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Abstract

Using a simple analytical model, this paper addresses
the following question: Should the Internet retain its
best-effort-only architecture, or should it adopt one
that is reservation-capable? We characterize the differ-
ences between reservation-capable and best-effort-only
networks in terms of application performance and total
welfare. Our analysis does not yield a definitive answer
to the question we pose, since it would necessarily de-
pend on unknowable factors such as the future cost of
network bandwidth and the nature of the future traffic
load. However, our model does reveal some interesting
phenomena. First, in some circumstances, the amount
of incremental bandwidth needed to make a best-effort-
only network perform as well as a reservation capable
one diverges as capacity increases. Second, in some
circumstances reservation-capable networks retain sig-
nificant advantages over best-effort-only networks, no
matter how cheap bandwidth becomes. Lastly, we
find bounds on the maximum performance advantage
a reservation-capable network can achieve over best-
effort architectures.

1 Introduction

The current Internet offers a single class of best-effort
service. That is, the Internet offers no guarantees
about when (or even if) packets will be delivered, and
clients need not ask permission before transmitting
packets. This architecture has been tremendously suc-
cessful in supporting data applications, as most re-
cently demonstrated by the astonishing growth of In-
ternet usage and the dramatic emergence of the World-
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Wide-Web. While the Internet architecture has been
an undeniable success for data applications, there are
many who do not think the present Internet architec-
ture provides sufficient support for audio, video, and
other so-called real-time applications. The Internet re-
search community has devoted much effort to designing
an integrated services Internet architecture, which is
an architecture capable of supporting real-time appli-
cations as well as data applications (see, for example,
[4, 6,7, 8,10, 15, 18] and references therein for a small
sampling of the research in this area). In a culmi-
nation of these efforts, the Internet Engineering Task
Force (IETF) recently promoted to Proposed Stan-
dard extensions to the Internet architecture that will
enable it to support reservations, in which resources
(e.g., bandwidth) are set aside for a particular flow; see
[2, 12, 13, 16, 17] for the relevant RFCs and for addi-
tional supporting material. In this architecture, clients
can still send best-effort packets, but in addition clients
have the option of requesting a reservation for their
flow.! To obtain a reservation, a client requests a cer-
tain amount (characterized by a traffic specification)
and quality (specified by a service specification) of ser-
vice; the network then decides whether or not it can
satisfy this request. While there are many mechanis-
tic differences between the various integrated services
proposals, they all share the two fundamental aspects
that (1) applications have the ability to reserve band-
width, and (2) the network exercises control — known
as admission control — over these reservation requests
80 it can ensure the level of service given to reserved
traffic. These are the two most fundamental concep-
tual changes brought to the Internet by an integrated
services architecture.

During the past few years there has been a substan-
tial research focus on the design details of this inte-
grated services architecture investigating, for instance,
the nature of the reservation protocol, the behavior of
measurement-based admission control algorithms, and
the appropriate service model. The vigor and extent
of this research activity should not be interpreted as a
sign of consensus about the wisdom of this endeavor.
Simmering in the background has been a rather intense
debate over the more fundamental question: are reser-
vations necessary, or would the Internet be better off

LA flow, for the purposes of this paper, is the traffic stream
generated by a particular application.



retaining its best-effort-only architecture? Advocates
of reservations claim that high fidelity interactive audio
and video applications need higher quality, and more
predictable, network service than that delivered by the
best-effort-only Internet. Opponents of reservations,
on the other hand, contend that this is a simple mat-
ter of provisioning; a reservation-capable network will
not deliver satisfactory service unless its blocking rate
(the rate at which it denies reservation requests) is low,
and at such provisioning levels best-effort networks will
provide completely adequate service — service that is
nearly as good as that of the reservation-capable net-
work. Moreover, opponents maintain, any differential
in quality can be offset by adding a modest amount
of additional capacity to the best-effort-only network
which, when bandwidth becomes inexpensive, should
be far cheaper than the added complexity of the pro-
posed integrated services architectural extension. In
addition, the most ardent opponents claim that the
adaptability of modern network applications renders
reservations unnecessary, since applications can adapt
to whatever service the network offers.?

This research was initiated in an attempt to for-
malize some of these claims and provide a more solid
footing for this debate. This paper introduces a sim-
ple analytical model in which we can more concretely
pose the question of whether the Internet should adopt
a reservation-capable architecture or retain its best-
effort-only architecture. This model is not intended
to be a complete representation of reality, but is in-
stead intended merely to illustrate, in an accessible and
tractable fashion, some of the essential issues. While
we hope to inform the debate, by providing an intellec-
tual framework in which the debate can constructively
continue, we do not in any way expect that this work
will settle the debate, since the relative merits of the
two architectures depend on many practical concerns
— such as the future cost of bandwidth and the burden
of architectural complexity — that are inputs to, not
outputs of, our model. In the spirit of full disclosure,
we admit that we (the authors) are biased in favor of
reservations; we strived to keep our analysis as neutral
as possible, but we obviously aren’t the best judges of
our success in that regard.

To evaluate a network architecture, one must ask
how well it meets user needs. For a user employing a
given network application, the wutility — or value — the
user derives from that application will depend on the
application’s performance (e.g., the picture quality for
video, the sound quality for audio applications, etc.);
the application’s performance, in turn, depends on the
nature of the network service the application receives.
Network architectures are intended to provide a high
degree of total utility (the sum of utility over all net-
work users). For the simple case where a single link
has a fixed load of k identical applications, it has been
shown in [14] that for certain classes of utility functions
the reservation-capable architecture provides a higher
level of total utility. We review that derivation here,
in Section 2, since our subsequent work will build on
these results.

2These statements are simplifications of the actual debate.
We include them only to give a flavor of the contending
arguments.

