Consistent Overhead Byte Stuffing

Stuart Cheshire and Mary Baker
Computer Science Department, Stanford University
Stanford, California 94305, USA

{cheshire, ngbaker} @s. st anf ord. edu

Abstract

Byte stuffing is a process that transforms a sequence of data
bytes that may contain ‘illegal” or ‘reserved’ values into a
potentially longer sequence that contains no occurrences of
those values. The extra length is referred to in this paper as
the overhead of the algorithm.

To date, byte stuffing algorithms, such as those used by
SLIP [RFC1055], PPP [RFC1662] and AX.25 [ARRL84],
have been designed to incur low average overhead but have
made little effort to minimize worst case overhead.

Some increasingly popular network devices, however, care
more about the worst case. For example, the transmission
time for ISM-band packet radio transmitters is strictly
limited by FCC regulation. To adhere to this regulation, the
practice is to set the maximum packet size artificially low so
that no packet, even after worst case overhead, can exceed
the transmission time limit.

This paper presents a new byte stuffing algorithm, called
Consistent Overhead Byte Stuffing (COBS), that tightly
bounds the worst case overhead. It guarantees in the worst
case to add no more than one byte in 254 to any packet.
Furthermore, the algorithm is computationally cheap, and
its average overhead is very competitive with that of
existing algorithms.

1. Introduction

The purpose of byte stuffing is to convert data packets
into a form suitable for transmission over a serial
medium like a telephone line. Boundaries between
packets are marked by a special reserved byte value,
and byte stuffing ensures, at the cost of a potential
increase in packet size, that this reserved value does
not inadvertently appear in the body of any transmit-

Permission to make digital/hard copies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, the ACM copyright/server notice,
the title of the publication and its date appear, and notice is given that
copyright is by permission of the Association for Computing Machinery,
Inc. (ACM). To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCOMM '97 - Cannes, France, September 1997

© 1997 ACM

ted packet. In general, some added overhead (in terms
of additional bytes transmitted over the serial me-
dium) is inevitable if we are to perform byte stuffing
without loss of information.

Current byte stuffing algorithms, such as those used
by SLIP [RFC1055], PPP [RFC1662] and AX.25
[ARRL84], have potentially high variance in per-
packet overhead. For example, using PPP byte
stuffing, the overall overhead (averaged over a large
number of packets) is typically 1% or less, but indi-
vidual packets can increase in size by as much as
100%.

While this variability in overhead may add some jitter
and unpredictability to network behavior, it has only
minor implications for running PPP over a telephone
modem. The IP host using the PPP protocol has only
to make its transmit and receive serial buffers twice as
big as the largest IP packet it expects to send or
receive. The modem itself is a connection-oriented
device and is only concerned with transmitting an
unstructured stream of byte values. It is unaware of
the concept of packet boundaries, so the size of the
packets it has to send does not have any direct design
implications for the modem.

In contrast, new devices are now becoming available,
particularly portable wireless devices, that are packet-
oriented, not circuit-oriented. Unlike telephone
modems these devices are not insensitive to the
packet sizes they have to send. Channel-hopping
packet radios that operate in the unlicensed ISM
(Industrial / Scientific/ Medical) bands under the FCC
Part 15 rules [US94-15] have a maximum transmission
time which they are not allowed to exceed. Unexpect-
edly doubling the size of a packet could result in a
packet that is too big to transmit legally. Using PPP
encoding, the only way to be certain that no packets
will exceed the legal limit is to set the IP MTU
(maximum transmission unit) to half the device’s true
MTU, despite the fact that it is exceedingly rare to
encounter a packet that actually doubles in size when
encoded. Drastically reducing the IP MTU in this way
can significantly degrade the performance seen by the
end-user.

—1—

Although, as seen from experiments presented in this
paper, packets that actually double in size rarely occur
naturally, it is not acceptable to ignore the possibility
of their occurrence. Without a factor-of-two safety
margin, the network device would be open to mali-
cious attack through artificially constructed patho-
logical packets. An attacker could use such packets to
exploit the device’s inability to send and/or receive
worst-case packets, causing mischief ranging from
simple denial of service attacks to the much more
serious potential for exploiting finger-demon-style
run-off-the-end-of-the-array bugs [RFC1135].

This problem could be solved in a variety of ways.
One solution would be to set the IP MTU close to the
underlying device MTU, and use link-layer fragmen-
tation and reassembly for packets that exceed the limit
when encoded. While this could work, requiring link-
layer software to perform fragmentation and reas-
sembly is a substantial burden we would rather not
impose on driver writers. Fragmentation and reas-
sembly code has proved notoriously difficult to get
right, as evidenced by the recent spate of Internet
“Ping of death” attacks exploiting a reassembly bug
that exists in many implementations of IP [CA-96.26].
Link-layer fragmentation would also add protocol
overhead, because the link-layer packet headers
would have to contain additional fields to support the
detection, ordering, and reassembly of fragments at
the receiving end.

It might also be possible to use IP’s own fragmenta-
tion and reassembly mechanisms, but this solution
also has problems. One problem is that in current
networking software implementations IP fragmenta-
tion occurs before the packet is handed to the device
driver software for transmission. There is no mecha-
nism for the device driver to hand the packet back to
IP with a message saying, “Sorry, I failed, can you
please refragment this packet and try again?” Also,
some software goes to great lengths to perform path
MTU discovery in order to send optimally sized
packets. It would be difficult for such software to cope
with an IP implementation where the MTU of a
device may vary for each packet. Finally, it is unclear
how this mechanism could handle IP packets that
have the “Don’t Fragment” header bit set.

Given these problems it would be much better if there
were a byte stuffing algorithm that did not have such
inconsistent behavior. This paper presents a new
algorithm, called Consistent Overhead Byte Stuffing
(COBS), which can be relied upon to encode all
packets efficiently, regardless of their contents. It is
simple to understand, computationally cheap, and
easy to implement in software. All packets up to 254
bytes in length are encoded with an overhead of
exactly one byte. For packets over 254 bytes in length

the overhead is at most one byte for every 254 bytes of
packet data. The maximum overhead can be calcu-
lated as 0.4% of the packet size, rounded up to a
whole number of bytes.

