
Quality of Service Based Routing: A Performance Perspective

George Apostolopoulos

Computer Science Department

University of Maryland

College Park, MD 20742

Roch Gu�erin, Sanjay Kamat

IBM T. J. Watson

Research Center

Yorktown Heights, NY 10598

Satish K. Tripathi

Bourns College of Engineering

University of California

Riverside, CA 92521

Abstract

Recent studies provide evidence that Quality of Service (QoS)
routing can provide increased network utilization compared
to routing that is not sensitive to QoS requirements of tra�c.
However, there are still strong concerns about the increased
cost of QoS routing, both in terms of more complex and
frequent computations and increased routing protocol over-
head. The main goals of this paper are to study these two
cost components, and propose solutions that achieve good
routing performance with reduced processing cost. First, we
identify the parameters that determine the protocol tra�c
overhead, namely (a) policy for triggering updates, (b) sen-
sitivity of this policy, and (c) clamp down timers that limit
the rate of updates. Using simulation, we study the relative
signi�cance of these factors and investigate the relationship
between routing performance and the amount of update traf-
�c. In addition, we explore a range of design options to
reduce the processing cost of QoS routing algorithms, and
study their e�ect on routing performance. Based on the con-
clusions of these studies, we develop extensions to the basic
QoS routing, that can achieve good routing performance
with limited update generation rates. The paper also ad-
dresses the impact on the results of a number of secondary
factors such as topology, high level admission control, and
characteristics of network tra�c.

Keywords: QoS routing, Performance evaluation, Link
state routing, Path pre-computation

1 Introduction

1.1 Background

What is QoS routing, what are its goals, and what are the
issues it faces? These are some of the questions we will try
to address in this paper, and in particular the latter. QoS
routing is the process of selecting the path to be used by
the packets of a 
ow based on its QoS requirements, e.g.,
bandwidth or delay. The exact de�nition of a 
ow is not
important as long as it involves the same ingress and egress

points from the network. The motivation for using a path
selection that is sensitive to these requirements is the hope
that it will help improve both the service received by users
and the overall network e�ciency. The improvement to the
service received by users is in the form of an increased like-
lihood of �nding a path that meets their QoS requirements.
Conversely, the improvement to network e�ciency is usually
in terms of increase in revenue, where revenue is typically a
function of the number of 
ows or the amount of bandwidth
carried by the network.

Although a number of works, e.g., [6, 9, 10, 11, 12, 14]
present evidence that QoS routing can potentially achieve
these goals, there are still practical concerns about the value
and feasibility of implementing QoS routing protocols in a
network. Speci�cally, is the increase in performance worth
the added cost? The added cost of QoS routing has two ma-
jor components: computational cost and protocol overhead.
The former is due to the more sophisticated and more fre-
quent path selection computations, and the latter is caused
by the need to distribute updates on the state of network re-
sources that are of relevance to path selection, e.g., available
link bandwidth. Such updates translate into additional net-
work tra�c and processing. Note that we assume here the
use of a link state protocol. This is consistent with many of
the proposals being currently put forward for QoS routing,
e.g., see [3] for an overview.

While increases in computational complexity can usu-
ally be o�set by leveraging the technology curve, i.e., faster
processors and bigger memories, an increased volume of pro-
tocol tra�c contributes to higher cost along multiple dimen-
sions, e.g., bandwidth, storage, update processing, and the
associated context switching overheads. Thus, the cost in-
crease due to higher protocol overhead is harder to contain
and, therefore, often considered a primary inhibitor to the
deployment of QoS routing. A major goal of this paper is to
understand how much that cost component can be reduced
while preserving most of the performance gains of QoS rout-
ing.

The e�ciency gains of QoS routing can be measured by
comparing the network revenue (e.g., carried tra�c) using
QoS routing to that obtained using a simpler routing proto-
col that is oblivious to QoS requirements. There are several
parameters that in
uence the outcome of such a compari-
son. The �rst is the path selection algorithm itself, i.e., its
ability to select \good" paths. The second is the accuracy
of the information on which the path selection algorithm
operates, i.e., the state of the network resources. These two
components are directly related to the previous aspects of
computational cost and protocol overhead, respectively. As



a result, we focus the investigations of this paper on under-
standing the issues and trade-o�s they involve.

Clearly, there are several other parameters that in
uence
the overall performance of a QoS routing solution. A very
important one is the characteristics of the network tra�c.
QoS sensitive routing attempts to improve network utiliza-
tion by diverting tra�c to paths that would have not been
discovered by traditional, non QoS sensitive routing. This
may be impossible if due to tra�c patterns and network di-
mensioning all paths are equally loaded. We believe that
QoS routing will be more useful and more e�ective in envi-
ronments where tra�c and network capacity are mismatched
and alternate paths with lower load exist. In practice, both
network element failures and changing tra�c patterns will
very often create such mismatches. Our experiments are
designed so that we can investigate the performance of our
solutions under such conditions.

Other parameters that can a�ect the operation and per-
formance of QoS routing include the network topology and
the choice of high level admission control policies. Di�er-
ent network topologies may be better suited to certain al-
gorithms, thereby a�ecting their performance. Admission
control is of signi�cance as it is often desirable to reject a
request, even when a feasible path has been found, if ad-
mitting the request will lead to ine�cient use of network
resources. Failure to put in such protections can result in
throughput degradation in cases of overload [1, 2].