However, optimizing utility is not the only design
goal; competing with it is the goal of keeping the net-
work architecture simple. The complexity of the net-
work architecture is hard to quantify, and we do not at-
tempt to do so here, but it is clear that any integrated
services architecture is significantly more complex than
a best-effort-only architecture. The key question, then,
is whether or not the performance advantage of reser-
vation-capable networks alluded to above is significant.
If this utility difference is quite small then there is lit-
tle reason to incorporate reservations into the Internet
architecture, since the burden of adding significant ad-
ditional complexity to the Internet architecture would
far outweigh the small increase in utility it would bring.
We initially address this question in Sections 3 and 4
through the use of a variable load model that extends
the fixed load model used in [14]. Our results for this
variable load model show that the answer to the ques-
tion we posed depends critically on characteristics of
the network load and on the nature of application util-
ity. We find that, under many conditions in our vari-
able load model, the arguments of the opponents of
reservations are largely correct. However, we also find
that, under certain conditions, the incremental band-
width needed to equalize performance in the two kinds
of networks increases as the capacity increases. We
also show that in a subset of these cases in our vari-
able load model, reservation-capable networks retain a
significant, but bounded, performance advantage over
best-effort networks, no matter how cheap bandwidth
becomes. In Section 5 we consider two extensions to
the variable load model that increase the performance
advantage of reservation-capable networks. We con-
clude in Section 6 with a brief discussion of our results.

2 Fixed Load Model

The key difference between a best-effort-only architec-
ture and a reservation-capable one is that, in the for-
mer, flows are never denied access to the network —
they can send packets whenever they want — whereas
in a reservation-capable architecture the network can
deny reservation requests. The question we address
here, reviewing the material in [14] to provide nec-
essary context, is: does denying reservation requests
result in an increase in utility under some conditions,
or does allowing all flows access to the network always
maximize utility?

We do this by considering a very simple fixed load
model. We consider a single link of capacity C and we
assume that the load on this link is, at any one time,
comprised of &k identical flows. We further assume that
the bandwidth is allocated evenly among these k flows,
so that each flow receives the same bandwidth share %

Each flow represents an application whose perfor-
mance or utility = as a function of the bandwidth b
allotted it is given by the function w(b). We assume
that 7(0) = 0 (i.e., when the application receives zero
bandwidth it provides no value) and that 7(c0) = 1
(i.e., when the application receives as much bandwidth
as it wants, it provides a value of 1). At bandwidths
0 < b < 1, different applications have different levels of
performance, but in all cases w(b) is a nondecreasing
function. We model a flow that requested a reserva-



tion but was denied service as receiving zero bandwidth
(b =0) and so has zero utility (7 = 0).

If all flows are given service, the total utility of
the network is given by V(k) = kxn($). If the func-
tion V(k) is increasing then utility is maximized by
always allowing all flows access to the network. In this
case, the best-effort-only architecture, which admits all
flows, provides the higher total utility.

However, if the function V' (k) is maximized at some
finite value kpqz, then if & > kpyqs the utility would be
maximized by denying service to the additional flows
kmaz+1, kmaz+2, ..., k. Such denial of service requires
an integrated services architecture.

Thus, the nature of the function V(k) determines
which architecture produces the higher utility. In turn,
the nature of the function V' (k) depends on the charac-
ter of the utility function 7(b). There are two general
results of interest. First, if there exists some neighbor-
hood of the origin in which the function 7 is convex
but not concave (i.e., is convex, but not linear in the
whole region), then there exists some k;az such that
V(kmaz) > V (k) for all & > kpmas. For such functions
7, admission control should keep the number of users
at or below kpqz. Second, if the function 7 is every-
where strictly concave, then V(k) is a strictly mono-
tonically increasing function of k. In this case, access
should never be denied and so admission control is not
needed. The next question, then, is: what do real ap-
plication utility functions look like?

The traditional data applications, like electronic
mail and file transfer, are somewhat elastic, in that
they are not particularly sensitive to individual packet
delays, and typically do not have hard real-time con-
straints. This suggests that while giving such applica-
tions additional bandwidth certainly aids performance,
the marginal improvement for additional bandwidth
decreases in b and so w(b) is strictly concave every-
where. Thus, V (k) is always maximized when no users
are denied access; the current best-effort-only architec-
ture is ideal for such elastic applications.

At the opposite end of the spectrum are rigid appli-
cations, which need their data to arrive within a given
delay bound (and performance does not improve if data
arrives earlier than this bound). Traditional telephony
is an example of such a rigid application, as are other
applications that rely on circuit-switched service. For
such applications needing b units of bandwidth

7(b) =0 forallb < b and n(b) =1 forallb>1b (1)

and so the function V (k) is given by

V(k)=0 k>% and  V(k)=k k<

@\| @)

and thus admission control is clearly necessary here to
c

constrain usage at or under kpmas(C) = L?J. Appli-
cations whose utility curves give rise to finite kmw(C)
are deemed to be inelastic, and function better with a
reservation-capable architecture.

These two extreme cases — elastic and rigid applica-
tions — illustrate the fact that the telephone and Inter-
net network architectures were both designed to meet
the needs of their original class of applications; rigid
applications perform better with reservations, and data

application fare better without them.
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Figure 1: The performance curve n(b) for a rate and
delay adaptive application.

However, video and voice applications are becoming
much more common on the Internet, and these Internet
voice/video applications are not built to expect circuit-
switched service. Instead, they are designed to adapt
to the currently available bandwidth and to variations
in packet delay.® It appears, due to human perceptual
factors, that minimal levels of bandwidth are not very
useful, so that at low bandwidths the marginal utility
of additional bandwidth is fairly small. Similarly, at
high bandwidths the signal quality is quite good and
so the marginal utility of additional bandwidth at high
bandwidths is also small. At intermediate levels, when
the signal quality first starts to be viable, the marginal
utility of extra bandwidth is significant.

One such utility function modeling adaptive but in-
elastic applications, that we will use in our later anal-
ysis, is given by:

w(b) = 1 — e~ 5 2)

where k = .62086.* This function is depicted in Figure
1; note that for small b, 7(b) ~ % and that for large
b m(b) = 1 —e~®. While the function V(k) for this
utility function has a peak at some finite kpaz(C) (be-
cause of the convex neighborhood around the origin),
the adaptive nature of the application means that the
decrease in V(k) for k& > kpmas(C) is much more gen-
tle than the abrupt drop from full utility VI(k) = &
to zero utility V' (k) = 0 that rigid applications have
as k passes through kpaz(C). Thus, while it is true
that an integrated services architecture produces su-
perior performance for these adaptive audio and video
applications, it is not at all clear that the performance

3Most current Internet audio and video applications are de-
lay adaptive but not rate-adaptive, in that they do not adjust
their sending rate, but do adjust to varying packet delays. See
[14] for an elucidation of the differing utility curves between
these two styles of adaptation. For our treatment here, we as-
sume that the applications are both rate and delay adaptive.
This assumption makes the case for best-effort-only service
stronger, by considering only those applications most suited
to best-effort.