Using this algorithm, the IP MTU can be set to within
0.4% of the underlying device’s maximum packet size
without fear of any packet inadvertently exceeding
that limit. This gives better end-user performance,
because now any given piece of hardware can consis-
tently send larger IP packet payloads.

The rest of the paper proceeds as follows:

In the next section we give more detailed background
information on the subject of packet framing and byte
stuffing.

Section 3 describes COBS and Sections 4 and 5
compare its cost to using PPP to encode the same data
packets. In the least favourable case for our algorithm,
network traffic consisting predominantly of small
packets, COBS is found to add less than 0.5% addi-
tional average overhead compared to PPP. Although
this is a small price for the performance benefit of
being able to use much larger packets, it is possible to
eliminate even this cost. We present a trivial modifi-
cation to COBS, called Zero Pair Elimination (ZPE),
that improves on straight COBS’s average perform-
ance at the expense of a fractionally higher worst case
bound. In addition to having a very low bound on
worst-case overhead, COBS/ZPE also achieves an
average overhead lower than PPP’s, even for small-
packet traffic.

In Section 4 we consider the expected overhead from a
theoretical point of view, for data consisting of
uniformly distributed random eight-bit values. Of
course real network traffic often does not have a
uniform distribution of byte values, so in Section 5 we
present experimental results comparing COBS with
PPP for real network traffic. Section 6 presents our
conclusions.

2. Background:
Packet Framing and Data Stuffing

When packet data is sent over any serial medium, a
protocol is needed by which to demark packet
boundaries. This is done by using a special value or
signal. That marker should be one that never occurs
within the body of any packet, so that when the
receiver detects that special marker, it knows, without
any ambiguity, that it does indeed indicate a bound-
ary between packets.

In hardware systems low-level framing protocols are
common. For example, in IBM Token Ring the
electrical signalling on the wire uses Differential

—2__

Manchester Encoding, and packet boundaries are
marked by a violation of those encoding rules
[IEEE802.5]. Making the packet delimiter an illegal
signal value is a very simple way to ensure that no
packet payload can inadvertently generate that signal
on the cable. This approach is not a universal solution,
because not all hardware supports deliberate genera-
tion of protocol violations, and even on hardware that
does, use of this facility is usually restricted to the
lowest levels of the driver firmware.

An alternative is to use a legal value as the frame
delimiter. The drawback of this method is that the
protocol needs to ensure that the frame delimiter
value never occurs within the body of the packet. One
approach is simply to prohibit the frame delimiter
value from being used in the data of any packet, but
this has the disadvantage that the communication
protocol is no longer ‘transparent’ to the higher layers
— the software using it has to be aware of which
character values it can use and which it cannot.

A better approach is to allow the higher layers of
software to send any character values they wish, and
to make the framing protocol software responsible for
transforming any data it is given into a form that
contains no reserved character values and is suitable
for transmission. Whatever transformation it performs
must be reversible, so that the communications
software at the receiving end can recover the original
payload from the encoded form that is transmitted.
The mechanisms generally used to do this are called
bit stuffing algorithms (which operate on a bit-by-bit
basis) or byte stuffing algorithms (which operate on a
byte at a time).

Both bit stuffing and byte stuffing in general increase
the size of the data being sent. The amount of increase
depends on the patterns of values that appear in the
original data and can vary from no overhead at all to
doubling the packet size (in the worst case for PPP).
These are discussed in more detail below.

HDLC [ECMAA40] uses a bit stuffing scheme. It uses
the binary sequence 01111110, called the Flag Se-
quence, to mark boundaries between packets. To
eliminate this pattern from the data, the following
transformation is used: whenever the transmitter
observes five ones in a row, it inserts a zero immedi-
ately following. This eliminates the possibility of six
ones ever occurring inadvertently in the data. The
receiver performs the reverse process: After observing
five ones in a row, if the next binary digit is a zero it is
deleted, and if it is a one then the receiver recognizes
it as one of the special framing patterns. This process
of inserting extra zeroes (‘bit stuffing’ or ‘zero inser-
tion’) increases the transmitted size of the data. In the
worse case, for data that consists entirely of binary

ones, HDLC framing can add 20% to the transmitted
size of the data.

This kind of bit-level manipulation is easy to imple-
ment in the hardware of a serial transmitter, but is not
easy to implement efficiently in software. Software
gets efficiency from working in units of 8, 32, or more
bits at a time, using on-chip registers and wide data
buses. Algorithms that are specified in terms of
individual bits can be hard to implement efficiently in
software because it can be difficult to take good
advantage of the processor’s ability to operate on
bytes or words at a time. For this reason it is more
common for software algorithms to use byte stuffing.

PPP uses a byte stuffing scheme [RFC1662]. It uses a
byte with value Ox7E (the same as the HDLC Flag
Sequence) to mark boundaries between packets. To
eliminate this value from the data payload, the
following transformation is used: everywhere that
0x7E appears in the data it is replaced with the two-
character sequence 0x7D,0x5E. 0x7D is called the
Control Escape byte. Everywhere that 0x7D appears
in the data it is replaced with the two-character
sequence 0x7D,0x5D. The receiver performs the
reverse process: whenever it sees the Control Escape
value (0x7D) it discards that byte and XORs the
following byte with 0x20 to recreate the original input.

On average this byte stuffing does reasonably well,
increasing the size of purely random data by a little
under 1%, but in the worst case it can double the size
of the data being encoded. This is much worse than
HDLC’s worst case, but PPP byte stuffing has the
advantage that it can be implemented reasonably
efficiently in software.

PPP’s byte stuffing mechanism, in which the offend-
ing byte is prefixed with 0x7D and XORed with 0x20,
allows multiple byte values to be eliminated from a
packet. For example, PPP byte stuffing can facilitate
communication over a non-transparent network by
eliminating all ASCII control characters (0x00-0x1F)
from the transmitted packet data. It is equally possible
to do this using a COBS-type algorithm, but the
subject of this paper is the minimal byte stuffing
necessary to facilitate reliable unambiguous packet
framing, not extensive byte stuffing to compensate for
non-transparency of the underlying network.

A more exhaustive treatment of framing and data
stuffing can be found in [Che97].

