Predictive and Adaptive Bandwidth Reservation for Hand-Offs in QoS-Sensitive Cellular Networks

SUNGHYUN CHOI AND KANG G. SHIN

Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48109-2122, USA

E-mail: {shchoi,kgshin}@eecs.umich.edu

URL: http://www.eecs.umich.edu/~{shchoi,kgshin}

SEPTEMBER 3, 1998

Talk Outline

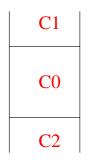
- Introduction and Motivation
- Related Work
- System Model
- History-Based Mobility Estimation
- Bandwidth Reservation and Admission Control
- Performance Evaluation
- Conclusion and Future Work

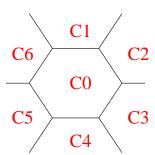
Introduction

- Connection-level QoS: connection setup and management-related
- Hand-off drops: when the cell in the new location does not have enough bandwidth to support the connection
- To eliminate hand-off drops
 - → reservation of bandwidth for possible hand-offs
- How much bandwidth will be reserved in each cell?
- Per-connection bandwidth reservation to have no hand-off drops ??
 By reserving each connection's bandwidth in all cells the connection might pass through
 - → Not practical, and too costly if possible

Our Approach

- Connection-level QoS parameters:
 - *P_{CB}*: new connection blocking probability
 - P_{HD} : hand-off dropping probability
- Design goal: bounding P_{HD} under a pre-specified target value $P_{HD,target}$ (i.e., *probabilistic* QoS guarantees)
- Predictive and adaptive bandwidth reservation for hand-offs and admission control for new requests
- Fractional bandwidths of estimated hand-offs are reserved


Related Work

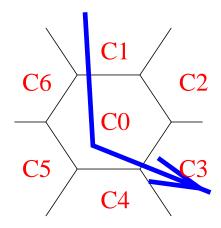

- Static reservation: a portion of link bandwidth reserved permanently
- Per-connection reservation: too costly if possible
- Fractional bandwidth reservation: based on unrealistic assumptions (e.g., exponentially-distributed sojourn times in each cell and known hand-off rates)
- ⇒ Extensive comparison of our work with three other schemes in *MobiCom'98*
 - History-based mobility estimation to estimate the next cell
- ⇒ Our scheme predicts both next cell and hand-off time probabilistically

System Model

- Cell indexing: (a) 1-dim. case
- (b) 2-dim. case

- $C_{i,j}$: connection j in cell i; $b(C_{i,j})$: its bandwidth
- C(i): link capacity of cell i
- Admission control of new connection by the BS in cell i with *target* reservation bandwidth $B_{r,i}$:

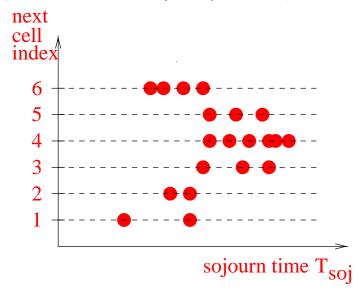
$$\sum_{j \in \mathbf{C_i}} b(C_{i,j}) + b_{new} \le C(i) - B_{r,i}$$


Mobility Estimation

- Mobility information: when and where (i.e., to which cell)
- Observations from road traffic:
 - **O1.** Traffic signals and signs (e.g., speed limits and stop signs) affect mobiles' movements and speeds significantly
 - O2. During the rush hours, the speeds of all mobiles in a given geographical area are closely correlated
 - O3. In many cases, the direction of a mobile can be predicted from the previous path the mobile has taken so far
- ⇒ Cell-specific history-based mobility estimation

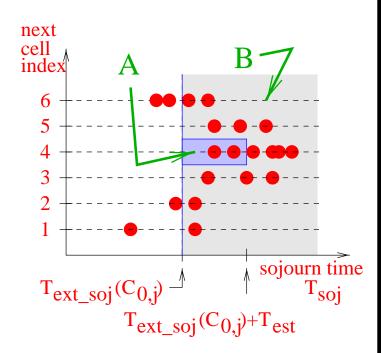
Hand-off Event Quadruplets

• Upon the departure of a mobile from cell 0 to an adjacent cell, the BS of cell 0 caches hand-off event quadruplet $(T_{event}, prev, next, T_{soj})$



- $prev = 1 \rightarrow cell \ 0 \rightarrow next = 3$ t = 10 t = 30
- T_{soj} : time duration the mobile spent at cell 0, i.e., $T_{soj} = 20$
- T_{event} : the hand-off time, i.e., $T_{event} = 30$

Mobility Estimation Function


- Describes the users' hand-off behaviors probabilistically
- From the cached hand-off event quadruplets $(T_{event}, prev, next, T_{soj})$ observed during the last T_{int} time (and previous days)
- Hand-off estimation function $F_{HOE}(t_o, prev, next, T_{soj}) := w_n$
- Cyclic mobility pattern $\rightarrow w_0 \ (= 1) \ (\text{today}), \ w_1 \ (< 1) \ (\text{yesterday})$

Bandwidth Reservation

- Mobility estimation time window: $[t_0, t_0 + T_{est}]$
- Hand-off probability $p_h(C_{i,j} \rightarrow next)$: probability that $C_{i,j}$ hands off into cell next within time T_{est}
- Extant sojourn time $T_{ext_soj}(C_{0,j})$: time elapsed since $C_{0,j}$ entered cell 0
- Example: $p_h(C_{0,j} \rightarrow 4) = A/B$