Ignoring these aspects can distort conclusions on the rel-
ative performance of QoS routing schemes, and it is impor-
tant to make sure they are accounted for when comparing
di�erent solutions. However, they represent factors that are,
to some extent, \external" to the core QoS routing issues,
namely computational cost and protocol overhead. Hence,
our investigation will initially focus on the impact of pa-
rameters directly linked to these two primary issues, and as-
sume �xed network topology and high level admission con-
trol strategy. Sensitivity to variations along these dimen-
sions will be explored, but only after having narrowed down
the �eld of solutions based on the outcome of our primary
investigation.

We list below parameters of interest to characterize the
behavior and properties of di�erent QoS routing solutions
along the dimensions of computational cost and protocol
overhead, and also try to identify the relations that exist
between them.

1.2 Computational Cost Parameters

The following parameters strongly in
uence the computa-
tional cost of a QoS routing solution:

� Path selection criteria: e.g., minimize hop count, widest
path, etc. Sophisticated path selection algorithms at-
tempt to optimize multiple criteria as well as satisfy
several additional constraints. The trade-o� is be-
tween the ability to identify paths that are cheaper
and/or better matched to the requirements of a re-
quest, and the computational complexity of the algo-
rithm.

� Trigger for path selection computations: e.g., for each
request, periodically, upon receipt of a network state
update, etc. The trade-o� is between the amortized
per request computational cost and the \goodness" of
the selected paths. For example, computing a new
path for each request allows its selection to be based

on the most recent network state information. How-
ever, if a large number of requests are received between
consecutive network state updates, it may be more cost
e�ective to pre-compute paths.

� Flexibility in supporting alternate path selection choices:
e.g., maintaining equal cost choices and selecting among
them, accounting for inaccuracy in network state infor-
mation, etc. In general, the unavoidable inaccuracy in
the network state information has implications for the
path selection process. In particular, it may be desir-
able to maintain and alternate between several choices
in order to avoid being \stuck" with a single bad choice
caused by inaccurate information. Similarly, relying
on strict cost minimization criteria may not be jus-
ti�ed when cost information is relatively inaccurate.
In such cases, relaxing the optimization criteria of the
path selection process may yield more robust solutions.
However, allowing such options can a�ect the overall
computational cost.

1.3 Protocol Overhead Parameters

There are two main parameters that seriously impact the
protocol overhead cost. The �rst is the triggers for network
state updates, i.e., when does a node decide to inform the
rest of the network about changes in the state of one or more
of its links. The mechanisms used to trigger such updates
can be classi�ed as follows:

� Relative change or threshold based triggers: An up-
date is triggered when the relative di�erence between
the current and the previously advertised link state
exceeds a certain threshold, e.g., 50%.

� Absolute change or class based triggers: Link band-
width is divided into adjacent bandwidth classes and
an update is triggered when the current link state value
crosses a class boundary. Such schemes can be further
classi�ed based on the spacing between class bound-
aries, e.g., �xed-size partitioning or exponentially dis-
tributed class sizes.

� Timer based triggers: Timer based triggers may be
used to generate updates at �xed intervals or used to
enforce a minimum spacing between two consecutive
updates. The latter, referred as clamp-down or hold-
down timers, are often used in conjunction with one
of the above \change" based schemes to control the
volume of updates when network state oscillates in a
narrow range.

The trade-o� in each of the above schemes is between
the volume of updates and the accuracy of state information
available to path selection.

The other parameter that signifantly a�ects QoS rout-
ing protocol overhead is the update contents. This refers to
the scope of an update message and the type of value ad-
vertised for metrics. Speci�cally, whenever a trigger is acti-
vated, the node's update message can cover only the speci�c
link involved or all of the node's links. The trade-o� is be-
tween adding unnecessary tra�c and processing overhead
when there is little change in the state of other links, and
amortizing the cost of processing updates over many links
and eliminating the need for some future updates. Addi-
tionally, when updating the state of a link, there is a choice
of advertising the exact state at the time of the update, or
some quantized value from a �xed set of values. Quantizing



the advertised value in
uences when the next update takes
place, but more importantly, it can a�ect the path selection
process. Speci�cally, limiting updates to quantized values
on one hand impacts the accuracy of link state information,
but on the other hand, it increases the number of equal cost
paths. The former can a�ect the ability of path selection
to identify a \good" path, but the latter can help the path
selection avoid being stuck with a single \bad" choice. The
outcome of such a trade-o� depends on many of the above
parameters, and is one of the aspects investigated in the rest
of the paper.

The nature of inaccuracy introduced by various choices
for the triggers of the network state updates can be very
di�erent. In the absence of a clamp down timer, inaccuracy
is primarily determined by the sensitivity of the triggering
policy (number and size of classes or the threshold value).
In this case, since the details of the triggering policy are
known, it is possible to infer a reasonable range for the ac-
tual link metric value at any instant given its last advertised
value. Due to this property we call this type of inaccuracy,
systematic inaccuracy. This property can be exploited by a
clever path selection algorithm to suitably account for the
inaccuracy and thereby increase the probability of success
(see [8] for some examples). However, often a large clamp
down timer is used since that is the only direct means of
controlling the protocol overhead and limiting it to a toler-
able level. Unfortunately, the degree of inaccuracy in this
case is much larger and almost impossible to estimate. We
will term such inaccuracy random inaccuracy. A di�erent
approach is then needed to cope with this type of inaccu-
racy. In this paper, we focus primarily on \low cost" so-
lutions where relatively large clamp-down timer values are
used to signi�cantly lower the protocol overheads. Hence,
we address primarily the issue of random inaccuracy and the
means of coping with it.