*This value of x yields kmax(C) = C, facilitating compar-
isons with the rigid case, which also has ke (C) = C.



advantage is of a significant magnitude. We address
this issue in the next section.

3 Variable Load Model

The model from [14] reviewed in the previous section
used a fixed load k of flows. If the applications are
inelastic, the total utility is higher in a reservation-
capable network when the offered load % is higher than
kmaz(C). This does not tell us the likelihood of such
overload conditions, and thus we cannot evaluate the
extent of the performance advantage of the reservation-
capable architecture. To quantify this performance ad-
vantage, we extend the fixed load model from [14] to
include variable loads. The load on the network is de-
scribed not by a fixed number of inelastic flows, but
by a probability distribution of the number of inelas-
tic flows on the link. To keep the level of complexity
manageable, we do not model the dynamics of flows ar-
riving and departing the network, but rather only con-
sider a probability distribution of possible static loads.

In what follows we use a mixture of numerical com-
putations on a more realistic discrete model and an-
alytical calculations on a more tractable continuum
model. The two models are quite similar in spirit,
if different in detail (the probability distributions are
slightly different and the adaptive utility functions are
substantially different). The results of the two models
are, at least in the asymptotic case of large C, com-
pletely equivalent. We first present the discrete version
of our variable load model.

3.1 Discrete Model

Let P(k) denote the probability that there are k flows
requesting service, and let k& denote the average num-

ber of flows requesting service: k=3 .~ P(k)k. We
assume that a user’s utility is the average of her utility
at these various load levels. In the best-effort-only ar-
chitecture, each flow receives bandwidth % so the total

utility of the system, Vz(C), is given by:
() = 3 PIkn( )
k
k=1

We will use the notation B(C') to refer to the normal-
ized utility:

In the reservation-capable architecture, when & flows
request service each of the min[k, kpnaz(C)] admitted
m, and each of the
k—min[k, kmaz(C)] rejected flows gets zero bandwidth.
The total utility of the system, Vr(C), is given by:

flow receives bandwidth

kmaz(C)

Va(C) = Y Pke(S)

k=1

E=Emaz(C)+1

We use the notation R(C') to refer to the normalized
utility: ~
R(C) = VR}£C)

Clearly we have R(C) > B(C), with the inequality
strict if kmw(C)ﬂ'(m) > (kmw(C)—l—l)ﬂ'(m)
and P(kmaz(C)+1) > 0; these conditions always hold
in the cases we consider, and so R(C) > B(C) in what
follows. The key question, though, is whether this dif-
ference is significant.

One way to answer that question would be to com-
pare the numerical values of these two quantities, look-
ing at the performance gap:

5(C) = R(C) — B(C)

Since the units of utility are somewhat arbitrary, this
approach may be of limited value. Perhaps a bet-
ter way of assessing significance is to determine how
much additional bandwidth is needed to make a best-
effort-only network have the same performance as the
reservation-capable one. This is an important quantity
given that arguments against the need for reservations
suggest that the same performance can be achieved
by adding a modest amount of additional capacity to
a best-effort-only network. We can define the incre-
mental bandwidth requirements A(C), called the band-
width gap, via the relation:

R(C) = B(C + A(0))

The reservation-capable architecture imposes the bur-
den of additional complexity. The best-effort-only ar-
chitecture allows one to avoid extra complexity, but it
requires additional bandwidth in order to match the
performance of the reservation-capable architecture.
The bandwidth gap A(C) quantifies this bandwidth
versus complexity tradeoff, and depends on the func-
tions P(k) and 7(b).

In modeling 7 (b), we consider two separate cases,
representing the two classes of inelastic applications
discussed above: rigid and adaptive. Rigid applica-
tions have utility functions given by Equation 1 (with
b =1) and the adaptive applications have utility func-
tions as given by Equation 2. Our choice of the partic-
ular form of the adaptive utility function is arbitrary,
and represents an extremely adaptive function in that
it provides non-negligible marginal utility over a wide
range of bandwidths.

In modeling P(k), we claim no special wisdom about
the nature of future network loads. To cover a broad
spectrum of possibilities, we consider three quite dif-
ferent load distributions P(k):

k v

Poisson P(k) = Y&

E!

Exponential P(k) = (1 —e #)e™P*
Algebraic P(k) =

v

PP

Note that k = v in the Poisson distribution and k =
(e® —1)7! in the exponential distribution. The power
z in the algebraic distribution controls the asymptotic
rate of decrease in P(k); we only consider cases where
z > 2 so that k is well defined. The constants v and



A are chosen so that the probability function is nor-
malized, 1 = Z:O:O P(k). We introduce two parame-
ters (rather than just setting A to zero and taking a
simple power law) so that we can vary the average of
the distribution while holding the asymptotic power
law z fixed. In all of our numerical calculations, we
set k = 100. Note again that we do not justify these
load distributions by any detailed arrival and depar-
ture processes. There are too many unknown aspects
of what these might be in reality, especially in terms
of correlations and diurnal rhythms, and so instead we
just model their resulting stationary distributions.

We now have six cases to investigate: two choices
for the utility function =(b), combined with three choices
for the load distribution P(k). Since solving the vari-
ous quantities of interest analytically is difficult in this
discrete variable load model, we instead numerically
evaluate these quantities. This allows us to do our
modeling without regard for tractability. However,
since our numerical calculations are necessarily done
over a finite range of C' values, it is impossible to make
definitive conclusions about the asymptotic (large C)
behavior of the various quantities based on these com-
putations; for that we need analytical calculations, to
which we now turn.”

3.2 Continuum Model

We augment our treatment of the variable load model
by introducing a continuum version, where the variable
k varies continuously from 0 to co. This model, while
requiring some additional simplifications, is more an-
alytically tractable than the discrete model. However,
these simplifications do not affect the asymptotic be-
havior of the quantities we examine. In the continuum

model, the formulae for VR(C) and VB(C) become:

Emaz(C)
Vr(C) = / dkP(k)kﬂ-(%)

OO C
+/kmaz(c) dkP(k)kma.r(C)ﬂ'(m)

and
VB(C) = / dkP(k)kﬂ'(%)

In our continuum model, we only consider the ex-
ponential and algebraic load distributions, as they are
most easily computable.® In addition, to make the al-
gebraic distribution more tractable, we consider the
form P(k) = (z — 1)k=7 for k > 1 and P(k) = 0 for
k < 1. Moreover, since the calculations are no longer
tractable when we consider adaptive applications with
utility functions given by Equation 2, we use a modi-
fied form of adaptive utility function in the continuum
model. These utility function is parametrized by a
constant a, a € (0,1), and is given by the following:

7(b) =0 b<a

5Conversely, the analytical calculations are often only
tractable in the asymptotic (large C) limit, so we need the
numerical calculations to illustrate the nonasymptotic regime.