3. Consistent Overhead
Byte Stuffing Algorithms
We first provide an overview of the encoding used by

COBS and then describe the procedure for performing
that encoding. We conclude this section by describing

—3—

S| 2]

o3| |y
odHle[l [I Jo] [Wolr]l |d]

Figure 1. Example Code Blocks
COBS takes its input data and encodes it as a series of variable
length code blocks. Each code block begins with a single code
byte (shown shaded), followed by zero or more data bytes.

some of the properties and implications of using
COBS, particularly the fact that COBS can also
eliminate the overhead of lower-level byte framing
and bit stuffing.

3.1 Overview

COBS performs a reversible transformation on a data
packet to eliminate a particular byte value from it. We
pick zero as the value to eliminate, because zeroes are
common in computer data and COBS performs better
when it has many bytes to eliminate. However, with
only trivial changes any desired value may be elimi-
nated, as described below.

COBS takes its input data and encodes it as a series of
variable length code blocks. Each code block begins
with a single code byte, followed by zero or more data
bytes. The number of data bytes is determined by the
code byte. Figure 1 shows some examples of valid
code blocks.

Apart from one exception, the meaning of each code
block is that it represents the sequence of data bytes
contained within the code block, followed by an implicit
zero. The zero is implicit — it is not actually contained
within the sequence of data bytes in the code block.
That would defeat our purpose, which is that the
output data should contain no zero values. The
exception mentioned above is code 0xFF, which
represents a run of 254 non-zero data bytes without an
implicit zero on the end. This code acts as a kind of
‘fail-safe’ or “escape hatch’, allowing COBS to encode
long sequences of bytes that do not contain any zeroes
at all, which it would not otherwise be able to do. The
meanings of the various code values are summarized
in Table 1.

COBS has the property that the byte value zero is
never used as a code byte, nor does it ever appear in
the data section of any code block. This means that
COBS takes an input consisting of characters in the
range [0,255] and produces an output consisting of
characters only in the range [1,255]. Having elimi-
nated all zero bytes from the data, a zero byte can
now be used unambiguously to mark boundaries

Code | Followed by Meaning

0x00 (not applicable) (not allowed)

0x01 nothing A single zero byte

0x02 one data byte The single data byte,

followed by a single zero

0x03 two data bytes The pair of data bytes,
followed by a single zero
0x04 | three databytes | The three data bytes,

followed by a single zero

n (n-1) data bytes The (n-1) data bytes,
followed by a single zero
OXxFD | 252 data bytes The 252 data bytes,
followed by a single zero
OXFE | 253 data bytes The 253 data bytes,
followed by a single zero
OXFF | 254 data bytes The 254 data bytes,

not followed by a zero

Table 1. Code values used by
Consistent Overhead Byte Stuffing

Apart from one exception, a code byte value of n represents a
sequence of n bytes that ends with a zero. The (n-1) non-zero
bytes are placed immediately after the code byte; the final
trailing zero is implicit. Note that this means that n bytes of
code (a code byte plus (n-1) data bytes) are used to encode the
same number of bytes — n bytes — from the source data, which
gives zero encoding overhead. The one exception is code byte
OXFF, in which case 255 output bytes are used to encode a se-
quence of 254 bytes from the source data, giving an encoding
overhead of '/ ,, (a little under 0.4%) in that case.

between packets. This allows the receiver to resyn-
chronize reliably with the beginning of the next
packet after an error. It also allows new listeners to
join a broadcast stream at any time and reliably detect
where the next packet begins.

It is also simple to eliminate some value other than
zero from the data stream, should that be necessary.
For example, a radio interface that connects through
the serial port like a Hayes modem might use an
ASCII carriage return (byte value 0x0D) to mark the
end of each packet [Che95]. By taking the output of
COBS and XORing each byte with 0x0D before
sending it to the radio, the COBS output is easily
converted into a form suitable for transmission over
this radio device. The only value that gives the result
0x0D when XORed with 0x0D is zero, and since there
are no zeroes in the output from COBS, this procedure
cannot result in any occurrences of 0x0D in the
converted output. The receiver XORs each received
byte with 0x0D to reverse the transformation before
feeding it to the COBS decoder, so that the data is
decoded correctly. Of course, in real implementations,
the COBS encoding and the output conversion are
performed in a single loop for efficiency reasons
[Cla90].

— 4 —

For the remainder of this paper we will consider,
without loss of generality, only the case of eliminating
zeroes from the data. The process described above can
be used in any case where a different value is to be
eliminated.

3.2 Encoding Procedure for COBS

The job of the COBS encoder is to break the packet
into one or more sequences of non-zero bytes. The
encoding routine searches through the first 254 bytes
of the packet looking for the first occurrence of a zero
byte. If no zero is found, then a code of 0xFF is output,
followed by the 254 non-zero bytes. If a zero is found,
then the number of bytes examined, 1, is output as the
code byte, followed by the actual values of the (n-1)
non-zero bytes up to (but not including) the zero byte.
This process is repeated until all the bytes of the
packet have been encoded.

The one minor problem with this simple description
of the algorithm is that the last sequence of a packet
must either end with a zero byte, or be exactly 254
bytes long. This is not true for all packets. To circum-
vent this problem, a zero byte is logically appended to
the end of every packet before encoding; after decod-
ing, the final zero of every packet is discarded to
correctly recreate the original input data. This ensures
that all packets do end with a zero and are therefore
encodable. It is not necessary actually to add this zero
byte to the end of the packet in memory; the encoding
routine simply has to behave as if the added zero
were there. As an optional optimization, packets that
when encoded happen to end with a final code 0xFF
block (sequence without a final zero) do not need to
have a final zero logically appended. This optimiza-
tion can be performed without ambiguity, because the
receiver will observe that the decoded packet does not
end with a zero, and hence will realize that in this case
there is no trailing zero to be discarded in order to
recreate the original input data. Figure 2 shows an
example of packet encoding.

The implementation of COBS is very simple. The
Appendix to this paper gives complete C source code
listings to perform both COBS encoding and decod-
ing. Both algorithms have running time that is linear
with respect to packet size, and can be implemented
in extremely simple hardware. No multiplications or
divisions are required, nor are additions or subtrac-
tions. Both algorithms can be implemented using only
assignment, increment, and test for equality.

