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audio and video sessions.

ity to provide real-time guarantees, (2) H-FSC’s support for
link-sharing, and (3) the computation overhead of our im-
plementation of the algorithm.

6.1 Real-time Guarantees

We use simulation to evaluate the delay properties of H-FSC
because we can have better control over traffic sources in the
simulator. We compare H-FSC to H-WF2Q+, which, to the
best of our knowledge, achieves the tightest delay bounds
among all hierarchical packet fair queueing algorithms [1].

Consider the two-level class hierarchy shown in Figure 10.
The value under each class represents the bandwidth guar-
anteed to that class. In our experiment, the audio session
sends 160 byte packets every 20 ms, while the video session
sends 8 KB packets every 33 ms. All the other sessions send
4 KB packets and the F'TP session is continously backlogged.

To demonstrate H-FSC’s ability to ensure low delay for
real-time connections, we target for a 5 ms delay for the
audio session, and a 10 ms delay for the video session. To
achieve these objectives, we assign to the audio session the
service curve S, = (ug'®® = 160 bytes, d7’*® = 5 ms,r, =
64 Kbps), and to the video session the service curve S, =
(uy'*® =8 KB, dy"*® =10 ms, 7, = 2 Mbps). Also, in order
to pass the admission control test, we assign to the FTP
session the service curve Sprp = (upp = 4 KB, d%5% =
16.25 ms,rprp = 5 Mbps). The service curves of all the
other sessions and classes are linear.

Figure 11 shows the delay distribution for the audio and
video sessions under H-WF?Q+ and H-FSC. Clearly, H-FSC
achieves much lower delays for both audio and video ses-
sions. The reduction in delay with H-FSC is especially sig-
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nificant for the audio session. This is a direct consequence
of H-FSC’s ability to decouple delay and bandwidth alloca-
tion. The periodic variation in the delay, especially under
H-WF2?Q+ , mirrors the periodic activity of the ON-OFF
source. H—WF2Q+ is more sensitive to these variations due
to the coupling between bandwidth and delay allocation.
Intuitively, when the ON-OFF source becomes active, the
number of packets from competing sessions that an audio
or video packet has to wait before receiving service almost
doubles and the delay increases accordingly.® On the other
hand, H-FSC ignores the class hierarchy in satisfying the
delay requirements. Therefore, when the ON-OFF session
becomes active, the number of additional packets from com-
peting sessions an audio or video packet has to wait before
being transmitted increases by less than 20 % because the
bandwidth of the ON-OFF session accounts for only 18 %
of the total bandwidth.

6.2 Link-sharing

To evaluate H-FSC’s support for link-sharing, we conduct
the following experiment using our NetBSD /1386 implemen-
tation as the platform.

We set up a class hierarchy similar to the one in Figure 10
except that there are only 4 sessions at each level. The ses-
sions at level one all have bandwidth reservation of 1.5 Mbps,
and the sessions at level two have bandwidth reservations of
80 Kbps, 480 Kbps, 1.44 Mbps and 2 Mbps respectively.
The total aggregate bandwidth reservation is 10 Mbps —
Ethernet’s theoretical maximum throughput. All sessions
are continuously backlogged except for the 2 Mbps session
which is an ON-OFF source. The traffic load is generated
by a self-timed user-level program that sends UDP packets
of size 512 bytes for each session at the required rates. Fig-
ure 12 shows the bandwidth vs. time graph for four sessions
at level 2 in the hierarchy. To compute the bandwidth, a
37.5 ms averaging interval is used for all sessions except that
a 60 ms interval is used for the 80 Kbps session due to its
low packet rate. As can be seen, when the 2 Mbps ON-OFF
session is idle, its bandwidth is fairly distributed to the other
three competing sessions, while when all sessions are active,
they all received their guaranteed rates.

3Because the bandwidth of the ON-OFF session accounts for 40 %
of the total bandwidth of class A, when the ON-OFF session becomes
active, the number of packets of class A that have deadlines during a
time interval also increases by approximately 40 %.

6.3 Computation Overhead

There are generally three types of computation overhead
involved in our implementation of H-FSC: packet classifica-
tion, enqueue, and dequeue.

We first measure the packet classification overhead in our
NetBSD/i386 implementation. To reduce the overhead of
packet classification, a hashing-based algorithm is used. As
a result, under light load, only the first packet of a class
incurs the cost of full classification. Subsequent packets
from this class are classified based on the class’s hash val-
ues. While the worst-case overhead in our implementation
increases with the number of classes in the hierarchy, the
average time to classify a packet based on hashing is about
3 ps.