1.4 Paper Outline

The rest of the paper is organized as follows. In Section 2, we
describe the simulation environment we used for our studies.
Section 3 presents a classi�cation of update trigger policies
and their evaluation based on the protocol overhead they in-
cur. In Section 4, we investigate the routing performance of
di�erent policies when large clamp-down timers are used to
reduce their protocol overhead. Section 5 discusses methods
to further improve the performance of these policies by in-
troducing mechanisms to cope with the random inaccuracy
due to the large clamp-down timer values. The dimension of
computational cost is investigated next in Section 6, for each
of the solutions of Section 5. Finally, Section 7 summarizes
our main results.

2 Evaluation Environment

The focus of our work is on evaluating the performance of
unicast Quality of Service based routing and its sensitivity
to various factors. We use simulation as the main tool for
performing this evaluation. The simulator used is based on
the Maryland Routing Simulator (MaRS) [16]. MaRS was
designed as an event driven routing simulator for both link
state and distance vector routing protocols and has been
extended appropriately for handling QoS routing.

1

1

2

2

3

3

(a) isp

1

1

2

2
1 1

(b) mesh (c) disjoint multipath

Figure 1: Topologies used in the experiments

2.1 Network Topologies

Figure 1 shows the topologies that we will be using for our
experiments. Links in all topologies have propagation de-
lay of 1 millisecond and never fail. The topology in 1(a)
is similar to the one used in [7, 14] and typical of a large
ISP's network. The mesh topology of 1(b), although some-
what contrived, is of interest due to its regularity and large
number of equal hop length multi-paths. In addition, the
topology of 1(c) will be used in Section 5 to evaluate the
impact of topology on certain modi�cations to the widest-
shortest path selection algorithm we consider to cope with
inaccuracies in link state metrics. Unlike the previous two
topologies, this topology exhibits multiple equal cost paths
that do not share links. The bulk of the results reported
in this paper will be for the isp topology. Whenever re-
sults strongly depend on the characteristics of the network
topology, this will be clearly noted.

2.2 Tra�c Model

We model tra�c in terms of requests for setting up 
ows
with speci�c bandwidth requirements. Thus, a request is
characterized by its source, destination and bandwidth re-
quirement. Requests are assumed to arrive independently
at each node, following a Poisson distribution. Request du-
ration, i.e., the holding time of a 
ow, is assumed to be an
exponentially distributed random variable. Requested band-
width is uniformly distributed in the interval [L;U ] where
L is 64 Kbps and U is varied for di�erent simulation runs
to obtain di�erent load conditions. While we concern our-
selves with arrival and departure of 
ows, we do not model
the data tra�c of the 
ows; the amount of available band-
width on an interface is determined based on the bandwidth
reservations on this particular interface.

For a given mean arrival rate of requests, tra�c load
can be considered proportional to the mean bandwidth re-
quest size and the mean duration of 
ows. We use di�erent
combinations of these values to evaluate the e�ects of these



parameters. U is set to 1, 5 and 25 Mbits/sec. The value
for mean request duration time is for most experiments set
to 3 minutes. When requests are very large, there is an
increased chance of loss of revenue due to bandwidth frag-
mentation. On the other hand, with small requests, the
impact of a bad routing decision is likely to be smaller, po-
tentially decreasing the sensitivity of routing performance
to the various parameters we are investigating. For this rea-
son we will mainly concentrate on cases of medium requests
sizes, i.e., 5 Mbits/sec although results for smaller requests
are also shown.

When deciding on the type of tra�c patterns to be used,
the relationship of the tra�c pattern and the topology must
be considered. In order to emulate conditions of mismatch
between tra�c and network topology we introduce non-
uniform tra�c with increased tra�c levels between particu-
lar hot spot nodes. Nodes that participate in a hot spot pair
exchange increased levels of tra�c with the other pair mem-
ber. Although there are multiple pairs of hot-spot nodes at
any instance there is only one active pair in the network.
The active pair alternates over the period of the experiment
to reduce the dependencies on the network topology. The
pairs of hot-spot tra�c nodes for each topology are shown
in Figure 1, marked with the number of the hot-spot pair
they belong to. In the case of non-uniform tra�c there are
two request arrival rates. The background rate for tra�c
between non hot-spot nodes and the foreground rate for the
hot-spot nodes. Clearly, the higher the levels of the back-
ground tra�c the closer we get to a uniform tra�c model.
If on the other hand the background tra�c is very low we
are operating under very unrealistic conditions.

For each of the topologies of Figure 1 links are dimen-
sioned for uniform tra�c between nodes and they are in the
range of 30-80 Mbits/sec for the isp topology and 100-140
Mbits/sec for mesh. For the disjoint multipath topology
all links are 100 Mbits/second. For these link dimensions
and a request duration of 3 minutes, for hot-spot tra�c over
the isp topology we chose an average o�ered load of 150 and
192 Mbits/sec for 5 and 1 Mbits/sec requests respectively.
The For the mesh topology (again for 3 minute request dura-
tion) and hot-spot tra�c, the average o�ered load was 675
and 761 Mbits/sec. These loads were selected so that the
networks were operated in a realistic region, i.e., with small
but non-zero blocking.

2.3 Path Selection

In this study, we primarily focus on the widest-shortest path
selection algorithm described in [13] and some of its vari-
ants. We use an implementation based on the Bellman-
Ford algorithm although the Dijkstra algorithm could also
be used. The basic idea behind the algorithm is as follows.
Consider a source node s and a destination node d. Let
Sd =< S1d ; S

2

d ; : : : ; S
n
d > be an ordered list of sets where Shd

is the set of paths from s to d of hop length h that have the
largest (among all paths of hop length h) bottleneck band-
width. Conceptually, the path selection algorithm can be
thought of as considering candidate paths from the sets Sd
in increasing order of hop count and choosing one that has
adequate bandwidth to meet the 
ow's requirement.

