Accelerated Reliability Analysis for Self-Healing SONET Networks

Hakki C. Cankaya[‡] and V. S. S. Nair[†]

[†]Computer Science and Engineering Department Southern Methodist University, Dallas, TX 75275, USA

[‡]Now at ALCATEL Corporate Research Center Richardson, TX 75081, USA

ACM SIGCOMM'98

September 4, 1998

Accelerated Reliability Analysis for Self-Healing SONET Networks

Hakki C. Cankaya[‡] and V. S. S. Nair[†]

[†]Computer Science and Engineering Department Southern Methodist University, Dallas, TX 75275, USA

[‡]Now at ALCATEL Corporate Research Center Richardson, TX 75081, USA

ACM SIGCOMM'98

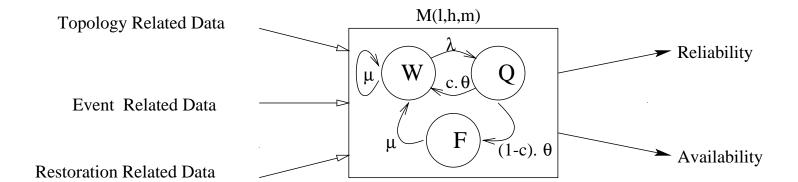
September 1998

Presentation Outline

- Introduction and objectives
- The model
- Analysis of run-time complexity
- Acceleration technique
- Experimental study and results

Prelude

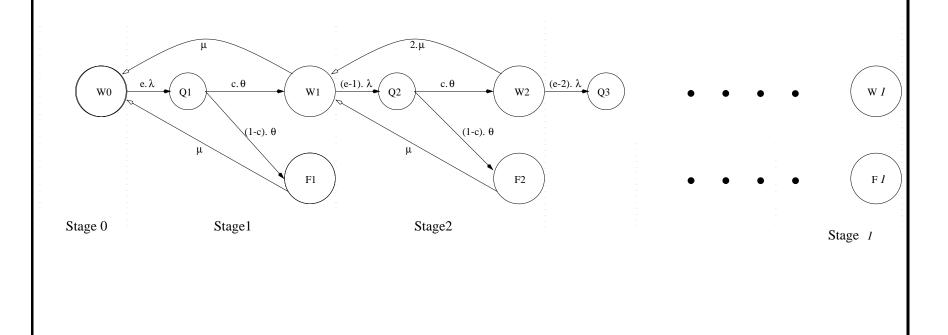
- Trends in Telecom:
 - $\{\uparrow \text{ Traffic demand}\} \longmapsto \{\uparrow \text{ Speed}\} \longmapsto \{\uparrow \text{ Criticality}\} \longmapsto \{\uparrow \text{ Demand in reliability}\}$
- Meet the reliability demand
 - Fault forecasting, Fault avoidance, Fault removal, Fault tolerance, etc.
- Need for reliability evaluation and modeling
- Previous work
 - Proposed model, SRMM/p
 - Proposed set of metrics

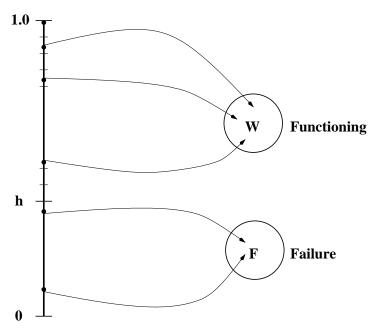

Objectives

- Observe the run-time complexity of the model
- Analyze the model to understand the cause of high complexity
- Study the options to reduce complexity
- Evaluate the pros & cons
- Accelerate the analysis
- Examine the improvement

State Reward Markov Model (SRMM/p)

- Markov Model
 - Probabilistic behavior
 - Design details
 - Coverage
 - System dependencies
- State-Reward feature
 - Performance as reward value
- Parametric feature
 - Varying performance
 - Multiple consecutive failures