SThe asymptotic behavior of our numerical computations
for Poisson distribution are completely unambiguous. There-
fore, failure to treat this case analytically does not impact our
conclusions.

W(b):;):—z a<b<l1
) =1 b>1

Note that when ¢ = 1 this reduces to the rigid case.
Decreasing a represents increasing levels of adaptiv-
ity of the application. For all ¢ > 0, knaa(C) = C,
so the calculations of VR(C) are identical to the rigid
case, but the best-effort results are significantly al-
tered. When a = 0, the utility function is no longer
inelastic and Vgr(C) = Vg(C).

3.3 Results

We now address the six cases. For each of the three
different load distributions, we first consider rigid ap-
plications, and then adaptive ones. In each case, we
begin with the relevant results of the numerical calcu-
lations using the discrete model and then, where ap-
propriate, augment the discussion with results from the
continuum model.

The Poisson load distribution describes a situation
where the load is fairly tightly controlled within a re-
gion around the average, and excursions to large (or
small) loads are extremely rare. This describes the be-
havior of a Poisson arrival process with uncorrelated
and independent departure processes. The results here
are the closest (of our three load distributions) to the
fixed load model. Figure 2a shows the performance
functions for reservations and best-effort, B(C) and
R(C), and Figure 2b shows A(C) for Poisson load and
rigid applications. Note that for small C' (by which we
mean C < k) R(C) is close to linear in C' (with slope
%, and recall that k& = 100) while B(C) is almost zero
throughout most of this region. The difference in per-
formance §(C) = R(C) — B(C) reaches a peak of 0.8
and the bandwidth gap A(C') reaches a peak of 80, and
so both gaps are significant in this region. However,
as soon as C is slightly greater than k, both R(C) and
B(C) are very close to unity, and even closer together,
and so both §(C) and A(C) vanish extremely quickly
(faster than exponentially).

Figures 2d and 2e show the functions B(C), R(C),
and A(C) for Poisson load and adaptive applications.
In contrast to the rigid case, the R(C') and B(C) curves
are quite close for all but the smallest C; this reflects
the fact that adaptive applications tolerate overload
conditions reasonably well, and so the performance
under best effort does not degrade so severely. Note
that the R(C) curve continues to increase well past
C = k. This is because the utility 7(b) continues to
increase for b > m, reflecting that adaptive ap-
plications not only tolerate overload conditions better,
they also take advantage of underload conditions more
effectively than rigid applications. As for the perfor-
mance and bandwidth gaps, the maximum values of
8(C) and A(C) are substantially lower than in the rigid
case. As before, in the region C' > k both of these dif-
ference curves vanish superexponentially.

The exponential load distribution describes a situ-
ation where the load is not peaked around the average,
but instead decays over the whole range at an exponen-
tial rate. Figures 3a and 3b show the functions B(C),
R(C), and A(C) for exponential load and rigid ap-
plications. The performance curves, R(C) and B(C),



increase more gradually than in the Poisson case, re-
flecting the greater variability in load levels. Addi-
tional differences from the Poisson case are that B(C)
is not vanishingly small when C < k nor is R(C) lin-
ear, and so the performance gap §(C) peaks at less
than half the value of the Poisson peak. However, in
the region C > k, 6§(C) decays more slowly in the ex-
ponential case. At capacities of 2k and 4k with rigid
applications, §(C') is approximately .27 and .07, respec-
tively. For the Poisson distribution, §(C) is less than
107*® at the same capacities. The biggest contrast
with the Poisson case, though, is that the bandwidth
gap A(C) is monotonically increasing throughout the
entire domain. As capacity increases, the incremen-
tal bandwidth needed to make best-effort performance
equivalent to reservations increases.

We can articulate this behavior more precisely in
the continuum model. For rigid applications, the con-
tinuum equations become (recalling that ke (C) =

C):

Vr(C) = /C dkP(k)k + c/oo dkP(k)

and
VB(C):/ dkP(k)k

For the exponential distribution P(k) = fe "% we
find that Vz(C) = $(1—e™79(14 5C)) and Vr(C) =
5(1—e7P%). In addition, §(C) = Ce™" and A(C) is
the solution to SA(C) = In(1 + B(C + A(C))) which

grows asymptotically like % for large C. Thus, the

bandwidth gap grows logarithmically for exponential
loads and rigid applications. This is a somewhat sur-
prising result, in that it says that as you increase the
overprovisioning in the limit C > k it takes increas-
ingly more bandwidth to render the performance of
the two architectures the same. At first it might seem
puzzling that the performance gap §(C) is decreasing
while the bandwidth gap A(C) is increasing; the phe-
nomena is most easily understood by noting that A(C)

can be approximated by ‘;,CC) so if the derivative B'(C)
is decreasing faster than the gap §(C) then A(C) is
an increasing function. Thus, even though the perfor-
mance gap is shrinking, the increase in utility per unit
of bandwidth is shrinking faster, so it takes increas-
ingly more bandwidth to make up this performance
difference.

This behavior disappears in the adaptive case. Fig-
ures 3d and 3e show the functions B(C), R(C), and
A(C) for exponential load and adaptive applications.
The R(C) and B(C) curves are much closer together.
The peak of the performance gap §(C) is reduced by
a factor of 10 and it has a value less than .01 when
capacity equals 2k, and less than .001 when capacity
equals 4k. Note that after hitting a peak of 9, the
bandwidth gap A(C) decreases for C > k.

In the continuum model, (recalling that a is a pa-
rameter in the continuum adaptive utility function) we

C

_ _B8C
find Vp(C) = %(1 - el_ﬂ: + 25—"-). In this case,
8(C) = “i__ic (1- 6_%). A(C) is the solution to

aB(C+A(C))
BA(C) = —In(1 — a) + In(1 — ae” T—a ). For

large C') A = w, so the bandwidth performance

gap goes to a constant (as opposed to the logarithmic
growth we found in the rigid case). Thus, the expo-
nential distribution illustrates the profound difference
between rigid and adaptive applications, and the qual-
itative, not just quantitative, impact adaptivity has
on the tradeoffs between reservation-capable and best-
effort-only architectures.

