N

Improving End-to-End Performance of the Web Using
Server Volumes and Proxy Filters

Edith Cohen, Balachander Krishnamurthy, and Jennifer Rexford
AT&T Labs—Research
180 Park Avenue, Florham Park, NJ 07932 USA

{edith,bala, jrex}Q@research.att.com




‘ World Wide Web I

Very popular, rapid climb in traffic
Few servers attract most of traffic
Few resources on a site attract most of the accesses

User-perceived latency, bandwidth, and server load increasing

N




7

Current model of the Web

T

B

Clients
N

|

Servers

Y/

SIGCOMM9S



‘ Improving web performance |

Caching (Williams+96, Cao/lrani97)

Cache coherency (Dingle/Partl 96, Krishnamurthy/Wills 97 and 98)

Prefetching (Bestavros95, Padmanabhan/Mogul96, Kroeger+97)
Persistent connection/Pipelining (Padmanabhan/Mogul94, HTTP 1.1)

Delta/Compression (SIGCOMM97)

Performance can be further improved by having proxies and servers exchange
hints about future accesses

-




‘ Subproblems to solve |

What hints should server send

Resources likely to be accessed in the future
Last-Modified time, size, type and other attributes

How server should precompute hints (volumes)

Groups of resources in the same (sub)directory
Resource pairs that are typically accessed together

What information should proxy send (filters)

Signature of cache (resource types, sizes, resources)
Limiting number of hints (maximum size, recent volumes)

How to exchange information: piggyback on request/response

-




‘ Exchanging hints I

Proxy receives a client request for resource r

e Checks if the cache has fresh copy of r

e On cache miss, sends a request for r to server and piggybacks the filter

Server receives a proxy request for resource r

e Applies the proxy filter to the precomputed volume v(r)

e Sends a response for resource r and piggybacks filtered volume

Proxy returns the resource to the client and processes the hints

-




‘ Volume construction techniques |

e Volume-set: mapping of each resource r to a set of related resources

e Extract (clientlP, resource, RequestTime) triple from server logs

e Volume items treated as predictions upon access to r

Two techniques:

e Directory structure based (foo/a, foo/b, foo/bar/a)

e Probability based (look at pairwise probability of a resource following

another)

-

SIGCOMM9S




‘ Performance metrics I

Fraction predicted: fraction of requests predicted by recently received
volumes in last 1" seconds

True prediction: fraction of distinct predictions that get fulfilled in next T°
seconds

Bandwidth cost: Average size of filtered volume




‘ Proxy and server logs |

Proxy logs of requests to a wide range of servers:

e Can evaluate performance of directory-based volumes

e Cannot evaluate probability-based volumes or measure volume size

e Experiments with large AT&T and DEC proxy logs

Server logs of accesses from a wide range of proxies:

e Can evaluate performance of both volume-construction schemes

e Cannot determine accesses that are handled directly by proxies

e Experiments with Sun, Apache, AIUSA, and Marimba server logs

-

SIGCOMM9S




‘ Results of volume construction experiments |

Directory-based volumes

e Can predict 60-80% of accesses with volume size of 50-100 hints with low
true prediction

e Disabling use of recently sent volumes retains fraction predicted, and true

prediction while lowering volume size to 20 hints

Probability-based volumes

e Can predict 60-80% of accesses with volume size of 2-10 hints and higher
true prediction

e Removing hints that do not typically generate new predictions retains
fraction predicted, further lowers volume size, and increases true
prediction

-




‘ Application of results I

e Reduce GET If-Modified-Since requests, update resources (via deltas)

Cache coherency

e Need high prediction fraction to in/validate most resources

Cache replacement

e Avoid replacing unchanged resources, and delete changed resources

e Need relatively high true predictions for good replacement decisions

Prefetching

e Prefetch resources in the piggyback list

e Need very high true predictions to avoid wasted prefetching

-




‘ Practical limitations I

Pragmatic constraints
e No changes to HTTP 1.1

e Avoid per-proxy/per-server state

e No forced compliance at all proxies/servers

Performance constraints

e No new TCP connections
e Avoid wasting bandwidth
e Avoid increasing user-perceived latency

e Avoid increasing load on the server and proxy

-

SIGCOMM9S

12




‘ Pragmatics: transmitting volumes |

Add to response header

e Pro: works in both HTTP 1.0 and HTTP 1.1

e Con: response body delayed

Use chunked encoding and add to trailer

e Pro: trailer avoids delaying response body

e Con: works only in HTTP 1.1

...Proposed mandatory HT TP extension allows sending pointer to volumes

- 7




‘ Pragmatics: size of piggyback message |

Volume identifier (2 bytes per message)

URL (50), Last-Modified Time (8), Size (8) bytes per piggy
Small number of piggybacks (e.g., ten, at 662 bytes) suffices
Adds at most one extra packet (5% increase in bytes)

Often will avoid future server requests and reduce latency

-




‘ Example |

Request:
GET /mafia.html HTTP/1.1
host: sig.com
TE: trailers
Piggy-filter: maxpiggy=10; rpv="3,4";

Response:
HTTP/1.1 200 OK
Trailer: P-volume
Transfer-Encoding: chunked
< Size-of-chunk >
<data>

0]
P-volume: vol=7; pe="u4,895527629,5465"; pe="
CRLF

N

u3,891527021,1290";

SIGCOMM9S

15




‘ Conclusion I

Proxy-server information exchange framework
Volume construction and filtering techniques
Performance evaluation on proxy and server logs

Mechanisms for piggybacking within HTTP 1.1

N

SIGCOMM9S

16




‘ Ongoing work |

Efficient algorithms for constructing server volumes

Proxy cache replacement policies that use server hints

Persistent TCP connection policies that use server hints
Volume center to construct volumes and generate piggyback messages
Proxy filter specification language and efficient data structures for

specifying and applying filters

Thanks to all proxy/server log suppliers!

-