One aspect of COBS that differs from conventional
two-for-one substitution encodings like PPP is that
PPP operates on a single byte at a time, whereas COBS
has to ‘look ahead” up to 254 bytes. In the context of
thinking about network data as a continuous stream

Input: [45]00J00 2cl4cl79 Joojoo j40jo6j4F [37 0

Output: 02 [45]01 [o4[2clacl79lo1 [05]4006 |4F[37 |

Figure 2. Example Encoding
The input data is shown with a phantom zero logically ap-
pended to the end. The encoded form is shown below, with
code bytes shaded. Note that the encoded form contains no
zeroes and that it is exactly one byte longer than the input (not
counting the phantom zero).

of bytes, this suggests that COBS requires more
buffering and consequently adds more delay to the
stream than PPP does. However, thinking about
network data as a continuous stream of bytes can be
misleading. While it is true that hardware usually
transmits data serially, it is much more common for
programming interfaces to operate a packet at a time
rather than a byte at a time. When the operating
system has a packet to send, it does not slice the
packet into single bytes and hand them to the network
device driver one at a time; it makes a single call that
passes the entire packet to the driver. The driver then
has access to the entire packet, which it can encode
and send immediately.

3.3 Behavior of COBS

The low overhead of COBS is due to the fact that, in
most cases, the size of each code block is exactly the
same as the size of the data sequence it encodes.
Consider a sequence of n input bytes (n [1254) that
consists of (7-1) non-zero bytes, and a single zero byte
at the end. That sequence is encoded using a code
block containing a single code byte, and (n-1) data
bytes. Hence n input bytes are encoded using exactly
n output bytes, so the output size is the same as the
input size.

The worst cases for PPP and for COBS occur in
opposite circumstances. For PPP, the pathological case
where the packet consists entirely of reserved values
(0x7D or 0x7E) is the case that results in the size of the
packet being doubled. For COBS, the pathological
case is the opposite case — the case where the packet
contains no occurrences of the reserved value (zero).
In this case, each 254 bytes of packet data is encoded
using 255 bytes of output data — one code byte (OXFF)
and the 254 non-zero data bytes. This encoding ratio
of 255 output bytes for every 254 input bytes results in
an overhead of about 0.4% for large packets. For
COBS, the case where the packet consists entirely of
the reserved value (zero) is not a pathological case at
all. Every zero byte is encoded using just a single code
byte, resulting in zero overhead.

The property that COBS has at most one byte of
overhead for every 254 bytes of packet data is very
good for large packets, but has an unfortunate side-

—5__

effect for small packets. Every packet 254 bytes or
smaller always incurs exactly one byte of overhead.

We regard one byte of overhead for small IP packets a
small price to pay in exchange for the significant
performance gains we get from the ability to send
much larger IP packets than would otherwise be
possible. However, there could be circumstances
where any cost, however small, is unacceptable. To
address this concern we have also experimented with
a minor modification to basic COBS called Zero Pair
Elimination (ZPE), which exhibits better performance
for small packets, as described in the next section.

3.4 Zero Pair Elimination

In our experiments on real-world data (see Section 5)
we observed that not only is zero a common value in
Internet traffic, but that adjacent pairs of zeros are also
very common, especially in the IP headers of small
packets. To take advantage of this we shortened the
maximum encodable sequence length, freeing some
codes for other uses. These codes were reassigned to
indicate sequences ending with a pair of implicit
zeroes. The reduction in the maximum sequence
length increases the worst-case overhead, so we do
not wish to reduce the maximum length by too much.
Empirically we found that reassigning 31 codes gave
good performance while still maintaining a reason-
able worst-case bound.

Codes 0x00 to 0xDF have the same meaning as in
basic COBS, and code 0xEO encodes the new maxi-
mum length sequence of 223 bytes without an implicit
zero on the end. This gives COBS/ZPE a worst-case
overhead of one byte in 223. Codes 0xE1 to OxFF
encode sequences that end with an implicit pair of
zeroes, containing, respectively, 0 to 30 non-zero data
bytes.

This has the good property that now some of our code
blocks are smaller than the data they encode, which
helps mitigate the one-byte overhead that COBS adds.
Figure 3 shows an example of a small packet (actually
the beginning of a real IPv4 packet header) that gets
one byte smaller as a result of encoding using
COBS/ZPE. The disadvantage of using COBS/ZPE is
a slightly poorer worst-case overhead — about 0.45%
instead of 0.40% — but this is still a very small worst-
case overhead. In fact, as described in Section 5, when
a typical mix of real-world network traffic is encoded
using COBS/ZPE, it actually gets smaller by about
1%. PPP byte stuffing cannot compete with this since
PPP never makes any packet smaller.

COBS/ZPE is useful because pairs of zeroes are
common in packet headers. Also, the trend towards
aligning packet fields on 64-bit boundaries in high-
performance protocols sometimes results in padding

Input: [45|00loo loclaci79]ooloo j4oloslaF 37/00

Output: |[E2[45[E4]2claci79|o5l4006[4F|37]

Figure 3. Example Encoding with

Zero-Pair Elimination
The input data is shown with a phantom zero logically ap-
pended to the end. The encoded form using COBS/ZPE is
shown below, with code bytes shaded. Note that the encoded
form contains no zeroes, and that it is one byte shorter than the
input (not counting the phantom zero).

zeroes between fields. These padding zeroes waste
precious bandwidth on slow wireless links, and using
COBS/ZPE can help to mitigate this effect by encod-
ing these patterns more efficiently.

We have avoided using more computationally
expensive compression algorithms such as Huffman
encoding [Huff52] [Knu85] and Lempel Ziv [LZ77]
[Wel84]. Although, like PPP, they may have good
average performance, for some data they can make
the packet bigger instead of smaller [Hum81], and
that is contrary to our goal of ensuring a tight bound
on worst-case performance. We also believe it is
inappropriate to attempt heavyweight compression at
the link layer. The majority of compressible data is
much more effectively compressed before it even
reaches the IP layer using data-specific algorithms
such as JPEG [ISO10918] for images and MPEG
[ISO11172] for video. Finally, we expect to see more
Internet traffic being encrypted in the future, particu-
larly traffic over wireless links, and it is not possible
to compress data after it has been properly encrypted.
ZPE is a lightweight technique that works well for
small packets that contain zero pairs, without sacri-
ficing the benefit of a tight bound on worst-case
overhead for large packets that do not.