The algebraic distribution is like the exponential
distribution in that it decreases over the whole range,
but here the decrease is much slower. Figures 4a and
4b show the functions B(C'), R(C), and A(C) for alge-
braic load and rigid applications, with z = 3.0 (recall
that z is the power of the algebraic distribution). The
gap between the R(C) and B(C) remains substantial
over a wide range of C’s (for instance taking on the val-
ues of .20 at C = 2k and .10 at C = 4k), and so, while
the performance gap §(C) peaks at a fairly low value
it decays quite slowly. In contrast, the bandwidth gap
A(C) increases linearly throughout the entire domain.

Figures 4d and 4e show the functions B(C), R(C),
and A(C) for algebraic load and adaptive applications.
The performance gap between the R(C) and B(C) is
much less than with rigid applications, but the increas-
ing nature of A(C) remains unchanged, although the
slope is much less (decreased by a factor of over 20).

The continuum calculations shed some light on the
behavior of A(C). Recall that the algebraic distri-
bution for the continuum model is given by P(k) =
(z—1k™ % for k > 1 and P(k) =0 for k < 1. For rigid
applications, Vz(C) = Z=1(1 — C*7%) and Vr(C) =

z=2
=l - o ). The gaps are given by §(C) = C?7*

z—2 z—1 L
and A(C) = C((z —1)*=2 — 1). Thus, the linear in-
crease in A(C) applies for all powers z. For z = 3.0,
the constant of proportionality is 1, similar to what we
saw in our numerical calculations in the discrete case.
Note that in the limit as z — 2%, A(C) = (e —1)C.
We conjecture that this limit represents the greatest
asymptotic advantage reservations can have over best-
effort-only in our basic variable load model.” If so,
this means that in the worst asymptotic case in this
variable load model, best-effort-only networks require
e times more bandwidth than reservation networks to
match their performance. Hence, while a reservation-
capable network always has some performance advan-
tage over a best-effort one, the ratio of additional band-
width needed to make up this difference is bounded.

In the adaptive case, V5(C) = z:; (1-C*~* 1—a”

§(C) = o2 elil=e"T) nd A(C) = O((L52t) =3 —

z=2 l1—a l1—a

1). Note that in the limit as z — 2%, A(C) = Ce
In this limit, the constant of proportionality can vary
from 1 (for @ — 0%) to e (for @ — 17), depending on
the nature of the adaptive utility function.

Notice that while the asymptotic behaviors of the
discrete and continuum models agree for the algebraic

distribution, they disagree for smaller C'. In particu-
A(D)
c

—alna
1—a

lar, while the continuum model has constant for

"For this asymptotic advantage we care only about the na-
ture of ﬂcgl for large C; there may be cases where the ratio

% > (e — 1) for smaller C.

O-a(z-D

).



all C', the discrete model has some some structure in
the A(C) curve at lower values. This is due to the
difference in the algebraic distribution. To be able to
vary the average k without changing the power law z,
we inserted a constant in the discrete version that per-
turbed the distribution for lower values of C: i.e., k=7
versus )\4_17 We think the latter is likely to be a more
realistic distribution than the continuum one, but that
is pure speculation and our point here is merely to ex-
plain the impact on the results for ¢ < k. In any event,
the asymptotic behavior is unaffected.

The adaptive utility function used in our numerical
computations behaves as w(b) & 1 — e~ for large b (see
Equation 2). While we think this exponential approach
to the asymptotic value is the most realistic choice,
one can also consider utility functions that approach
their asymptotic values more slowly. For instance, the
family of functions =(b) = 1_?_% approach algebraically:
7(b) =~ 1—b"" for large b. This difference turns out to
be important for the algebraic load distributions. To
focus on the important aspect (the large b behavior)
and to make the calculation tractable,® we use instead
the form:

() =0 b<1
b)) =1-b"" b>1

This captures the behavior at high & but ignores
the behavior at low b. For this form of =(b), we find

kmaz (C) = C(r + 1)_Tl For algebraic loads, the total

utilities take the form:
VB(C) = W1 —|— WQC_T —|— W3C2_Z

and

VR(C) = W1 —|— WQC_T —|— W4C2_Z

with the w; being constants and ws > ws. Note that
the asymptotic behavior of A(C) for large C' depends
on whether r > z—2 or not. If r > z—2 then A(C) ~ C
for large C, but if r < z—2 then A(C) ~ C"T*7%; thus,
if z—2 > r > z—3 then A(C) asymptotically increases
with C, but not linearly, and if r < z — 3 then A(C)
asymptotically decreases with C. We have observed
similar behavior in our calculations.

While the variable load model introduced in this
section illustrates the performance and bandwidth gaps
between the two architectures as a function of C, it
yields no insight as to what value of C' is likely to be
relevant. This is crucial, since the behavior for C = k
can be radically different than the behavior for C' > k.
In the next section, we try to gain some insight into

the choice of C.

4 Variable Capacity Model

What capacity level C is likely to be present in the
network? This is clearly an impossible question to an-
swer in general, since so much will depend on market

8We also investigated the form:
n(d)=b" b<1

7T(b) =1 5>1
which captures the low b behavior but not the high b behavior
and obtained asymptotic results that resembled those of the
original utility function.

factors like the future cost of bandwidth and the level
of network usage. However, in an attempt to clarify
the situation, we present a very simplified analysis of
the economic tradeoff between the cost of additional
bandwidth and the utility it provides.

We assume that a network service provider making
the provisioning decision can provide additional band-
width at a cost p per unit bandwidth. Moreover, we
assume that the service provider sets the provisioning
level so as to maximize the total welfare V(C) — pC.
This is based on the assumption that the provider can
recover the utility V(C) from charging customers, and
so the quantity V(C')—pC represents the profits of the
network provider. Maximizing this welfare gives rise to
a function C(p) describing the capacity as a function
of price. Then the welfare provided by the network can
be computed via:

W(p) = V(C(p)) — pC(p)

This is the total utility derived from the network mi-
nus its cost. We will denote the quantities for the
two architectures as Cr(p) and Cg(p), and similarly
Wr(p) and Wx(p). With this model we now compare
the quantities Wr(p) and Wg(p), rather than compar-
ing the quantities VR(C) and VB(C) as we did in the
previous section. Before we compared utilities at a
given capacity level, we now compare welfare values at
a given price for bandwidth. The comparison of wel-
fares Wgr(p) and Wp(p) recognizes the fact that one
might make capacity decisions based in part on the
choice of architecture.