To measure the enqueue and dequeue overhead, we run
the simulator in single user mode on a 200 MHz Pentium
Pro system with 256 KB L2 cache and 32 MB of memory
running the unchanged NetBSD 1.2 kernel. Since identical
code 1s used in both the simulator and the NetBSD kernel
implementation, the results also reflect the overhead in the
NetBSD implementation.

In all experiments presented in this section, we measure
(1) the average enqueue time, (2) the average dequeue time
for packet selection by both the link-sharing and the real-
time criteria, and (3) the average per packet queueing over-
head, which is the total overhead of the algorithm divided by
the number of packets forwarded. In each case, we compute
the averages over the time interval between the transmis-
sion of the 10,000-th and the 20,000-th packet to remove
the transient regimes from the beginning and the end of the
simulation.

In the first experiment, we use one level hierarchies where
the number of sessions varies from 1 to 1000 in increments
of 100. The link bandwidth is divided equally among all ses-
sions. The traffic of each session is modeled by a two state
Markov process with an average rate of 0.95 of its reserved
rate. As shown in Figure 13(a), enqueue and dequeue times
increase little between as the number of sessions increase
from 100 to 1000 sessions. This is expected as H-FSC has
a logarithmic time complexity. Based on the average per
packet queueing overhead, we can estimate the throughput
of our implementation. For example, with 1000 sessions,
since the average per packet queueing overhead is approxi-
mately 9 us, adding the 3 ps steady-state packet classifica-
tion overhead, we expect our implementation to be able to
forward over 83,000 packets per second.*

In the second experiment, we study the impact of the
number of levels in the class hierarchy on the overhead. We
do this by keeping the number of sessions constant at 1000
while varying the number of levels. We consider three hi-
erarchies: one-level, two-level with 10 internal classes, each
having 100 child classes, and three-level with each internal
class having 10 child classes. As shown in Figure 13(b), the
enqueue and dequeue times as well as the average per packet
queueing overhead increase linearly with the number of lev-
els. Again, this is expected since each additional level adds
a fixed overhead for updating the virtual times in the hier-
archy which, in our case, dominates the variable overhead
that is logarithmic in the number of child classes at each
level.

Finally, we consider the case when all sessions are contin-
uously backlogged. The average enqueue time in this case is

4This figure does not take into account route lookup and other
system related overheads.
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Figure 13: (a) The overheads for a flat hierarchy with 1, 100, - --, and 1000 sessions. (b) The overheads for a one-level,
two-level, and three-level hierarchies, with each hierarchy having 1000 sessions.

very small (less than 0.3 pus) as a packet arriving at a non-
empty queue is just added at the end of the queue without
invoking any other processing by the algorithm. However,
both types of dequeue times increase accordingly. This is
because whenever a packet arrives at an empty queue or a
packet is dequeued, our algorithm moves the real-time re-
quests that have become eligible from the calendar queue
into the heap. Since in this experiments all sessions are
backlogged, this cost is charged to the dequeue operations
only. Nevertheless, the average per packet queueing over-
head changes little. For the flat hierarchy with 1000 ses-
sions, the average per packet overhead i1s 8.79 us, while for
the three-level hierarchy it is 11.54 ps.

We note that all these results are obtained with rela-
tively untuned code. We expect that the overhead can be
significantly reduced with proper optimizations.

7 Related Work

Class Based Queueing [6] and Hierarchical Packet Fair Queue-
ing [1] are two algorithms that try to support both hierar-
chical link-sharing and real-time services.

A CBQ server consists of a link-sharing scheduler and a
general scheduler. The link-sharing scheduler decides whether
to regulate a class based on link-sharing rules and mark
packets of regulated classes as ineligible. The general sched-
uler services eligible packets using a static priority policy.

The key difference between H-FSC and CBQ is that we
adopt a formal approach in designing H-FSC. By presenting
a formal model that precisely defines all the important goals
of link-sharing, real-time, and priority services, we expose
the fundamental tradeoffs between conflicting performance
goals. This enables us to design an algorithm, H-FSC, that
not only provides better and stronger real-time guarantees
than CBQ, but also supports more accurate link-sharing ser-
vice than CBQ. In addition, H-FSC offers much stronger
protection among traffic classes than CBQ when priority is
supported.

