Best-Effort versus Reservations: A Simple Comparative Analysis

Lee Breslau Scott Shenker

September 2, 1998

Context

Question: How best to support real-time applications in the Internet?

One answer: Extend Internet architecture to support resource reservations

- applications explicitly request enhanced quality of service from the network
- network says yes or no

Status:

- lots of research, standardization activity and product development
- however, widespread disagreement about the wisdom of resource reservations remains

Basic Argument: 1991

- **Deering** The best-effort Internet works just fine as it is! Why mess with success?
- Shenker Sure it works great for data applications, but some audio and video applications need reservations.
- **Deering** Modern audio and video applications are *adaptive* and therefore don't need reservations.
- **Shenker** Yes, but even some adaptive audio and video applications need reservations to perform adequately.

Deering No, they don't.

Shenker Yes, they do.

Deering No, they don't.

Shenker Yes, they do.

. . .

Basic Argument: 1998

. . .

Deering No, they don't.

Shenker Yes, they do.

Deering No, they don't.

Shenker Yes, they do.

. . .

Goals:

- Develop a simple model that captures key issues
- Increase our understanding of the essential features
- Inform the debate

Non-goals:

- A model that completely reflects reality
- Characterization of costs of resource reservations
- Settle the debate

Basic Model

Link of capacity C shared by k flows

Per flow utility, π is a function of a flow's bandwidth share b

- $\pi(0) = 0$
- $\pi(\infty) = 1$
- non-decreasing

If k flows each receive equal bandwidth total utility equals:

•
$$V = k\pi(\frac{C}{k})$$

Variable load represented by P(k)

Basic Model (cont.)

Best Effort

•
$$V_B(C) = \sum_{k=1}^{\infty} P(k)k\pi(\frac{C}{k})$$

Reservations

ullet For a certain class of utility functions, utility is maximized by limiting number of flows to kmax

•
$$V_R(C) = \sum_{k=1}^{k_{max}} P(k)k\pi(\frac{C}{k}) +$$

$$\sum_{k=k_{max}+1}^{\infty} P(k)k_{max}\pi(\frac{C}{k_{max}})$$

Discrete model allows direct computation; continuum version enables examination of asymptotic behavior as C increases

 $V_R(C) \geq V_B(C)$, but by how much?

Performance Measures

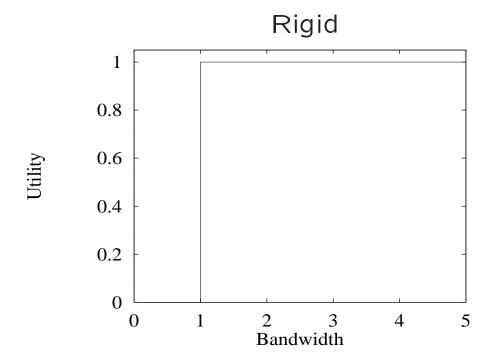
Performance gap, δ

•
$$\delta(C) = V_R(C) - V_B(C)$$

Bandwidth gap, Δ

- How much additional bandwidth must be added to a best-effort network to achieve the same utility as a reservation network?
- $V_R(C) = V_B(C + \Delta(C))$

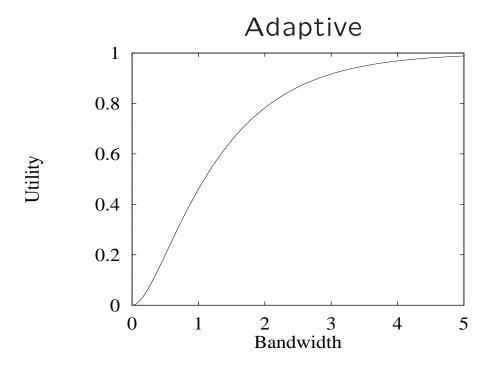
Utility Functions $-\pi(b)$



$$\pi(b) = 0 \text{ for } b < \overline{b}$$

$$\pi(b) = 1 \text{ for } b \geq \overline{b}$$

Utility Functions $-\pi(b)$ (cont.)