For each request, an explicit route that describes the
whole path to the destination is generated. Initially, we use
the above algorithm in an on-demand mode. Later in the
paper, we consider variations such as pre-computing paths
in an e�ort to reduce computational cost and relaxing the
strict order of investigating paths in Sd as a means of coping

with inaccuracy in link metrics.
An issue that needs some further elaboration is that of

selecting a particular path from a set of equal cost multi-
paths. In order to achieve some degree of load balancing,
we use the following approach. Consider the process of con-
structing an explicit path as a sequence of choosing the ap-
propriate nodes and links. When we are at a node at which
we have more than one equivalent choices for the next hop,
we favor choosing one that is reached by a higher capacity
link from the current node. This is achieved by selecting the
next node at random with a probability that is weighted by
the available bandwidth of the link connecting the current
node to the next hop.

2.4 Update Policies

An update policy determines when a network node triggers
link state updates and the speci�c contents of such an up-
date. We assume that the scope of a node's update extends
to all its incident links, i.e., bandwidth values for all the
interfaces of the node are advertised even when the update
is triggered by just one link. This is consistent with the be-
havior of routing protocols such as Open Shortest Path First
(OSPF) [15] that only generate link state updates that con-
tain information about all the links attached to a router.

All policies attempt to trigger an update only when the
current value of a link metric di�ers signi�cantly from the
previously advertised value. We investigate the following
update trigger policies which di�er in how they determine
the signi�cance of a change in the available bandwidth met-
ric.

Threshold based updates: This policy is character-
ized by a constant threshold value (th). At some node, if
bwo

i is the last advertised value of available bandwidth for
interface i and bwc

i is the current value, an update is trig-
gered when k(bwo

i � bwc
i )k=bw

o
i > th. This policy tends to

provide more detailed information when operating in the
low available bandwidth range and becomes progressively
less accurate for larger values of available bandwidth. In
the graphs and the text these policies will be referred to as
T/th, with th replaced with the actual threshold value.

Equal class based updates: This policy is character-
ized by a constant B which is used to partition the available
bandwidth operating region of a link into multiple equal
size classes: (0; B), (B; 2B), (2B; 3B), : : : ; etc. An update
is triggered when the available bandwidth on an interface
changes so that it belongs to a class that is di�erent from
the one to which it belonged at the time of the previous
update. This policy has the same degree of accuracy for
all ranges of available bandwidth and will be referred to as
E/B.

Exponential class based updates: This policy is char-
acterized by two constants B and f (f > 1) which are
used to de�ne unequal size classes: (0; B), (B; (f + 1)B),
((f +1)B; (f2+ f +1)B), : : : ; etc. Unlike the previous pol-
icy, the class sizes grow geometrically by the factor f . Up-
dates are triggered as before, i.e., when a class boundary is
crossed. This policy has fewer and larger classes in the high
available bandwidth operating region and more and smaller
classes when available bandwidth is low. Consequently, it
tends to provide a more detailed and accurate state descrip-
tion for the low bandwidth region. These policies will be
referred to as X/B/f .

With class based policies, triggering an update each time
the available bandwidth value crosses a class boundary has
the undesirable e�ect of generating overly frequent and some-



what meaningless updates when the available bandwidth

uctuates around a class boundary. In order to dampen such
oscillatory behavior, class based policies are augmented by
a hysteresis mechanism. This mechanism suppresses gen-
eration of an update until the available bandwidth reduces
su�ciently to fall below the middle value of the new class.
No such rule is applied when the available bandwidth in-
creases and crosses a class boundary.

We advertise quantized values for available bandwidth
only in the class based policies. The value advertised corre-
sponds to the bandwidth at the middle of the new available
bandwidth class. For exponential classes we consider 2 and
4 as two possible values for f . The accuracy of class based
policies is varied by changing the base (smallest) class size
B. In our experiments, we use four di�erent values for the
base class size B: 25%, 50%, 100%, and 200% of the request
bandwidth range. These values result in progressively less
accurate information in the low available bandwidth region.
For example, when equal classes are used, a class size of 25%
results into 4 classes in the region of bandwidth that a sin-
gle 
ow can request. On the other hand, a value of 200% in
conjunction with advertising a quantized value that is the
middle value of the class range, results in always advertising
available bandwidth values that are larger than any indi-
vidual 
ow's requested bandwidth. We call such policies
non-pruning policies as they e�ectively cause the widest-
shortest path selection algorithm to select only minimum
hop paths with the available bandwidth information being
used solely for load balancing purposes. Combinations of
triggering policies and type of advertised value that can re-
sult in link pruning will be called pruning policies. Our clas-
si�cation of triggering policies into pruning and non-pruning
assumes that the maximum value of bandwidth that may
be requested is known so that the triggering policy can be
tuned to never advertise smaller values for available band-
width. This may not be possible in a realistic situation.
As a result, triggering policies will exhibit a hybrid behav-
ior with the distribution of the requested bandwidth values
determining which of the two modes will be dominant. We
add clamp-down timers to all of the above policies to further
control the protocol overhead.

2.5 Higher Level Admission Control

It is well known [1, 2] that excessive alternate routing can
actually reduce routing performance in conditions of high
load, since tra�c following alternate routes can interfere
with minimum hop tra�c competing for the same links.
This e�ect was observed in our study for the mesh topol-
ogy under uniform tra�c. An example of its manifestation
can be seen in Figure 2. The routing performance of on-
demand routing using the threshold policy is shown for vary-
ing triggering threshold values; there were no clamp down
timers. The routing performance appears to improve with
larger triggering threshold values, i.e., decreasing accuracy
of network state information. At the same time, simulation
showed that with increasing threshold values, less alternate
paths were used. As a result, for very small thresholds,
which provide a very accurate network state information,
the routing algorithm could locate and use many alternate
paths, and actually reduce routing performance.