For real-time services, H-FSC provides per session delay
bound that is decoupled from the bandwidth requirement
while CBQ provides one delay bound for all real-time ses-
sions sharing the link. In addition, the delay bound pro-
vided by CBQ accounts only for the delay incurred by the
general scheduler, but not the delay potentially incurred by
the link-sharing scheduler. Since a traffic stream that is

smooth at the entrance to the network may become burstier
inside the network due to network load fluctuations, the
link-sharing scheduler for a router inside the network may
regulate the stream. With certain regulators such as those
defined in [7, 18], this regulation delay does not increase the
end-to-end delay bound. However, the regulating algorithm
implemented by the link-sharing scheduler in CBQ is based
on link-sharing rules and is quite different from the well un-
derstood regulators defined in [7, 18]. In addition, in order
for the end-to-end delay bound for a session not be affected
by the regulating delay, the parameters need to be consis-
tent among all regulators for the session in the network. In
CBQ, the regulation process is affected by the link-sharing
structure and policy, which are independently set at each
switch. Therefore, it is unclear how end-to-end delay bound
will be affected by the regulation of link-sharing schedulers.

For link-sharing service, by approximating the ideal and
well-defined Fair Service Curve link-sharing model, H-FSC
can identify precisely and efficiently during run-time the in-
stances when there are conflicts between requirements of
the leaf classes (real-time) and interior node classes (link-
sharing). Therefore, H-FSC can closely approximate the
ideal link-sharing service without negatively affecting the
performance of real-time sessions. With CBQ, there could
be situations where the performance of real-time sessions is
affected under the Formal-Link-Sharing or even the more
restricting Ancestor-Only rules [6]. To avoid the effect on
real-time sessions, a more restrictive Top-Level link-sharing
policy is defined.

Another difference between H-FSC and CBQ is that with
H-FSC, priorities for packets are dynamically assigned based
on its service curves, while with CBQ, they are statically as-
signed based on priority classes. In CBQ), the link-sharing
rule is affected only by bandwidth; once packets become
eligible, they will have a static priority. This has some un-
desirable consequences. As an example, consider the class
hierarchy in Figure 1, assume that CMU has many active
video streams (priority 1) but no data traffic (priority 2),
according to the link-sharing rule, CMU video traffic will
become eligible at a rate of 25 Mbps. Once become eligi-
ble, they will all be served at the highest priority by the
general scheduler. This will negatively affect not only the
delay bound provided to U. Pitt’s real-time traffic, but also
the average delay of U. Pitt’s data traffic, which is served
by the general scheduler at a lower priority. In contrast,



H-FSC provides much stronger firewall protection between
different classes. The service curve for a leaf class will be
guaranteed regardless of the behavior of other classes. In
addition, link-sharing among classes is also dictated by ser-
vice curves. The excess service received by a class will be
limited by its ancestors’ service curves, which specifies both
bandwidth and priority in an integrated fashion.

Like H-FSC, H-PFQ is also rooted in a formal frame-
work. The major difference between H-PFQ and H-FSC is
that H-FSC decouples the delay and bandwidth allocation,
thus achieves more flexible resource management and higher
resource utilization. In addition, unlike H-PFQ where a ses-
sion’s delay bound increases as the depth of the hierarchy,
the delay bound provided by H-FSC is not affected by the
depth of the hierarchy.

In this paper, we use service-curve based schedulers to
achieve decoupling of delay and bandwidth allocation. In [10,
16], it has been shown that more general service curves than
linear curves can be supported by GPS. However, this gen-
eral resource assignment of GPS is only possible if all rele-
vant sessions in the entire network be policed at the source.
Therefore, sources will not be able to opportunistically uti-
lize the excess bandwidth by sending more traffic than re-
served. [t is unclear whether link-sharing can be supported
in such a network. With H-FSC| the scheduler guarantees a
minimum service curve to a session regardless of the behav-
iors of other sessions in the network. In addition, it does not
require that the session’s input traffic to be policed at the
network entrance, thus allows sources to statistically share
the excess bandwidth inside the network. Furthermore, even
for real-time services that do not allow link-sharing, service-
curve based schedulers will achieve a larger schedulability
region than GPS with general resource assignments.

8 Conclusion

We make two important contributions. First we define an
ideal Fair Service Curve link-sharing model that supports
(a) guaranteed QoS for all sessions and classes in a link-
sharing hierarchy; (b) fair distribution of excess bandwidth;
and (c) priority service or decoupled delay and bandwidth
allocation. By defining precisely the ideal service to be sup-
ported, we expose the fundamental architecture level trade-
offs that apply to any schedulers designed to support link-
sharing, real-time, and priority services. As a second contri-
bution, we propose a novel scheduler called H-FSC that can
accurately and efficiently approximate the ideal Fair Service
Curve link-sharing model. The algorithm always guaran-
tees the performance for leaf classes while minimizing the
discrepancy between the actual services provided to the in-
terior classes and the services defined by the ideal model.
We have implemented the H-FSC scheduler in the NetBSD
environment, and demonstrated the effectiveness of our al-
gorithm by simulation and measurement experiments.
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