3.5 Lower-level Framing

COBS is defined in terms of byte operations. This
means that there also needs to be some underlying
mechanism to detect correctly where the byte bounda-
ries fall in the bit-stream. When used over an RS232
serial port, the start/stop bits perform this function, at
a cost of 20% extra overhead. HDLC framing is
usually more efficient than this, but it too, in the worst
case, can add as much as 20% overhead. The benefit of
COBS having such a tight bound on worst-case
overhead at the byte level is somewhat diminished if
the bit-level framing it depends upon is not similarly
well behaved.

Fortunately, bit-level framing of COBS-encoded data
can be performed with no additional variable over-
head, simply by choosing an appropriate bit-level
framing pattern: one that is known not to appear
anywhere in COBS-encoded data. If the framing

— 6 —

pattern cannot inadvertently appear, there is no need
for any bit stuffing mechanism to eliminate it.

The choice of framing pattern is easy. Since COBS-
encoded data contains no zero bytes, we know that
there is at least one binary ‘1’ bit somewhere in every
byte. This means that in a bit-stream of COBS-
encoded data there can be no contiguous run of more
than fourteen zero bits, which suggests an obvious
candidate for the COBS end-of-packet marker: a run
of fifteen (or more) zero bits, followed by a single
binary ‘1’ bit to signal the beginning of the next
packet. Used this way, COBS guarantees a very tight
bound, not only on the number of bytes, but also on
the total number of bits required to transmit a data
packet.

Some kinds of network hardware cannot send long
runs of zero bits reliably, and in these cases bit
stuffing is used not only for framing purposes, but
also to impose a bound on the maximum number of
consecutive zero bits that can appear. Providing that
the length limit imposed by the hardware is not less
that fourteen zero bits, COBS encoded data can be
sent reliably without requiring any further bit stuff-
ing.

4. Theoretical Analysis

In this section we compare the best case, worst case,
and average case encoding overhead, given uniformly
distributed random data, for COBS and for PPP byte
stuffing. It is useful to calculate the expected perform-
ance for random data, because data that is well-
compressed and/or well-encrypted should have a
uniform distribution of byte values. Section 5 presents
the actual performance on today’s real packets, which
are not all compressed and/or encrypted.

4.1 Best Case Overhead

The best case for PPP byte stuffing is a packet that
contains no occurrences of the reserved (0x7D or
0x7E) characters. In this case, PPP encoding adds no
overhead to the packet at all.

The best case for COBS is a packet with plenty of
zeroes, so that nowhere in the packet is there any
contiguous sequence of more than 254 non-zero bytes.
In this case, each block is encoded with no overhead
at all. Counting the phantom zero that has to be
added to every packet before encoding, this results in
a best-case overhead of a single byte, for any size of
packet.

4.2 Worst Case Overhead

The worst case for PPP byte stuffing is a packet that
consists entirely of reserved (0x7D or 0x7E) characters.

In this case, encoding doubles the size of the packet,
giving an overhead of 100%.

The worst case for COBS is a packet that contains no
zeroes at all. In this case, each sequence of 254 bytes of
packet data is encoded using 255 bytes of output data,
giving one byte of overhead for every 254 bytes of
packet data. For example, a maximum size IP packet
over Ethernet is 1500 bytes long, and in the worst
possible case COBS would add an overhead of six
bytes to a packet of this size.

4.3 Expected Overhead

The best and worst cases for each algorithm are easy
to calculate, but they do not give the whole picture. It
would be useful also to know the overall efficiency we
expect to achieve for a large number of packets, in
terms of what percentage of transmitted bytes we
expect to contain useful data and what percentage we
expect to be encoding overhead. Since byte stuffing is
a process that takes as input a packet composed of
characters from an alphabet of 256 possible symbols
and gives as output a packet composed of characters
from an alphabet of only 255 possible symbols, in
general there must be some overhead. Exactly how
much longer a particular packet becomes may or may
not depend on the contents of that packet, depending
on the algorithm being used. With some algorithms
there may be fortunate packets that incur no overhead
at all, but information theory tells us that for random
data the average overhead must be at least:

log 256

—1=0.0007063,or roughly 0.07%
log255

This theoretical bound gives us a metric against which
to judge different byte stuffing schemes. Some
algorithms may be able to beat this bound for some
packets, but there is no algorithm that can beat this
bound for all packets.

43.1 Expected Overhead for PPP

For PPP the expected overhead is easy to calculate.
PPP has only two distinct behavior patterns: it either
reads a single byte and writes a single byte, or it reads
a single byte and writes a pair of bytes. In uniformly
distributed random data, the probability that any
given byte will be one of PPP’s two reserved values,
causing PPP to output two bytes instead of one, is
?/ 15 In a packet of length n, there will be on average
nx?/,5, occurrences of reserved values and n[x*/
occurrences of other values. This gives an expected
output length of:

nx2x-% + nx1x24 = 1.0078125n

—7—

An expected output length 1.0078125 times the input
length gives an expected overhead of 0.78125%, about
11 times worse than the theoretical optimum.

4.32 Expected Overhead for COBS

For COBS the average overhead is a little harder to
calculate since COBS has 255 different behaviors,
rather than just the two that PPP has. In addition, not
only does each behavior write a different number of
output bytes, each behavior also reads different
numbers of input bytes. Since the number of input
bytes read is not always one as it is for PPP, we must
also calculate the average number of bytes read per
code block, and divide the average output by the
average input to determine the overall average
overhead.

First we calculate the average input per code block. If
the first byte the algorithm encounters is a zero, then
that single byte is encoded as a code block. The
probability P(1) of this happening is '/ 5. If the first
byte is not a zero, but the second byte is, then the
algorithm reads two bytes and outputs a block. The
probability P(2) of this happening is *°/ ;56 %/ 555. The
probability P(n) that it reads n-1 non-zeroes (1 [1254)
followed by a zero is:

T |

(56l 256
The longest code block, code OxFF, occurs when the
algorithm encounters 254 non-zeroes without seeing a
single zero. The probability P(255) of this happening

is (*°/,5,)”* and in this case the algorithm reads 254
bytes and outputs a block of 255 bytes.