We must always have Wgr(p) > Wa(p) (with a
strict inequality holding as long as Wgr(p) > 0 in all of
the cases we consider). The welfare difference Wr(p)—
Wx(p) must be compared to the additional complex-
ity needed. However, as before, comparing absolute (or
relative) welfare values may not be very informative.
A better measure is to ask, given a bandwidth price p,
at what bandwidth price p are the two welfares equal:
Wr(p) = Wa(p). Thus, the ratio y(p) = 1;’ indicates
how much more expensive bandwidth in the integrated
services architecture would have to be (assuming that
its cost is linear in bandwidth) in order for the best-
effort-only network to be the more cost-effective one.
Thus, if we quantify the cost of additional complexity
as how much extra per-unit-bandwidth it takes to build
such a network (which is probably not a good approx-
imation of reality, but it may be sufficient to illustrate
our point), we can then compare the additional util-
ity provided by reservations to their additional cost of
complexity. Figures 2c, 2f, 3c, 3f, 4c and 4f display the
equalizing price ratio v(p) for our six cases.

For the Poisson load distribution with rigid applica-
tions, the provisioning levels (not shown) remain quite
moderate (below 1.4k) for all but the very smallest
pricing levels. The price ratio that makes two archi-
tectures equivalent varies, for most values of p, between
1.1 and 1.2 (see Figure 2c). Thus, if adding reserva-
tions added less than 10% to the cost of bandwidth,
then over most of the domain of prices the reservation-
capable network is the preferable choice. If bandwidth
is exceedingly cheap, then this no longer holds.

When we switch to adaptive applications with the
Poisson load distribution, the capacity levels are sig-



nificantly higher, reflecting the fact that adaptive ap-
plications can take better advantage of underloaded
situations. The capacity levels Cr(p) and Cg(p), and
the welfare levels Wgr(p) and Wg(p), are nearly the
same at all price levels. As shown in Figure 2f, the
equalizing price ratio y(p) is effectively 1 for all but
the higher values of p, so that if adding reservation
capability to the network incurred any significant per-
unit-bandwidth cost then the best-effort-only architec-
ture is the preferable choice.

The results for the exponential load distribution
are fairly similar to those for the Poisson distribution.
However, we can treat the exponential case analyti-
cally. With rigid applications; the overall welfare is
maximized for best-effort-only when p = $Ce 7 and
so Wg(p) = %(1 —p— % — ph(p)) where the function
h 1s defined implicitly as the largest solution to p =
h(p)e_h(p). For the reservation case, the maximizing

capacity is C = —glp and so Wr(p) = %(l—p—l—plnp).
The ratio of prices y(p) that gives equal welfares —
Wa(p) = Wr(v(p)p) — is given by the solution to the
equation ¥(p)(1 —Invy(p) —Inp) = 1+ 70 + h(p).
Note that when p — 07 this ratio is converges to one

as v(p) & 1 4 2=lnp)

—Inp
With adaptive applications, the overall welfare is

maximized for best-effort-only when p = 11 (e_’BC -
—a

sc .

e~ "« ). For small p and a < 1 the first term domi-

. 1 —BC
nates, so we have, approximately, p & =€

Wa(p) & $(1-p+a(l—a)« ' pe+pln(p(1-a))). Re-
call that for the reservation case, Wr(p) = %(1 —p(1—

and so

In p)). The ratio of prices y(p) that gives equal welfares
for @ < 1 is given approximately by v(p) =1+ %
which approaches 1 logarithmically. In going from rigid
to adaptive in this case, the rate at which v(p) con-
verges to 1 differed by a factor of In(—1In p).

The key feature of the exponential and Poisson dis-
tributions is that the equalizing ratio v(p) converges to
one as the price of bandwidth approaches zero. This
implies that as bandwidth becomes cheaper, a best-
effort-only network is preferable if the complexity of
reservations imposes any significant cost on building
or managing a network. In contrast, in the algebraic
case v(p) does not converge to one. This is shown
in Figures 4c and 4f and confirmed by the analysis.
That is, if a reservation capable network only imposes a
small but nonvanishing additional per-unit bandwidth,
then no matter how inexpensive bandwidth becomes
the reservation-capable architecture is the preferable
choice.

For rigid applications, the overall welfare is maxi-

mized for best-effort-only when C¢' = (£5 )ﬁ and so

Wa(p) = Z:;(l —(z - l)ﬁp%) For the reserva-

z

1
tion case, the maximizing capacity is C = p1-- and

so Wr(p) = Z=£(1 - p%) The ratio of prices v(p)

that gives equal welfares is v(p) = (2 — l)z1T2 This
is consistent with our numerical computations, where
the y(p) takes on values approaching 2 when p ap-
proaches zero (recall that z = 3). Note that when
z — 2% this ratio is v(p) = e. As before, we con-

jecture that the limit z — 2% represents that great-
est asymptotic advantage reservations can have over
best-effort-only. Thus, we conjecture that the asymp-
totic ratios lim, o+ ¥(p) = e and lime_.o %
(e —1) are the maximal cases. In the worst asymptotic
case, we conjecture, best-effort-only networks require
e times more bandwidth than reservation networks,
and if the price of constructing reservation-capable net-
works is more than e times more expensive (than con-
structing best-effort-only networks) then best-effort-
only networks are always more advantageous (no mat-
ter what the load distribution).

For adaptive applications, the overall welfare is max-

imized for best-effort-only when C = (p 1-a )%

1—a?—1
and so Wg(p) = z:;(l — p%(l_la_za_1 )%) The ra-
tio of prices y(p) that gives equal welfares is y(p) =

a1, 1 . .
(%)2—2. Note that when z — 2% this ratio be-
—alna

comes e 1-« . This ratio varies from 1 (for a = 0) to
e (for a = 1). In this case, direct comparisons with
our numerical calculations are not possible because we
use different adaptive utility functions in the discrete
and continuum models. In the discrete case, v(p) is
approximately 1.02 as p approaches zero.

5 Extensions to the Model

We have considered several extensions to our model
that capture potentially relevant elements not included
in the basic model. Many of these extensions — such as
having heterogeneous flows (both in size and in utility),
risk-averse utility functions (where the utility is not the
average performance experienced, but something less),
and nonstationary loads (where the probability distri-
bution is not fixed) — did not change the basic nature
of our asymptotic (large C') results (although some of
them substantially perturbed the results in the C = k
region). Below we report briefly on two extensions that
did alter the asymptotic results somewhat more signif-
icantly. See [3] for a more detailed description of these
two extensions and their results.

