Designed by
../epic_logo.gif (359 bytes)
EPIC
SOLUTIONS INTERNATIONAL



SIGCOMM 1998 LOGO Core-Stateless Fair Queueing: A Scalable Architecture to Approximate Fair Bandwidth Allocations in High Speed Networks
Ion Stoica (CMU), Scott Shenker (Xerox PARC), and Hui Zhang (CMU)

Router mechanisms designed to achieve fair bandwidth allocations, like Fair Queueing, have many desirable properties for congestion control in the Internet. However, such mechanisms usually need to maintain state, manage buffers, and/or perform packet scheduling on a per ow basis, and this complexity may prevent them from being cost-effectively implemented and widely deployed. In this paper, we propose an architecture that significantly reduces this implementation complexity yet still achieves approximately fair bandwidth allocations. We apply this approach to an island of routers { that is, a contiguous region of the network { and we distinguish between edge routers and core routers. Edge routers maintain per ow state; they estimate the incoming rate of each ow and insert a label into each packet header based on this estimate. Core routers maintain no per ow state; they use FIFO packet scheduling augmented by a probabilistic dropping algorithm that uses the packet labels and an estimate of the aggregate traffic at the router. We call the scheme Core-Stateless Fair Queueing. We present simulations and analysis on the performance of this approach, and discuss an alternate approach.


ACM Copyright Notice: Copyright (c) 1998 by Association for Computing Machinery, Inc. (ACM) Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage and that the copies bear this notice and full citation on the first page. Copyright for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permission to publish from: Publications Dept. ACM, Inc. Fax +1 212 869 0481 or email <permissions@acm.org>.

The referenced paper is in Computer Communication Review, a publication of ACM SIGCOMM, volume 28, number 4, October 1998. ISSN # 0146-4833.

This electronic facsimile may differ slighty from the printed version. It has may have been reformated to better support electronic viewing. Therefore, please use the printed version when referencing layout details, such as page numbers.

This paper is available in Postscript and Adobe Portable Document Format (PDF)

Get Acrobat Reader Get Microsoft Powerpoint Viewer, Get Ghostview Ghostview