The average input per code block is therefore:
> U
§ nx P(n)E+ 254 x P(255)
S

Now we calculate the average output per code block.
The probabilities of each different behavior remain the
same, and for all codes except one the number of
bytes output is also exactly the same as the number of
bytes input. The exception is code 0xFF, where the
number of bytes input is 254 but the number of bytes
output is 255.

The average output per code block is therefore:

% nx P(n)§+ 255 x P(255)

PPP PPP PPP
Best Average Worst
(0%) (0.78%) (100%)

COBS COBS COBS
Best Average Worgst
(0.07%) (0.23%) (0.40%)

0.0% 0.2% 0.4% 0.6% 0.8% 100%

Figure 4. Encoding Overhead for 1500 Byte Packet

PPP’s best, average, and worst cases vary widely. In contrast,
COBS's best, average and worst cases all fall within a narrow
range, and are all better than PPP’s average case.

The ratio of average output divided by average input
is:

> 0
& nx P(n)5+ 255 x P(255)
= = 1.002295

§ nx P(n)§+ 254 x P(255)

The theoretical average overhead for COBS on
random data is therefore a little under 0.23%, more
than three times better than PPP’s average.

Figure 4 summarizes these results both for PPP and
for COBS. These results hold for well compressed
packets which contain a uniform distribution of byte
values, but not all Internet traffic is well compressed.
In addition, it is not possible to have fractional bytes
of overhead. In theory a 40-byte IPv4 TCP acknow-
ledgement packet encoded with COBS may average
an overhead of 40%[0.23% = 0.092 bytes, but in
practice that fraction is rounded up to an entire byte
of overhead. For small packets this rounding up to the
next whole byte may be a more dominant contributor
to overhead than the actual underlying properties of
the algorithm. To investigate how much effect this
potential problem might have, we encoded traces of
real-world network traffic using both COBS and PPP
byte stuffing, and these results are presented in the
next section.

5. Experimental Results

Real-world network traffic may not behave the same
way as our theoretical traffic. In real-world traffic,
small packets are common, and not all data is com-
pressed and/or encrypted. To see how these factors
affect the algorithms, we gathered traces of network
traffic using tcpdump [Jac89] and compared how
efficiently those packets were encoded by PPP, COBS

—8—

and COBS/ZPE. We present results for two of the
traces here.

For the benefit of readers who wish to see how COBS
performs on other traffic mixes, the analysis tool,
which will read any standard format tcpdump log file,
is available at the authors” Web Site <http://mosquito-
net.Stanford. EDU/software/ COBS>. (Note: to eval-
uate how efficiently COBS encodes entire packets —
both header and payload — the tool should be used
on logs that contain complete packets, not just packet
headers. The tool will give a warning if the log
contains incomplete packets.)

5.1 Three-day Trace

One of our colleagues frequently works at home, and
his sole Internet connection is via a portable ISM-band
packet radio attached to his laptop computer. We
collected a trace of all his packets for a period of three
days. We regard this trace as being representative of a
user who makes extensive use of a wireless interface.
The trace contains 36,744 IP packets, totalling
10,060,268 bytes of data (including IP headers and
higher layers; not including the link-level header). The
MTU of his wireless interface was 1024 bytes, giving a
worst-case COBS overhead for large packets of five
bytes.

However, most of the packets captured were not
large; 69% of the packets were shorter than 254 bytes
and necessarily incurred exactly one byte of overhead
when encoded with COBS. Moreover, 41% of the
packets were exactly 40 bytes long, which is just the
length of a TCP acknowledgement containing no data.
Another 10% of the packets were exactly 41 bytes
long, which is the length of a TCP packet containing
just one data byte. Taking these two numbers to-
gether, this means that over half the packets were 40
or 41 bytes long. Only 15% of the packets were
maximum-sized 1024-byte packets.

We regard this as a particularly challenging test case
with which to evaluate COBS, because it contains so
many small packets. The results for this trace file are
shown in Figure 5.

PPP incurred a total overhead of 36,069 bytes (0.36%).
74% of the packets incurred no overhead, but some
packets incurred much more. More than 100 packets
incurred 15 bytes of overhead or more, and one
packet incurred as much as 53 bytes of overhead. In
this trace no packets incurred more than 53 bytes of
overhead, supporting the claim that real packets do
not come close to the factor-of-two overhead that
conventional byte stuffing forces us to design for.

COBS incurred a total overhead of 57,005 bytes
(0.57%), meaning that even in this unfavourable test

case COBS costs only 0.21% extra compared to PPP,
for the benefit of having a tight bound on the worst-
case overhead. 74% of the packets had exactly one
byte of overhead, 7% had two bytes, 8% had three
bytes, and 11% had four.

COBS/ZPE maintained a tight bound on worst case
performance while doing on average much better
than either PPP or COBS. For a 1024-byte packet the
maximum possible COBS/ZPE overhead is five bytes,
but in fact in this trace no packet incurred more than
four. In addition COBS/ZPE reduced the overall size of
the data by 26,238 bytes, giving a net overall saving of
0.26%.

5.2 MPEG Trace

With the increasing popularity of the World Wide
Web, we expect to see large packets and compressed
data (particularly image data) becoming more
common on the Internet. To see how COBS would
perform under these conditions we captured a large
bulk transfer of compressed image data. The data file
was MIRV.MPG, a 15.3MB MPEG file of an MTV
music video, and it was transferred using ftp
[RFC959]. The trace contains 25,858 IP packets,
totalling 18,269,430 bytes of data. The MTU of the
wireless interface was 1088 bytes, giving a worst-case
COBS overhead for large packets of five bytes.

This trace is more favourable to COBS because it
contains many large packets. 63% of the packets were
maximum-sized IP packets, 1088 bytes long. The
results for this trace file are shown in Figure 6.