• Target reservation bandwidth at cell 0:

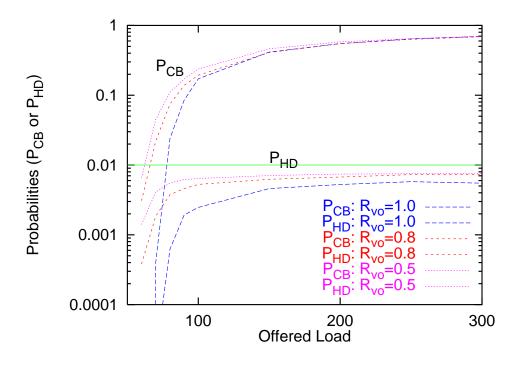
$$B_{r,0} = \sum_{i \in \mathbf{A}_0} \sum_{j \in \mathbf{C}_i} b(C_{i,j}) p_h(C_{i,j} \to 0),$$

Mobility Estimation Time Window Control

- \Rightarrow The larger T_{est} , the larger p_h , the larger $B_{r,i}$
- ⇒ To attain our design goal more efficiently
 - Reference window size $w = \lceil 1/P_{HD,target} \rceil$ (100 if $P_{HD,target} = 0.01$)
 - Should be no more than n hand-off drops out of $w \cdot n$ (= $100 \cdot n$) observed hand-offs
 - If it is violated, $T_{est} := T_{est} + 1$ to reserve more
 - Otherwise, $T_{est} := T_{est} 1$ to reserve less
- ⇒ Robust to (1) inaccurate mobility estimation; and (2) time-varying traffic/mobility

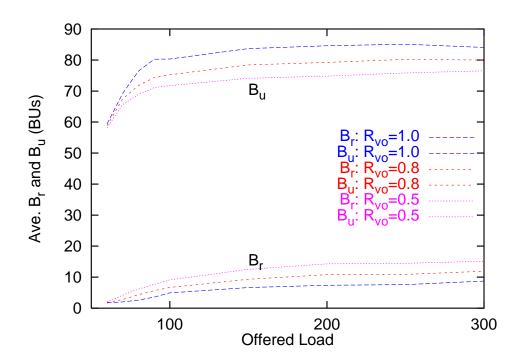
Admission Control

- Target reservation bandwidth is calculated during the admission control phase of a new request
- The current cell and some adjacent cells participate in the admission control
- With current target reservation bandwidth $B_{r,i}^{curr}$
 - **T1.** For all $i \in \mathbf{A}_0$ such that $\sum_{j \in \mathbf{C}_i} b(C_{i,j}) + B_{r,i}^{curr} > C(i)$, calculate $B_{r,i}$ newly, set $B_{r,i}^{curr} := B_{r,i}$, and check if $\sum_{j \in \mathbf{C}_i} b(C_{i,j}) \leq C(i) B_{r,i}$;
 - **T2.** Check if $\sum_{j \in \mathbb{C}_0} b(C_{0,j}) + b_{new} \leq C(0) B_{r,0}$;
 - **T3.** If all the above tests are positive, then the connection is admitted.

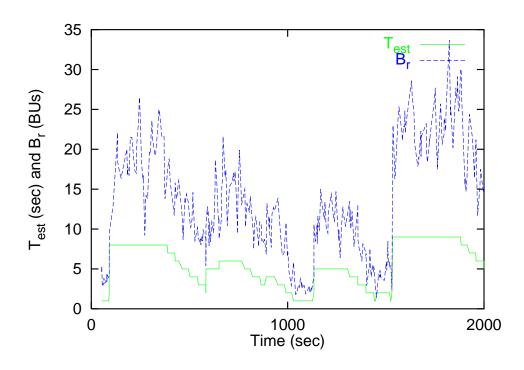


Performance Evaluation

- **A1.** 10 linearly-arranged cells (the diameter of each cell 1 km)
- A2. Connection requests generated from a Poisson process with rate λ (connections/second/cell) in each cell, anywhere in the cell
- **A3.** Voice (1 BU) or video (4 BUs) connections with probabilities R_{vo} and $1 R_{vo}$, respectively, where the *voice ratio* $R_{vo} \le 1$
- **A4.** Mobiles travel in either of two directions with an equal probability with a speed range $[SP_{min}, SP_{max}] = [80, 120]$ (km/hour)
- **A5.** Exponentially-distributed connection lifetime with mean 120 (seconds)
- **A6.** A fixed link capacity 100 BUs for each cell
- $\Rightarrow P_{HD,target} = 0.01$


P_{CB} and P_{HD} vs. Offered Load

- Target $P_{HD,target} = 0.01$
- Design goal is achieved irrespective of offered load, voice ratio, and speed range


B_r and B_u vs. Offered Load

- B_u : ave. bandwidth used by on-going connections in each cell
- The lower R_{vo} , the larger B_r
- Saturation of B_r and B_u in heavily-loaded region

T_{est} and B_r over Time

- Offered load L = 300 and voice ratio $R_{vo} = 1.0$
- Increases of T_{est} from hand-off drops

Conclusions

- Mobility estimation based on observed history in each cell
- Predictive and adaptive bandwidth reservation and admission control to limit P_{HD} below $P_{HD,target}$
- Performance evaluation via simulations

Future Work

- Computational complexity will be reported in *MobiCom'98* as part of the comparison with three other schemes
- Extension to utilize the mobiles' mobility information from ITS route guidance system
- Extension to CDMA systems (soft capacity and hand-off)