In order to address this problem, we investigate high
level admission control policies similar to trunk reservation.
Assuming that explicit routing is used, we propose a trunk
reservation approach that may result in rejecting requests
routed over alternate paths during the resource reservation

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

10 20 30 40 50 60 70 80 90

B
an

dw
id

th
 A

cc
ep

ta
nc

e 
R

at
io

Link State Update Threshold (%)

Without Trunk Reservation
With Trunk Reservation

Figure 2: E�ects of trunk reservation in the mesh topology
(1 Mbits/sec, 3 min requests)

phase, even when there are su�cient resources to satisfy the
request. A local per node check determines if the request
is allowed to continue reserving resources over the path de-
pending on both the resources that remain available on the
link after the reservation and the relative length of the path,
i.e., how much longer it is compared to the minimum hop
path. Minimum hop path lengths can be easily computed in
a separate step. When a reservation is attempted through
a node, the quantity (bavaili � breq)=b

capacity
i is calculated

for the outgoing link i, where bavaili is the amount of avail-
able bandwidth on link i, and bcapacityi is the capacity of
link i. The resource reservation for the request is allowed to
continue only if this fraction is larger than a trunk reserva-
tion level which depends on the length of the path. If the
request fails this test, it is rejected. Computing the trunk
reservation level based on the request's requirements and
the residual capacity of the link allows us to reject requests
only when they really would have resulted in overloading a
link. Having di�erent trunk reservation levels for increas-
ingly longer paths allows us to penalize longer paths more,
and better control alternate routing.

The e�ectiveness of the above technique is demonstrated
in Figure 2. When using high level admission routing perfor-
mance is improved and there is no un-intuitive dependency
on the threshold setting. For this experiment, the trunk
reservation levels were set to 5% for one hop longer paths,
10% for two hops longer, and 20% for all paths more than
two hops longer. All the results shown in the rest of this
paper, were derived with this trunk reservation mechanism
in e�ect using the above thresholds. In the isp topology,
the e�ects of the above mechanism are less dramatic and
can actually result in some routing performance loss due
to the smaller number of alternate paths. Still, in all the
experiments we use higher level admission control since we
believe that similar mechanisms will have to be used in a
real production network.

We must note that since non-pruning triggering policies
never use alternate paths, there is no point in using high level
admission control combined with a non-pruning triggering
policy. Nevertheless, as was discussed earlier, in realistic sit-
uations, due to lack of knowledge of the range of bandwidth
requests, it will be hard to implement a purely non-pruning
policy; high level admission control will therefore still be
needed in practice.



3 Protocol Overhead

Protocol tra�c is a�ected by three di�erent factors: (a)
the triggering policy used, (b) the sensitivity level of the
particular triggering policy that is determined by its speci�c
control parameter (threshold value th, base class size B,
class growth factor f) and, (c) the use of a non-zero clamp
down timer. In this section, we investigate and characterize
the protocol overhead resulting from di�erent combinations
of the above factors.

All the results reported in this section are for the isp

topology of Figure 1(a) under non-uniform tra�c, with the
widest-shortest path algorithm of [13] used to construct on-
demand explicit paths at the origin node of each 
ow. We
measure the protocol overhead by counting the number of
network state update messages generated over a simulation
run. Since we operate in a link state environment, each
network state update results in multiple messages as it is

ooded to all other nodes in the network; our count includes
all these messages. Simulations were run until 100,000 re-
quests were made, where the �rst 30,000 requests were used
to warm up the network, and their e�ects are not included
in the results. The duration of a simulation depends only
on the request arrival rate. As a result, the total number of
updates generated during a simulation run can be compared
with other runs having the same request arrival rate. For all
the values for the total update tra�c volume reported, the
95% con�dence intervals, computed using the t distribution,
were under 4%.

In Figure 3(a) we show the number of protocol messages
generated in a typical simulation run for some of the trig-
gering policies for request sizes up to 5 Mbits/sec and mean

ow duration of 3 minutes. While we consider both quan-
tized metric advertisement and exact metric advertisement,
we present results only for advertising exact values. Our
experiments showed that the type of advertised value has
negligible e�ect on the volume of update tra�c. However,
as we show later, the routing performance can depend sig-
ni�cantly on the type of advertised value.

We observe that, for small or zero clamp down values,
the choice of the triggering policy and its sensitivity level
can result in large di�erences in the volume of update traf-
�c. Increasing values for the clamp down timer results in
reduced update tra�c volumes for all combinations of trig-
gering policies and sensitivity levels. For very large clamp
down values (larger than those shown in the �gure), the
number of updates is primarily determined by the clamp
down timer and all triggering policies and sensitivity levels
produce similar amounts of routing tra�c. In general, the
amount of routing protocol tra�c increases as the average
request size increases. For comparison purposes, the OSPF
link state routing protocol [15] enforces a minimum spac-
ing of 5 seconds between successive 
oodings of the same
LSA from a router and 1 second between processing arriv-
ing LSAs. This means that in general the message rate per
interface will be bounded by 1 message/second (the actual
value is hard to estimate since OSPF also acknowledges the
reception of updates and can combine multiple updates into
a single network packet). Some of the policies shown in
Figure 3 are within these limits.