PPP incurred a total overhead of 101,024 bytes
(0.55%). 36% of the packets incurred no overhead, but
most incurred much more. The majority of packets
incurred 1-10 bytes of overhead and one packet
incurred as much as 20 bytes of overhead. In this trace
no packets incurred more than 20 bytes of overhead,
supporting the claim that real packets do not come
close to the factor-of-two overhead that conventional
byte stuffing forces us to design for.

COBS incurred a total overhead of only 35,410 bytes
(0.19%), beating PPP. 77% of the packets had exactly
one byte of overhead. Only 17 packets in the entire
trace incurred five bytes of overhead and as expected,
no packets incurred more than that.

COBS/ZPE maintained a tight bound on worst case
performance while doing on average much better
than either PPP or COBS. For a 1088-byte packet the
maximum possible COBS/ZPE overhead is five bytes,
but in fact in this trace no packet incurred more than
four bytes of overhead. In addition COBS/ZPE
reduced the overall size of the data by 161,548 bytes,
giving a net overall saving of 0.88%.

—9—

100.00

PPP

10.00

[
o
o

o
o
s

Percentage of Packets (log scale)
o
B
o

o
o
o

-30 25 -20 -15 -10 -5 0 5 10 15 20 25 30
Overhead (Bytes)

100.00

COBS

10.00

i
o
o

Percentage of Packets (log scale)
'CD o
o =
[o

o
o
o

30 25 -20 -15 -10 -5 0 5 10 15 20 25 30
Overhead (Bytes)

100.00

COBS/ZPE
10.00

i
o
o

Percentage of Packets (log scale)
'(D o
o =
= o

o
o
o

30 25 -20 -15 -10 -5 0 5 10 15 20 25 30
Overhead (Bytes)

Figure 5. Three-day Trace

Histograms showing, for each amount of overhead indicated on
the horizontal axis, the percentage of packets that incur that
overhead. For our traces 0.001% of the packets is less than one
packet, and since the only number of packets less than one is
zero packets, we chose 0.001% as the base line of the log scale.
For PPP the lowest overhead is zero bytes and increases up to a
maximum of 53 bytes (far off the scale to the right). For COBS
the overhead is concentrated in a tight spike in the middle:
every packet incurred 1-4 bytes of overhead. For COBS/ZPE
the overhead is at most four bytes; most packets actually in-
curred negative overhead (net compression). A few especially
compressible packets incurred a negative overhead of more
than 300 bytes (far off the scale to the left).

100.00

PPP

10.00

1.00

o
o
=

Percentage of Packets (log scale)
o
B
o

0.00
-30 25 -20 -15 -10 -5 0 5 10 15 20 25 30
Overhead (Bytes)

100.00
COBS

10.00

1.00

0.01

Percentage of Packets (log scale)
o
B
o

0.00
30 25 20 -15 -10 -5 0 5 10 15 20 25 30
Overhead (Bytes)

100.00
COBS/ZPE

10.00

1.00

0.01

Percentage of Packets (log scale)
o
B
o

0.00
30 25 -20 -15 -10 -5 0 5 10 15 20 25 30
Overhead (Bytes)

Figure 6. MPEG Trace

Histograms showing, for each amount of overhead indicated on
the horizontal axis, the percentage of packets that incur that
overhead. For our traces 0.001% of the packets is less than one
packet, and since the only number of packets less than one is
zero packets, we chose 0.001% as the base line of the log scale.
For PPP the overhead begins at zero and increases up to a
maximum of 20 bytes. For COBS the overhead is concentrated
in a tight spike in the middle: every packet incurred between
one and five bytes of overhead. For COBS/ZPE the overhead is
at most four bytes; most packets actually incurred negative
overhead (net compression) and in fact the histogram continues
off the scale far to the left: A few especially compressible pack-
ets incurred a negative overhead of more than 500 bytes.

6. Conclusions

COBS is a useful addition to our arsenal of techniques
for data communications. It is simple to understand,
easy to implement, and gives significant performance
benefits by allowing much larger packets to be sent
over a given piece of network hardware.

COBS is easy to implement efficiently in software,
even for primitive microprocessors. In one project in
our group [Pog96] COBS has been implemented in
hand-written eight-bit assembly code to allow a small
embedded control device to connect to a wireless
interface and communicate with Internet hosts using
UDP/IP. The device needs to be able to send and
receive 1K blocks of data but does not have enough
memory for either an implementation of TCP or of IP
fragmentation and reassembly. Without COBS it
would have been much harder to make the device
work. We would have had to add extra memory and
would have had to do a lot of extra development
work to implement TCP and/or IP fragmentation and
reassembly in eight -bit assembly code.

In retrospect it is surprising that COBS or similar
techniques have never been described in the literature
before. Perhaps one reason is that, until the develop-
ment of unlicensed radio transmitters under the
FCC’s Part 15 ISM band rules, the networking com-
munity had not confronted the problem of dealing
with devices where the maximum transmission size is
a hard limit dictated at the physical level.

We see no reason why COBS should not become the
algorithm of choice, not only for packet radio applica-
tions, but for all future software that uses byte
stuffing. In principle existing software could also be
rewritten to use COBS, but in practice market inertia
makes this unlikely. For software that currently works
acceptably, such as PPP over telephone modems,
there is little incentive to change to a new encoding,
but for all new software that requires byte stuffing we
believe that COBS should be given serious considera-
tion.

The benefit of conventional two-for-one substution
encodings like PPP, compared to COBS, is that they
may encode small packets with no overhead whereas
basic COBS always adds exactly one byte. However,
three factors make this apparent benefit of conven-
tional byte stuffing algorithms less compelling.

The main factor is that the pressing problem for many
new wireless devices is that of sending large packets,
not small packets. It is the large packets that cause
problems, because the software must be able to ensure
that they do not exceed the device’s physical and
regulatory limits.

Another factor is that the move to IPv6 [RFC1883] in
the future means that the very smallest packets, where
PPP does better than COBS, will become increasingly
uncommon. Although we expect to see header
compression techniques being used to reduce the
overhead of the IPv6 header (especially over slow
links), those header compression techniques will
reduce the header size by amounts measured in tens
of bytes, dwarfing concerns about differences of a
single byte here and there.