5.1 Sampling

In our basic model, we evaluate the utility of a flow
at a single load level; that is, we assume that a flow
shares the link with £ — 1 other flows with probability
Qk) = %(k), and that the load level is constant for
the entire duration of the flow. In reality, during the
lifetime of a given flow other flows might arrive and/or
depart, so a flow could, and usually will, experience a
fluctuating load level rather than a constant one. This
fluctuating load level, in turn, creates fluctuations in
the instantaneous application performance; e.g. the
picture quality of a video stream will vary over time
in a teleconferencing application. Given this varying
quality, a user’s utility may not merely be the average
performance experienced, but may instead be closer to
the minimal performance experienced.

To understand what impact this might have on
our results, we examined an extension to our model
where a flow samples its performance S times, with
S > 1. For each sample, the number of flows sharing



the link is picked independently from the distribution
Q(k) = %(k), and the performance is a function of
the maximal value k& from those S samples. For the
reservation case we have to also stipulate that the ac-
ceptance/rejection decision is based on the first sample
(i.e., if k£ > kmaz(C) the flow is admitted with proba-
bility km“T”(C)) and then the effective load for the sub-
sequent samples is taken to be min[kma(C), k] (i.€.,
once the flow is admitted, it never faces a total load
greater than kyaq(C)).

The resulting formulae for the normalized average

utilities R(C) and B(C) are:

BO) =3 @s(hr($)

and
kmax(C) kmaz(C)
RO = ) Q(k) Qs ()™ m)
k=1 g=1 ’

T e

E=Emaz(C)+1

with Qs(k) the probability that % is the maximal value
obtained in S independent samples.

Multiple samplings has little effect on the the Pois-
son case since this distribution results in very little
variance in load. The exponential and algebraic cases,
on the other hand, reveal significant changes. With
both adaptive and rigid applications, the performance
and bandwidth gaps between best-effort and reserva-
tions increase relative to the original model. For ex-
ample, the performance gap §(C) in the exponential
distribution with adaptive applications has a value of
.21 at capacity 2k in the sampling model; the corre-
sponding value in the original model was less than .01.
This difference is also reflected in the bandwidth gap,
A(C). In the basic model, A(C) had a peak of less
than .1k of the load occurring for C' =~ .5k. With mul-
tiple samplings, the peak in the bandwidth gap A(C)
occurs for C' &~ 1.5k and has a value of roughly 2k.
However, asymptotically A(C) in this case still con-
verges to zero. Similar changes are evident with the
algebraic distribution.

Corresponding versions of the above equations in
the continuum model allow us to understand the asymp-
totic behavior with multiple samples. Looking at the
exponential distribution with rigid applications, we find
that §(C) =~ e=P°(S(1 + BC) — 1) and A(C) = %,
so the sampling extension does not significantly alter
the asymptotic nature of our results. Similarly, the
asymptotic results for v(p) in the limit of small p are
not altered by the sampling extension.

We next consider the algebraic distribution with
rigid applications. For large C and fixed S, we have
§(C) = C**(S — 245) and  limo_o SFAE) =

1

lim,_ o+ v(p) = (S(z — 1))$ Note that here in the

limit as z — 27, the asymptotic ratio ACEZ for large C
and the asymptotic price ratio v(p) for small p diverges
for any S > 1. Thus, we no longer have the apparent
bounds of e — 1 on the asymptotic ratio A(CC) and of e
on the asymptotic ratio y(p) that we had in the basic
model.

Moreover, when one computes the analogous quan-
tities for adaptive utilities, the asymptotic ratios are
given by:

i CHAQ) (o) = <<S+ a(ll__a;—2)

C—o0 C p—0+

+ st —az—l)z:f) (Z—1))ﬁ

Thus, even with adaptive applications, these limits still
diverge in the limit z — 27, If the load distribution
is algebraic with z close to 2, then the amount of ex-
tra bandwidth needed to close the performance gap is
exceedingly large, and that unless the cost penalty for
reservation-capable networks is extremely high, reser-
vation-capable networks provide higher levels of welfare.®

5.2 Retrying

In our basic model of a reservation-capable network, a
rejected flow is modeled as having zero utility. In real-
ity, however, rejected flows may try again at some later
time. If a previously rejected flow is admitted at some
later point, then it receives its full performance util-
ity, but there is likely to be some user dissatisfaction
due to the delay incurred. Thus, reservation networks
trade off assured levels of performance at the cost of
delay in getting access to the network.

We can model this by assuming that there is a util-
ity penalty for having to retry, call it «. To avoid
having to model the actual retry process, we assume
that the retries of these rejected flows obey the same
basic distribution as the original probability distribu-
tion. This is best expressed by introducing the no-
tation Pr(k) denoting the distribution with average
k = L.'° Then, if the original model is described by
some parameter L, the total offered load including re-
tries is then given by P; (k) for some L > I.

The average utility RL(C) once we incorporate re-
tries is given by:

Ri(C) = 1 (LR;(C) —aDL) =

L
L L

—R;(C)—aD
where R(C') represents the average per-flow utility in

our basic model without retries and D denotes the av-
erage number of retries each flow makes.

9An interesting aspect of this extension is that even with
elastic applications (e.g., 7(b) = 1 — e~?) the reservation-
capable network can provide higher utility. However, in this
case we need to discard the standard value of kmax(C) as the
maximizer of kﬂ'(%), which is infinite for elastic applications,
and use some finite value.

We use L rather than k because we are treating the load
level as a variable here.



With o = .1 (a flow suffers a performance penalty
of 0.1 each time it retries), the Poisson and exponen-
tial cases show minimal effects of retrying, but the al-
gebraic cases exhibit significant changes. Interestingly,
these effects are more apparent in the region C > k.
For instance, with adaptive utility, the performance
gap &§(C) has a value of .027 at capacity 4k with re-
tries, in contrast to a value of .0025 without retries.
More significantly, perhaps, the price ratio curve v(p),
which in all previous cases was monotonically increas-
ing, now decreases for very small p. This means that as
bandwidth gets cheaper, the advantage of reservation-
capable networks increases! The theory suggests (see
below) that this curve does not increase without bound
as p decreases, but instead converges to some finite
maximum value.

