A Digital Fountain Approach to Reliable Distribution of Bulk Data

John Byers, ICSI
Michael Luby, ICSI
Michael Mitzenmacher, Compaq SRC
Ashu Rege, ICSI

Application: Software Distribution

- New release of widely used software.
- Hundreds of thousands of clients or more.
- Bulk data: tens or hundreds of MB
- Heterogeneous clients:
 - Modem users: hours
 - Well-connected users: minutes

Primary Objectives

- Scale to vast numbers of clients
 - No ARQs or NACKs
 - Minimize use of network bandwidth
- Minimize overhead at receivers:
 - Computation time
 - Useless packets
- Compatibility
 - Networks: Internet, satellite, wireless
 - Scheduling policies, i.e. congestion control

Impediments

- Packet loss
 - wired networks: congestion
 - satellite networks, mobile receivers
- Receiver heterogeneity
 - packet loss rates
 - end-to-end throughput
- Receiver access patterns
 - asynchronous arrivals and departures
 - overlapping access intervals

Digital Fountain

Digital Fountain Solution

Is FEC Inherently Bad?

Faulty Reasoning

- FEC adds redundancy
- Redundancy increases congestion and losses
- More losses necessitate more transmissions
- FEC consumes more overall bandwidth

• But...

- Each and every packet can be useful to all clients
- Each client consumes minimum bandwidth possible
- FEC consumes less overall bandwidth by compressing bandwidth across clients

DF Solution Features

- Users can initiate the download at their discretion.
- Users can continue download seamlessly after temporary interruption.
- Tolerates moderate packet loss.
- Low server load simple protocol.
- Does scale well.
- Low network load.

Approximating a Digital Fountain

Approximating a DF: Performance Measures

- Time Overhead:
 - Time to decode (or encode) as a function of k.
- Decoding Inefficiency:

packets needed to decode

k

Work on Erasure Codes

- Standard Reed-Solomon Codes
 - Dense systems of linear equations.
 - Poor time overhead (quadratic in k)
 - Optimal decoding inefficiency of 1
- Tornado Codes [LMSSS '97]
 - Sparse systems of equations.
 - Fast encoding and decoding (linear in k)
 - Suboptimal decoding inefficiency

Tornado Z: Encoding Structure

Encoding/Decoding Process

Timing Comparison

Encoding time, 1K packets		
Size	Reed-Solomon	Tornado Z
250 K	4.6 sec.	0.11 sec.
500 K	19 sec.	0.18 sec.
1 MB	93 sec.	0.29 sec.
2 MB	442 sec.	0.57 sec.
4 MB	30 min.	1.01 sec.
8 MB	2 hrs.	1.99 sec.
16 MB	8 hrs.	3.93 sec.

Decoding time, 1K packets		
Size	Reed-Solomon	Tornado Z
250 K	2.06 sec.	0.18 sec.
500 K	8.4 sec.	0.24 sec.
1 MB	40.5 sec.	0.31 sec.
2 MB	199 sec.	0.44 sec.
4 MB	13 min.	0.74 sec.
8 MB	1 hr.	1.28 sec.
16 MB	4 hrs.	2.27 sec.

Tornado Z: Average inefficiency = 1.055

Both codes: Stretch factor = 2

Cyclic Interleaving

Cyclic Interleaving: Drawbacks

- The Coupon Collector's Problem
 - Waiting for packets from the last blocks:

- More blocks: faster decoding, larger inefficiency

Scalability over File Size

Decoding Inefficiency, 500 Receivers, p = 0.1

Scalability over Receivers

Decoding Inefficiency on a 1MB File, p = 0.1

Digital Fountain Prototype

- Built on top of IP Multicast.
- Tolerating heterogeneity:
 - Layered multicast
 - Congestion control [VRC '98]
- Experimental results over MBONE.

Research Directions

- Other applications for digital fountains
 - Dispersity routing
 - Accessing data from multiple mirror sites in parallel
- Improving the codes
- Implementation and deployment
 - Scale to large number of clients
 - Network interactions