Designed by
../epic_logo.gif (359 bytes)
EPIC
SOLUTIONS INTERNATIONAL



SIGCOMM 1998 LOGO The Performance of Query Control Schemes for the Zone Routing Protocol
Zygmunt J. Haas and Marc R. Pearlman (Cornell)

In this paper, we study the performance of route query control mechanisms for the recently proposed Zone Routing Protocol (ZRP) for ad-hoc networks. The ZRP proactively maintains routing information for a local neighborhood (routing zone), while reactively acquiring routes to destinations beyond the routing zone. This hybrid routing approach has the potential to be more efficient in the generation of control traffic than traditional routing schemes. However, without proper query control techniques, the ZRP can actually produce more traffic than standard flooding protocols.

Our proposed query control schemes exploit the structure of the routing zone to provide enhanced detection (Query Detection (QD1/QD2)), termination (Loop-back Termination (LT), Early Termination (ET)) and prevention (Selective Bordercasting (SBC)) of overlapping queries. We demonstrate how certain combinations of these techniques can be applied to single channel or multiple channel ad-hoc networks to improve both the delay and control traffic performance of the ZRP. Our query control mechanisms allow the ZRP to provide routes to all accessible network nodes with only a fraction of the control traffic generated by purely proactive distance vector and purely reactive flooding schemes, and with a response time as low as 10% of a flooding route query delay.

The slides from the presentation are available here in Postscript , or Adobe Portable Document Format (PDF)
or from the authors at:
http://www.ee.cornell.edu/~haas/Publications/sigcomm98_slides.ps


ACM Copyright Notice: Copyright (c) 1998 by Association for Computing Machinery, Inc. (ACM) Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage and that the copies bear this notice and full citation on the first page. Copyright for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permission to publish from: Publications Dept. ACM, Inc. Fax +1 212 869 0481 or email <permissions@acm.org>.

The referenced paper is in Computer Communication Review, a publication of ACM SIGCOMM, volume 28, number 4, October 1998. ISSN # 0146-4833.

This electronic facsimile may differ slighty from the printed version. It has may have been reformated to better support electronic viewing. Therefore, please use the printed version when referencing layout details, such as page numbers.

This paper is available in Postscript and Adobe Portable Document Format (PDF)

Get Acrobat Reader Get Microsoft Powerpoint Viewer, Get Ghostview Ghostview