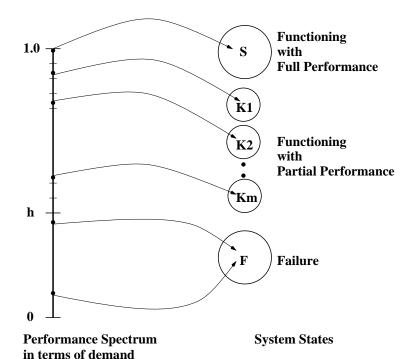

Reliability/Availability Evaluation Process


Model Parameters

- Parameter *l*
 - Number of stages in the model
 - Trade-off between complexity and accuracy
- Parameter h
 - Threshold performance
- Parameter m
 - Number of different performance levels above h
 - Trade-off between complexity and accuracy

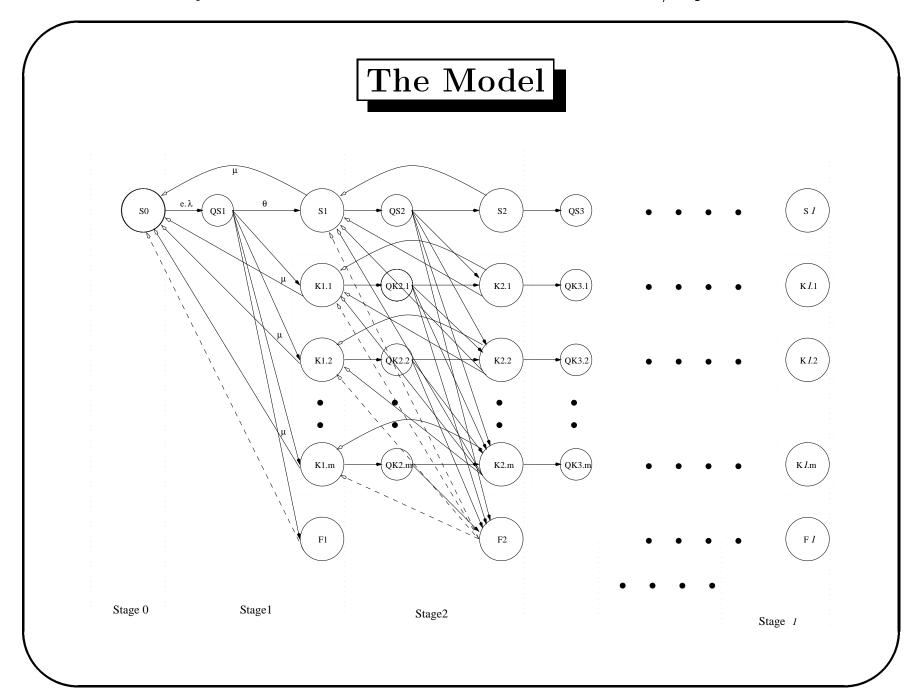
The Model with Multiple Stages

Performance Mapping into Two States



Performance Spectrum in terms of demand satisfied

System States


$$X(\xi) = \begin{cases} W, & \text{if } \xi \ge h; \\ F, & \text{if } \xi < h. \end{cases}$$

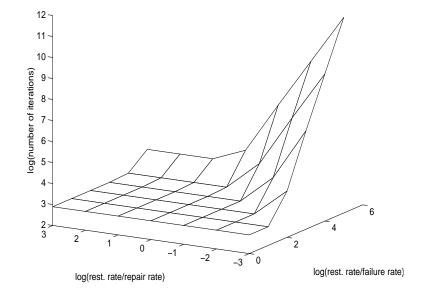
Performance Mapping into Multiple States