As can be expected, the number of classes a�ects the
message overhead of class based policies as is illustrated in
Figure 3 for the equal class policies. As can be seen in Fig-
ure 3(a), some combinations of triggering policy and clamp
down values (such as the threshold policy with small thresh-
old values and the equal class policy with a base class of 25%

0

2

4

6

8

10

12

14

16

0 20000 40000 60000 80000 100000

M
es

sa
ge

s/
In

te
rf

ac
e 

(m
sg

s/
se

c)

Update Period (msec)

T/10%
T/60%

E/100%
T/90%
E/50%
E/25%

(a) Non-uniform tra�c, 5 Mbits/sec requests

0

2

4

6

8

10

12

0 20000 40000 60000 80000 100000

M
es

sa
ge

s/
In

te
rf

ac
e 

(m
sg

s/
se

c)

Update Period (msec)

T/10%
T/60%

E/100%
T/90%
E/50%
E/25%

(b) Non-uniform tra�c, 1 Mbits/sec requests

Figure 3: Update tra�c volume comparison

or 50% of the maximum request size) result in signi�cantly
larger numbers of messages than most of the other combi-
nations of clamp down and triggering policy that tend to
produce less messages. Even less routing messages are pro-
duced when the value of the clamp down timer is further
increased. We expect the above behavior to be insensitive
to the tra�c characteristics. This is indeed the case as can
be seen in Figure 3(b) that presents the volume of protocol
tra�c for 1 Mbits/sec requests. In all cases, three di�erent
levels of update volumes (and related cost), that correspond
to di�erent combinations of the three factors a�ecting up-
date tra�c volume can be clearly distinguished: (a) the High
Cost environment with zero clamp down and sensitive trig-
gering policies, (b) the Medium Cost environment with a
combination of zero or small clamp down values and poli-
cies with fewer classes or reduced sensitivity and, (c) the
Low Cost environment with very large clamp down values.
As discussed in the introduction, in the rest of this work we
primarily investigate the characteristics and routing perfor-
mance of the low cost environment, i.e., large clamp down
timers.

Summarizing, the study of the volume of update tra�c
generated by various combinations of triggering policy and
clamp down showed that: a) the type of advertised value
(quantized versus non-quantized) does not signi�cantly af-
fect the number of updates generated; b) for large clamp
down values the amount of update tra�c is largely indepen-
dent of the triggering policy used.

4 Routing Performance Under Large Clamp Down Timers

The examples of the previous section illustrate, among other
things, the impact of clamp down timer values on routing
protocol overhead. In this section, we study the routing
performance of di�erent policies, primarily for large clamp
down timer values. We use a simple static version of the



QoS routing algorithm as a baseline solution to compare the
performance gains of other solutions. The baseline solution
pre-computes a set of paths using the same widest-shortest
path algorithm but does it only once and uses the raw link
capacity information. Choosing among equal cost multi-
paths at the time of path selection is done in the same way
as the dynamic algorithm. Since this algorithm has no re-
curring path computation or protocol overhead costs, any
dynamic QoS routing solution must perform signi�cantly
better than the static one in order to justify its increased
cost. We are mainly interested in identifying combinations
of triggering policies and advertised value types that can
achieve good performance and low overhead and investigate
how their routing performance compares to static routing.

We measure routing performance using the bandwidth
acceptance ratio introduced in [7], de�ned as the percentage
of the total requested bandwidth that was routed success-
fully. Note that this measure ignores the duration of calls
and does not take into account the length of paths or other
measures of e�ciency such as bandwidth fragmentation or
fairness. Still, it is a reasonable measure for studying the
sensitivity of the same routing algorithm to varying network
conditions. For all the results on bandwidth acceptance ra-
tio reported here, the 95% con�dence interval, as computed
using the t distribution, was less than 0.5%. Although the
trade-o� between routing performance and volume of up-
date tra�c is probably the most appropriate criterion, in
the following discussion, we compare only routing perfor-
mance; the use of a large clamp down value results in a
small number of network state updates that are relatively
insensitive to the triggering policy used.

The results of our experiments show that the pruning or
non-pruning nature of the triggering policy has important
implications for the routing performance for both small and
large clamp down timer values. Since non-pruning policies
use only minimum hop paths for routing requests we would
expect their routing performance to be worse than prun-
ing policies that can also use alternate paths. On the other
hand, pruning policies depend on network state information
to determine these alternate paths and potential inaccura-
cies in this state can penalize their performance. Indeed, if
paths are determined based on outdated information it is
possible to end up using (potentially for extended periods
of time due to large clamp down timer settings) ine�cient
alternate paths, wasting network resources. In contrast, the
pruning policies use network state information only when
choosing between multiple minimum hop paths to a desti-
nation and we would expect them to be less sensitive to
network state inaccuracies. These e�ects can indeed be ob-
served in Figure 4.

In this �gure we show examples of the routing perfor-
mance of both exponential and equal class based non-pruning
policies compared to a threshold policy with a threshold
value of 60% and 90% (both pruning policies), and the base-
line algorithm for di�erent types of tra�c. In parts (a) and
(b) of the �gure all the non-pruning policies have rather low
performance for small values of clamp down but for much
larger clamp down values they do better than the threshold
policies. The type of tra�c (uniform versus hot-spot) does
not seem to a�ect this behavior.