The continuum formulation does not yield a closed
form solution. However, we can analyze the large C
limit where the blocking rate is small. Let 67 denote
the blocking rate at load L; for large C, 6z and I — L
are small, and so #7 is a good approximation to ;.

Here, to first order in 8z, we have [ = 1_L9~ ~ L(1+
L

6z) and D ~ ;. Note that R; (C) = RL(C%) SO:

Ri(C)= (14+01)R(C(1—61)) — by,

But in the large C limit R;(C) =~ 1 — 81, (the average
utility per flow is just unity minus the blocking rate)
0, to first order in 61, the expression becomes:

RL(C) ~1 —aHL

This just expresses the obvious result that for large C,
the only disutility is the penalty for retrying.

For exponential loads, § = e™°¢ so }?L(C) ~1-—
e =P for large C. For rigid applications, A(C) re-
mains logarithmic in ¢ and for adaptive applications
A(C) = w So retrying changes little in the
exponential case except the asymptotic constant for
adaptive applications.

For algebraic loads, § = C;__lz For rigid applica-
tions:
. CH+AC) . a =1
1 - =1 = 7=
L e

For adaptive applications:

lim C+TA(C) = lim ~v(p)=(

C—=oco p—0+

Note that in both the rigid and adaptive cases, the
A(CC) and y(p) diverge in the limit

asymptotic ratios

z — 2%, Thus, extending our basic model to incorpo-
rate retrying blocked flow requests leaves most of the
qualitative results unchanged, except that now in the

algebraic case the asymptotic ratios ACEZ and y(p) are
unbounded in the » — 2% limit.

Note that both of the extensions presented here re-
tained the property that in the algebraic case A(C') was
proportional to C in the large C limit, and y(p) was
finite in the small p limit, and for the other two distri-

butions these quantities were smaller. This appears to

be quite a generic property of such models; to see this,
consider rigid applications where the analysis is eas-
ier. Clearly, for large C the disutility for reservation-
capable networks, 1 — R(C), must be proportional to
the fraction of blocked flows #. The disutility for best-
effort-only networks, 1 — B(C'), is proportional to the
number of flows that are present during overload pe-
riods; call this . As long as the ratio % is finite, the
above generic results hold. In our class of models, the
only time this ratio diverges is when the average num-
ber of flows is infinite, which occurs for z < 2. One
other way the ratio might diverge is if flows are very
long lived, and so each flow will eventually experience
an overload condition. This would correspond to the
case of S diverging in our sampling extension.

6 Discussion

We now review our results and discuss the implications
of this analysis on whether or not the Internet should
adopt a reservation-capable architecture. Our analysis
addressed both rigid and adaptive applications. Be-
fore beginning our review we should note that ques-
tions about the extent of application adaptivity re-
main. Certainly the rigid utility function embodies an
extreme that should not be representative of any fu-
ture Internet application. However, the adaptive util-
ity function we used embodies fairly large changes in
utility across a wide range of bandwidths, both above
and below the bandwidth level at which a reservation-
capable architecture would admit such an application.
Thus, it too may represent an extreme case by overstat-
ing the extent to which applications can adapt. Hence,
we caution that the rigid and adaptive utility func-
tions we used may in fact represent two extremes on
a continuum, and that reality may lie somewhere in
between.

Our initial model showed significant performance
and bandwidth gaps between best-effort-only and reser-
vation-capable networks with rigid applications. This
was true even with the Poisson distribution, which is
the load model that exhibits the least variance among
the three distributions we considered. For example,
across a wide range of bandwidth prices, reservations
were superior to best-effort even if the complexity of
the reservation architecture adds 10% to the total cost
of the network.

Considering adaptive applications changed the pic-
ture dramatically. The basic model does not make a
case for a reservation-capable network with exponen-
tial or Poisson load models and adaptive applications.
With the Poisson model, at all but the highest price
levels the two architectures perform the same. With
the exponential model, differences between the two ar-
chitectures are still very small. Only with the alge-
braic distribution does there appear to be doubt. In
this case, the bandwidth gap grows linearly as a func-
tion of capacity and the price ratio at which welfare is
equalized does not converge to one as bandwidth be-
comes cheap. Here the answer depends on how much
cost the increased complexity of reservations adds to
the network.

Two extensions to our basic model — using sam-
pling to account for variation in performance over time,



and including retries in a reservation-capable architec-
ture — increased gaps between the two architectures for
both rigid and adaptive applications. These changes
could be seen in two different price regimes. For ex-
ample, if bandwidth is relatively expensive and C = k,
sampling opened up a large gap with the exponential
distribution and adaptive applications. When band-
width is relatively cheap and C > k, the extensions
changed the asymptotic behavior for the algebraic dis-
tribution. For example, in our basic model, the asymp-
totic extra benefit of reservation-capable networks are
bounded in the z — 2% limit, with lim, o+ v(p) < e

and limgc_ oo ACEZ < (e —1). However, in the modi-

fied model with retries and/or sampling, these limits
are removed and the performance advantages become
unbounded in the z — 27 limit.

Our results make clear that the answer to our orig-
inal question depends in large part on the load pat-
terns in the future Internet. In general, there is not
a strong case for reservations with Poisson and expo-
nential distributions. The tail of these distributions is
such that a reasonable amount of provisioning likely
makes the differences between the two architectures
insignificant. With the algebraic distribution, particu-
larly with a low z value, reservations yielded significant
benefits. In this case, best effort performance degrades
under the wider variance in load. It is not at all clear
how likely it is that network loads will be described
by such distributions. However, recent results on self-
similar behavior in a variety of contexts [1, 5, 9, 11]
make algebraic distributions less far-fetched than they
might have been a few years ago. Nonetheless, there is
still no definitive evidence for them that we are aware
of. Thus, while our results are frustratingly ambiguous
on the fundamental question of which architecture is
best, they do unambiguously point to the need to more
fully understand the load distributions future networks
are likely to face.
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Figure 2: Poisson Distribution — Utility, Bandwidth Gap, and Price Ratio to

Adaptive Applications.
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Figure 3: Exponential Distribution — Utility, Bandwidth Gap, and Price Ratio to Equalize Welfare for Rigid and
Adaptive Applications.
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Figure 4: Algebraic Distribution — Utility, Bandwidth Gap, and Price Ratio to Equalize Welfare for Rigid and
Adaptive Applications.