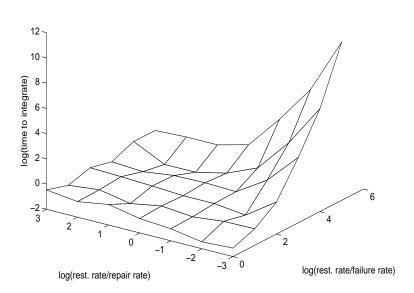
 $X(\xi) = \begin{cases} S, & \text{if } \xi = 100\%; \\ K_i, & \text{if } b_i \le \xi < b_{i-1} \ i = 1, 2, ..., m; \\ F, & \text{if } \xi < h. \end{cases}$

satisfied

Run-Time Complexity

- Steady-state Behavior
 - Balance equations
 - Linear equation system
- Transient Behavior
 - Kolmogorov equations
 - Differential equation system
 - * Adaptive Runge-Kutta method
 - * Rate of change
 - * Iteration interval

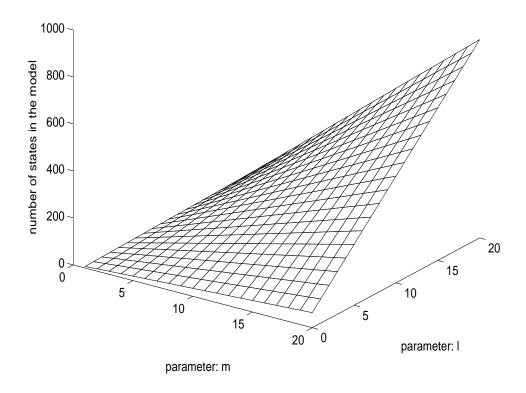

What Drives the Complexity


- Number of states in the model
 - Model parameters: l and m
- Time span of the transient behavior
- Number of iterations
 - Transition rates