Finally, if even a single byte of overhead is unaccept-
able, a trivial modification to COBS to support Zero
Pair Elimination makes it perform better than PPP,
even for short packets. COBS/ZPE beats both PPP’s
average overhead and its worst case overhead.

Further information about COBS is available in
[Che97].

7. Acknowledgements

We are grateful for the helpful comments on this
paper from Craig Partridge, Diane Tang, Xinhua
Zhao, Petros Maniatis, Mema Roussopoulos, Elliot
Poger, Kevin Lai, Akihiro Tominaga, Jonathan Stone,
Hugh Holbrook, Brendon Whateley, Tom Costello,
Anna Patterson, Neil Crellin, Edouard Bugnion, Eric
Hawkes, Maynard Handley, Ann McLaughlin,
Richard Ford, Charlie Payne, Nicholas Tingle and the
anonymous SIGCOMM reviewers.

We also thank Hugh Holbrook for making traces of
his wireless traffic available to us, including the three-
day trace presented in this paper.

This work was supported by Rockwell International
Science Center, FX Palo Alto Laboratory, AT&T/
Lucent and NSF Faculty Career grant number CCR-
9501799.

8. References

[ARRL84] AX.25 Amateur Packet-Radio Link-Layer
Protocol Version 2.0, October 1984.
Available from the American Radio Re-
lay League, Newington CT USA 06111,
and other sources.

CERT*™ Advisory CA-96.26. Denial-of-
Service Attack via ping, December 1996.

[CA-96.26]

[Che95] Stuart Cheshire and Mary Baker. Experi-
ences with a Wireless Network in
MosquitoNet. IEEE Micro, February 1996.
An earlier version of this paper appeared
in Proceedings of the IEEE Hot Intercon-
nects Symposium '95, August 1995.

Stuart Cheshire. Consistent Overhead Byte
Stuffing, Ph.D. Thesis, Computer Science
Department, Stanford, 1997.

[Che97]

[Cla90]

[ECMA40]

[Hum81]

[Huff52]

[IEEES02.5]

[1SO10918]

[1SO11172]

[Jac89]

[Knu85]

[LZ77]

[Pog96]

[RFC959]

[RFC1055]

[RFC1135]

[RFC1662]

[RFC1883]

David Clark and David Tennenhouse. [US94-15] United States Title 47 Code of Federal
Architectural Considerations for a New Regulations (CFR), Federal Communica-
Generation of Protocols. Proceedings of tions Commission (FCC) Part 15, Low-
ACM SIGCOMM 1990, September 1990. Power Device Regulations, Section
European Computer Manufacturers 15.247. U.S. Government Printing Office.
Association Standard ECMA-40: HDLC [Wel84] T. Welch. A Technique for High-
Frame Structure. Performance Data Compression. Com-
Pierre Humblet. Generalization of puter, June 1984.

Huffman Coding to Minimize the Prob-

ability of Buffer Overflow. IEEE Transac-

tions on Information Theory, Vol. IT-27, pp.

230-232, March 1981.

D. A. Huffman. A Method for the

Construction of Minimum-Redundancy .

Codes. Proceedings of the IRE, Vol.40, Appendlx

No.9, September 1952, pp.1098-1101.

Token Ring Access Method and Physical
Layer Specifications. Institute of Electri-

cal and Electronic Engineers, IEEE Stan-
dard 802.5-1989, 1989.

ISO Committee Draft 10918. Digital
compression and coding of continuous-
tone still images, ISO/IEC 10918, 1991.
ISO Committee Draft 11172. Information
Technology-Coding of moving pictures
and associated audio for digital storage
media up to about 1.5 Mbit/s, ISO/IEC
11172-1, 1993.

V. Jacobson, C. Leres, and S. McCanne.
tepdump, <ftp:/ / ftp.ee Ibl.gov/tcpdump.
tar.Z>, June 1989.

D. E. Knuth. Dynamic Huffman Coding.
Journal of Algorithms, Vol 6, pp 163-180,
1985.

J. Ziv and A. Lempel. A Universal Alg-
orithm for Sequential Data Compression.

IEEE Transactions on Information Theory,
May 1977.

Elliot Poger. Radioscope, <http://
mosquitonet . Stanford . EDU / ~elliot /
RadioScope />, December 1996.

J. Postel, J. Reynolds. File Transfer
Protocol (FTP). RFC 959, October 1985.

J. Romkey. A Nonstandard For Trans-
mission Of IP Datagrams Over Serial
Lines: SLIP. RFC 1055, June 1988.

J. Reynolds. The Helminthiasis (infest-
ation with parasitic worms) of the In-
ternet. RFC 1135, December 1989.
William Simpson. PPP in HDLC-like
Framing. RFC 1662, July 1994.

Steve Deering and Bob Hinden. Internet

Protocol, Version 6 (IPv6) Specification.
RFC 1883, December 1995.

Source Code Listings

~

L

StuffData byte stuffs “length” bytes of
data at the location pointed to by “ptr”,
witing the output to the location pointed
to by “dst”.

/

#defi ne FinishBl ock(X) \
(*code_ptr = (X), \
code_ptr = dst++, \
code = 0x01)

voi d StuffData(const unsigned char *ptr,
unsi gned | ong | ength, unsigned char *dst)

const unsigned char *end = ptr + | ength;
unsi gned char *code_ptr = dst++;
unsi gned char code = 0x01;
while (ptr < end)
{

if (*ptr == 0) FinishBl ock(code);
el se

*dst++ = *ptr;

code++;

if (code == OxFF) FinishBl ock(code);
ptr++;

}
Fi ni shBl ock(code) ;

Listing 1. COBS Encoding in C

UnSt uf f Dat a decodes “l ength” bytes of

data at the location pointed to by “ptr”,

* witing the output to the |ocation pointed
to by “dst”.

*

/

* ok

*

voi d UnSt uf f Dat a(const unsigned char *ptr,
unsi gned long | ength, unsigned char *dst)

const unsigned char *end = ptr + | ength;
while (ptr < end)

int i, code = *ptr++

for (i=1; i<code; i++) *dst++ = *ptr++;
if (code < OxFF) *dst++ = 0;
}

Listing 2. COBS Decoding in C