Advertising quantized values, apart from the non-pruning
e�ect that it can achieve, if combined with the appropriate
triggering policy, also facilitates the discovery of equal hop
multipaths that can provide more alternatives for routing re-
quests. Our experiments showed that even for base class size
smaller that 200% (so that link pruning will be performed)

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0 200000 400000 600000

B
an

dw
id

th
 A

cc
ep

ta
nc

e 
R

at
io

Clamp Down Timer (msec)

T/60%
E/200%

T/90%
X/200%/2

Static

(a) Hot-spot tra�c, 5 Mbits/sec requests

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0 200000 400000 600000

B
an

dw
id

th
 A

cc
ep

ta
nc

e 
R

at
io

Clamp Down Timer (msec)

T/60%
E/200%

T/90%
X/200%/2

Static

(b) Uniform tra�c, 5 Mbits/sec requests

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0 100000 200000 300000 400000 500000 600000

B
an

dw
id

th
 A

cc
ep

ta
nc

e 
R

at
io

Clamp Down Timer (msec)

T/60%
E/200%

T/90%
X/200%/2

Static

(c) Hot-spot tra�c, 1 Mbits/sec requests

Figure 4: Routing performance of non-pruning policies

advertising a quantized value improves routing performance.
In Figure 4, we can see that, although non-pruning poli-

cies operate in a fashion quite similar to the static algorithm,
even very sparse network state updates can result in reason-
able routing performance improvement over static. It must
be understood that the relationship between the routing per-
formance between static routing, pruning, and non-pruning
policies depends on a variety of factors such as topology,
clamp down value, arrival rate as well as size and duration
of the requests. Request size and arrival rate determine how
rapidly the link load 
uctuates, while the clamp down timer
determines how often these changes can be communicated
to the routing algorithm. Although it may be possible to
model these relationships, it is a very complex task if it is
to be performed for arbitrary topologies.

An example of the e�ects of the request size for the isp
topology is shown in Figure 4. In part (c) of the �gure, we
can see that for small request sizes, even for large clamp
down values, all policies can do better than static routing.
Pruning policies perform consistently better than the non-
pruning ones and do not become worse even for large clamp
down timer values. As discussed earlier, since the requests
have very small size, the e�ects of the bad routing decisions
due to imprecise link state information are reduced.



0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0 50000 100000 150000 200000 250000 300000 350000

B
an

dw
id

th
 A

cc
ep

ta
nc

e 
R

at
io

Clamp Down Timer (msec)

E/200%
X/200%/2

T/60%
Static

Figure 5: Routing performance of non-pruning policies in
the mesh topology

Network topology can also have a signi�cant e�ect on
the relative performance of di�erent routing solutions. As
can be seen in Figure 5, in the mesh topology, the routing
performance of non-pruning policies can become worse than
static for larger clamp down periods. In this topology there
is a large number of minimum hop multipaths between the
sources and the destinations of hot-spot tra�c. This gives
an advantage to static routing that is able to use all of these
paths while both pruning and non-pruning policies will al-
ways attempt to only use the widest of the multipaths. Even
coarsening of the advertised values of available bandwidth
routing performance does not help much in this case.

Summarizing, in this section we showed that: a) the rout-
ing performance of pruning policies degrades signi�cantly
with increasing clamp down values and can become worse
than static routing; b) the routing performance of non-pruning
policies can be signi�cantly better for large clamp down
values; c) in some cases even very infrequent updates can
maintain the routing performance of non-pruning policies
at levels better than static routing; d) advertising quantized
values improves routing performance since it allows the dis-
covery of more equal hop multipaths; e) the request size
has signi�cant impact on the routing performance of vari-
ous policies; for small requests the performance degradation
of pruning policies is less while large requests penalize rout-
ing performance more.

5 Improving Routing Performance

So far, we have shown how routing performance for large
clamp down timers can be improved by proper selection of
a triggering policy and type of advertised value. Next we
attempt to modify the routing algorithm itself to compen-
sate for the inaccuracy due to the large clamp down timers.
Since network state updates are generated very infrequently,
on-demand computation is wasteful since most of the time
the topology database is not updated between consecutive
requests. For this reason, we depart from the on-demand
operating model used so far and focus on pre-computation
based solutions; paths to all destinations are pre-computed
each time a network state update is received. A more de-
tailed discussion of path pre-computation and its bene�ts
will be presented in a later section.

Under extreme inaccuracy resulting from large clamp
down values, the information used for path pre-computation
and path selection can not be entirely trusted. In particu-
lar, during the path pre-computation phase paths may in-
correctly be ignored since they appear to have smaller bot-

tleneck capacity than other equal length or shorter paths.
The path selection phase is also a�ected by stale advertised
values; paths that were initially accurately computed, may
become stale by the time they are selected for a given re-
quest.

We propose to cope with random inaccuracy by using
the link state information only as a hint to the decisions of
the routing algorithm. For example, during path selection,
longer paths will be occasionally selected for a request al-
though a shorter path may appear feasible. This should help
avoid systematically selecting a path that due to inaccura-
cies may not be as good as it appears. Clearly, alternate
paths must be used carefully. The length of the alternate
path as well as the size of the requests should be considered,
so that very ine�cient use of network resources is avoided.
In order to protect the network from such degradations we
rely on high level admission control as described in Sec-
tion 2.5 to limit the usage of alternate paths.

In the rest of the section we present extensions to both
the path pre-computation and selection phases of the rout-
ing algorithm that attempt to reduce their sensitivity to
network state inaccuracies. Although these extensions are
not speci�c to a particular triggering policy, since, as shown
in the previous sections, the non-pruning policies perform
well when large clamp down values are used, we mainly use
these policies in the evaluation of the proposed extensions.

5.1 Randomized Routing

First, we consider the implications of network state inac-
curacy on the path pre-computation phase. Stale values of
available bandwidth can result in erroneously ignoring some
paths since they appear to have less available bandwidth
than others. A low sensitivity triggering policy advertising
highly quantized bandwidth values can help reduce this ef-
fect since there are few distinct bandwidth values advertised
and there are more chances for ties between paths. In addi-
tion, the path pre-computation algorithm can be modi�ed
so that it makes decisions about which paths to maintain
with a varying degree of independence from the advertised
bandwidth values. A simple modi�cation is to maintain al-
ternate paths to destinations even if they have bottleneck
bandwidth equal (and not only larger) than other shorter
paths to this destination. In order to make sure that the
path computation phase will terminate we impose a maxi-
mum hop length limit, for the topologies in this work this
limit is set to 16 hops. In the results presented in the rest of
this section, longer paths with a bottleneck capacity equal
to that of shorter paths were maintained during path pre-
computation.