Effect of Discrepancy in Transition Rates

• Number of iterations

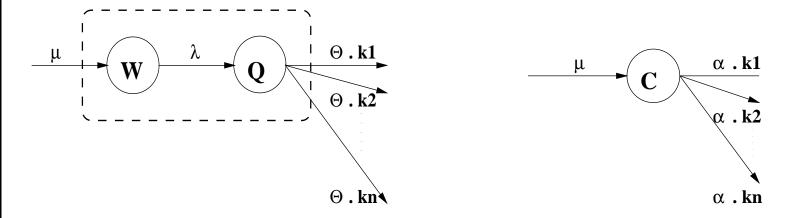
• Time to integrate



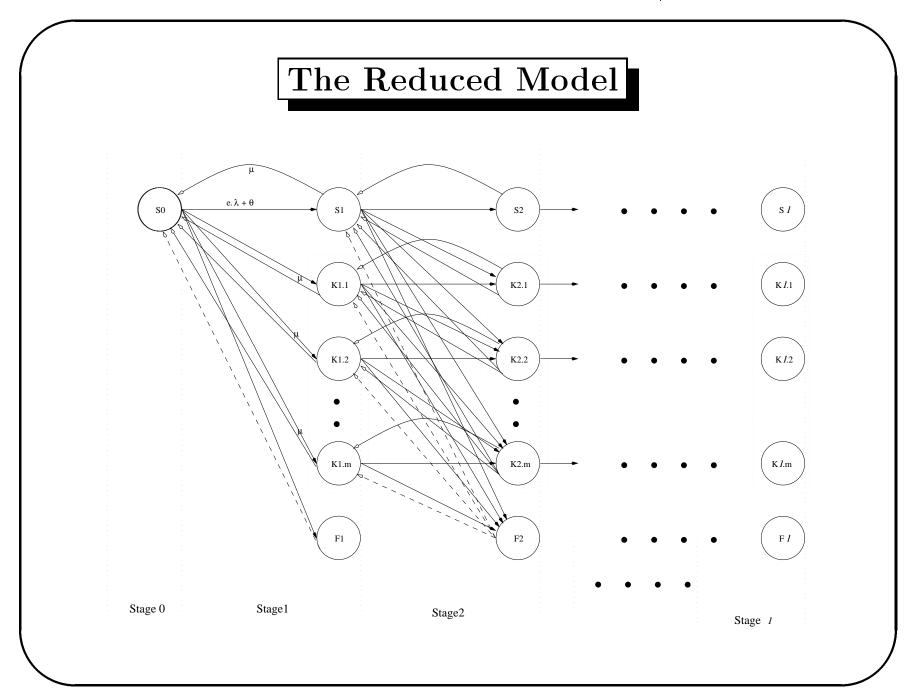
• Determines the transient behavior

Effect of Model Parameters

• s(l,m) = m(2l-1) + 3l + 4



Options to Accelerate the Run-Time

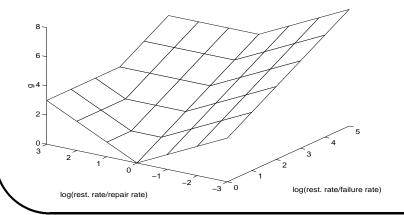

- Behavioral decomposition
 - Near-complete decomposition
- Importance sampling
 - Needs good heuristics
- State Aggregation
 - Fusing states

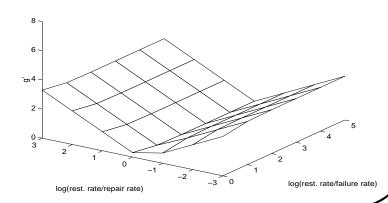
State Aggregation

- Inter-arrival time for both failure and restoration are exponentially distributed
- Aggregation of working and restoration states

$$\alpha = \Theta + \lambda$$

Reduction in Transition Rate Ratio


Functions to quantify the effect of transition rates

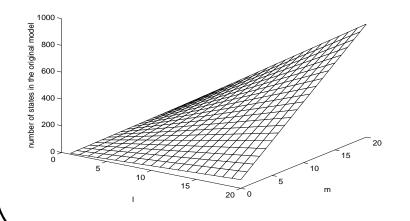

• For the original model:

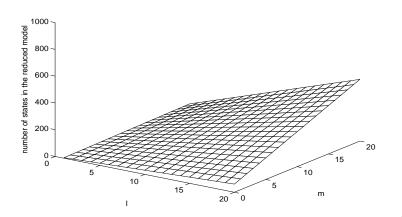
$$g(\Theta, \lambda, \mu) = \max(|\log \frac{\Theta}{\lambda}|, |\log \frac{\Theta}{\mu}|, |\log \frac{\mu}{\lambda}|)$$

• For the reduced model:

$$g'(\Theta, \lambda, \mu) = |\log \frac{\Theta + \lambda}{\mu}|$$

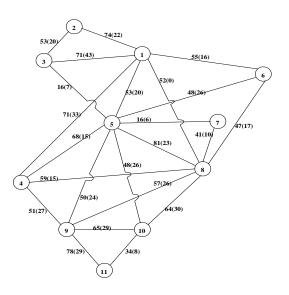
Reduction in Number of States

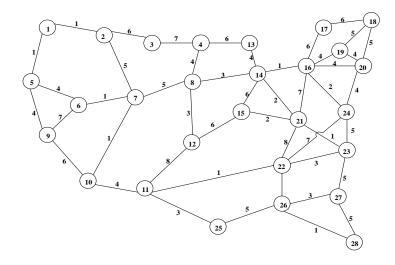

Functions to quantify the effect of model parameters


• For the original model:

$$s(m, l) = m(2l - 1) + 3l + 4$$

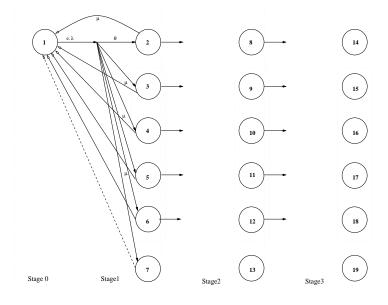
• For the reduced model:


$$s'(m,l) = ml + 3l + 1$$



Networks Used in the Experimental Study

• New Jersey Network



Models Used: M(3,0.5,4)