Minimum bandwidth requirement

Significant marginal utility over a wide range of \boldsymbol{b}

- able to adjust to different levels of network service
- still benefit from reservations

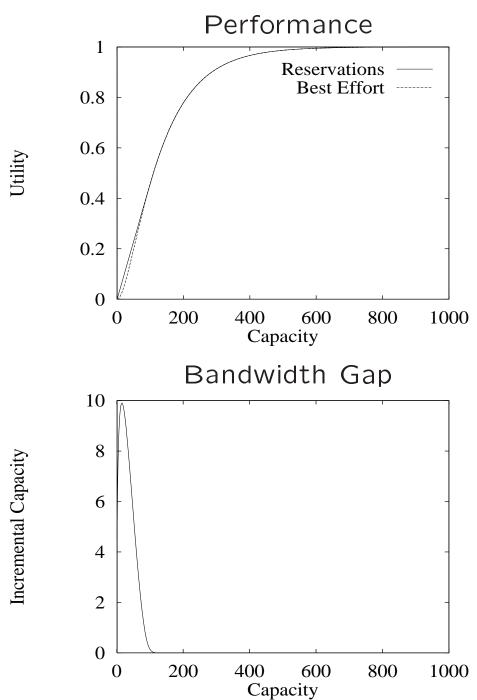
Load Models – P(k)

3 distributions

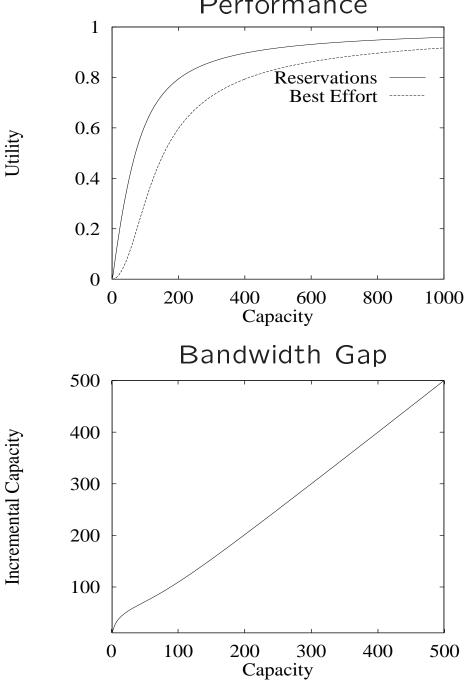
- Poisson: $P(k) = \frac{\nu^k e^{-\nu}}{k!}$
- Exponential: $P(k) = (1 e^{-\beta})e^{-\beta k}$
- Algebraic: $P(k) = \frac{\nu}{\lambda + k^z}$

Represent a range of load models, no claim about their validity

Results - Poisson Adaptive



Results – Algebraic Rigid Performance



Summary of Results

Performance Gap, δ

ullet Significant for small C (i.e., C < L) but quickly converges to zero (except in the algebraic case)

Bandwidth Gap, Δ

- Poisson: $\Delta \rightarrow 0$
- Exponential/Adaptive: $\Delta \rightarrow 0$
- Exponential/Rigid: $\Delta \approx \ln C$
- Algebraic: $\Delta \propto C$

Conjecture:

ullet $\Delta(C)=(e-1)C$ is maximum bandwidth gap

Variable Capacity

Given a price per unit bandwidth p, provision network to maximize total welfare: V(C) - pC

Compute capacity as a function of price: C(p)

Total welfare:

$$\bullet \ W_B(p) = V_B(C_B(p)) - pC_B(p)$$

•
$$W_R(p) = V_R(C_R(p)) - pC_R(p)$$

Price ratio to equalize welfare:

•
$$\gamma(p) = \frac{\tilde{p}}{p}$$
 where $W_R(\tilde{p}) = W_B(p)$

Variable Capacity – Results

As $p \rightarrow 0$:

- Poisson: $\gamma(p) \to 1$
- Exponential: $\gamma(p) \to 1$
- Algebraic: $\gamma(p) \to \alpha$, with $\alpha > 1$

For algebraic distribution, no matter how cheap bandwidth becomes, reservation-based network retains an advantage over best-effort

Conjecture: $\lim_{p\to 0^+} \gamma(p) \leq e$ for all distributions

Extensions

Sampling

- Performance varies over time
- Utility may be a function of the maximum load experienced
- ullet For each flow, assume utility is the minimum value taken over S samples

Retry

- Rejected flows can request service later and receive non-zero utility
- But some penalty for delay
- Model rejected flows retrying as additional load

Extensions - Results

Poisson - no effect

Exponential – little effect, except with $C \approx L$ in sampling extension

Algebraic — significant change both with $C \approx L$ and in asymptotic behavior

ullet $\frac{\Delta(C)}{C}$ and $\gamma(p)$ no longer bounded

Conclusions

No simple answer to our original question

Over-provisioning appears sufficient with Poisson and Exponential load models

Reservations are useful with Algebraic distribution

What is the nature of future Internet load?