- Original Model
- 30 State

- Reduced Model
- 19 State

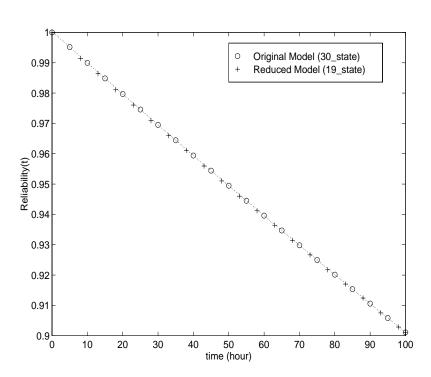
Iterations for the Original & Reduced Models

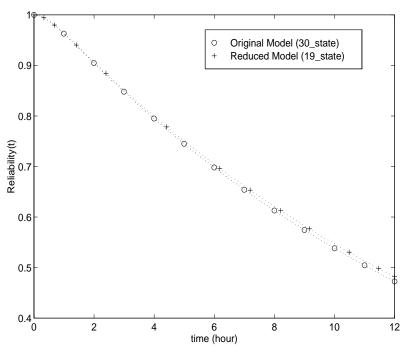
• New Jersey Network

Simulated	Number of steps	
${ m analysis}$	Original	${ m Reduced}$
period (hr)	(30 State)	(19 State)
1	1295	18
2	2586	19
3	3878	22
4	5168	24
5	6460	25
6	7752	26
7	9043	27
8	10335	28
9	11626	29
10	12917	32
20	25831	72
50	77485	183
100	129141	368

Simulated	Number of steps	
analysis	Original	$\operatorname{Reduced}$
period (hr)	(30 State)	(19 State)
1	821	18
2	1636	21
3	2452	25
4	3267	27
5	4082	29
6	4897	31
7	5714	32
8	6530	33
9	7346	34
10	8162	34
20	16320	63
50	40791	152
100	68014	301

Run-Time for the Original & Reduced Models


• New Jersey Network


$\operatorname{Simulated}$	Run-Time (hr:min:sec)	
${ m analysis}$	Original	$\operatorname{Reduced}$
period (hr)	(30 State)	(19 State)
1	00:03:49	00:00:00.23
2	00:08:56	00:00:00.21
3	00:15:27	00:00:00.24
4	00:23:10	00:00:00.26
5	00:32:25	00:00:00.28
6	00:51:64	00:00:00.29
7	00:57:11	00:00:00.30
8	01:16:21	00:00:00.58
9	01:26:40	00:00:00.45
10	01:58:19	00:00:00.70
20	02:48:32	00:00:04
50	06:25:11	00:00:08
100	46:38:46	00:00:19

$\operatorname{Simulated}$	Run-Time (hr:min:sec)	
${ m analysis}$	Original	$\operatorname{Reduced}$
period (hr)	(30 State)	(19 State)
1	00:00:42	00:00:00.21
2	00:01:42	00:00:00.23
3	00:03:05	00:00:00.28
4	00:04:51	00:00:00.30
5	00:07:13	00:00:00.32
6	00:09:35	00:00:00.35
7	00:12:30	00:00:00.52
8	00:16:25	00:00:00.61
9	00:20:27	00:00:00.71
10	00:24:11	00:00:00.57
20	00:38:03	00:00:03
50	01:42:23	00:00:07
100	12:15:22	00:00:17

Reliability of the Experimental Networks

• New Jersey Network

Availability of the Experimental Networks

	Availability	
Experimental Networks	Original Model	Reduced Model
	(30 State)	(19 State)
"New Jersey" network	0.999833389953	0.999833410915
"US" network	0.9843426772	0.9843461500

Conclusion

- Major run-time reduction
 - Order of thousands
- Minor accuracy lost
 - Order of 10^{-6}
- Non divergent transient behavior
- Complementary use of both models