After paths are pre-computed, the path selection phase
picks a path for routing a particular request. As discussed
in Section 2.3, the path computation phase outputs for each
destination d a list of paths Sd =< S1d ; S

2

d ; : : : ; S
n
d >. Since

some of the Sid will be empty, let us assume that the list
of non-empty path sets is Sd =< Shmind ; Sh2d ; : : : ; Shmaxd >.

Each set Shid contains paths of hop length hi and common

bottleneck capacity B
hi
d . The standard algorithm deter-

ministically selects the Shid with the smallest hi that has
enough bandwidth to take the request. Instead, we propose
to randomize the selection of Shid by associating with each

a weighted selection probability Phi
d .

One reasonable model for determining the selection prob-
abilities is the following. The selection probability for a
given hop count is set in proportion to a weight Whi asso-



ciated with each Shid so that Phi
d = Whi=

Phmax

hk=hmin
Whk .

Each Whi clearly should depend on the hop length of the
path (hi) with respect to the minimum hop path that is fea-
sible (according to the available link state information) for
the call to be routed. Assume that the hop length of this
path is H. The value of H is also a�ected by the inaccuracy
of link state information and randomization should also con-
sider paths with hi < H as candidates for routing a call. For
paths with hi > H longer paths should be less probable for
selection; Whi for these cases could be inversely proportional
to hop length. Similarly, for paths hi < H it should be less
desirable to choose a path with hop length much smaller
than H; Whi should be proportional to hi. We chose not
to let Whi depend on the number of paths with hop length
hi. To avoid very large deviations from H we discount Whi

by a factor Dhi = C jhi�Hj with 0 � C � 1. C is de�ned
as C = 1 � � � breq=bmax with 0 � � � 1 breq the amount
of bandwidth requested and bmax the maximum amount of
bandwidth that can be requested; smaller requests will re-
sult in smaller values of C and smaller discounts for longer
hop paths. This is desirable since the e�ects of misrouting
small requests are less serious. The value of � can be used
to control how aggressive the use of longer (or shorter) al-

ternate paths will be. A weight for each S
hi
d is computed

as Whi = Bhi
d � Dhi incorporating in this way the network

state information into the value of the weight assigned to
a particular Shid . For longer paths that have signi�cantly

larger available bandwidth, the large value of Bhi
d will o�set

the large discount and result in a large weight and increased
probability of selection.

The e�ectiveness of the above randomization approach
clearly depends on the underlying network topology. If there
is high amount of link sharing among primary and alter-
nate paths the randomized algorithm will not be able to
increase performance very much. Although it will be using
a larger variety of paths, it will still end up using and load-
ing the same few bottleneck links that lead to a destination,
failing to achieve improved routing performance over non-
randomized routing. In addition, the tra�c characteristics
also a�ect the e�ectiveness of randomized routing. Under
uniform tra�c, alternate paths will be highly loaded and
randomizing the routing of requests over them will not be
particularly e�ective. If on the other hand, as a result of
hot-spot tra�c, there are alternate paths with lower load,
randomization may be able to use these paths more e�ec-
tively than non-randomized routing. We experimented with
two di�erent settings for the threshold �; in the conserva-
tive case � was chosen so that C varied between 0.7 and 0.3
depending on the size of the requests while in the aggressive
case it was chosen so that C varied between 0.6 and 0.9.

The isp topology allows us to illustrate the above points
in Figure 6. In this �gure we compare, for both exponential
and equal class based non-pruning policies, the routing per-
formance of the randomized and on-demand routing using
the same triggering policy. Under uniform tra�c (Figure
6(a)) we do not observe any improvement in routing perfor-
mance when the randomized version of the routing algorithm
is used. Under hot-spot tra�c though (Figure 6(b)), ran-
domization was able to improve routing performance of the
non-pruning policies for very large clamp down values, above
that of other more accurate update generation policies both
pruning and non-pruning. The setting of the weights did
not have any signi�cant e�ect in the routing performance in
the isp topology.

To better investigate the dynamics of the proposed ran-

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0 200000 400000 600000

B
an

dw
id

th
 A

cc
ep

ta
nc

e 
R

at
io

Clamp Down Timer (msec)

T/10%
T/60%

E/200%
Random-E/200%

Static

(a) Uniform tra�c, 5 Mbits/sec requests

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

0 200000 400000 600000

B
an

dw
id

th
 A

cc
ep

ta
nc

e 
R

at
io

Clamp Down Timer (msec)

T/10%
T/60%

E/200%
Random-E/200%

Static

(b) Hot-spot tra�c, 5 Mbits/sec requests

Figure 6: Performance of randomized routing in the isp

topology

domized routing algorithm, we use the topology shown in
Figure 1(c). This topology, unlike isp, contains several dis-
joint alternate paths that can potentially be used for alter-
nate routing, and can give a better idea of the potential of
the randomization approach. In this topology, the random-
ized algorithm improves routing performance substantially
for large values of clamp down. This is shown in Figure 7(a),
which compares the routing performance of randomization
and on-demand routing using the same triggering policies.
In Figure 7(b) we show the e�ects of the weight settings
when an exponential and an equal class based non-pruning
triggering policy is used. In the disjoint multipath topol-
ogy the two alternate paths between the hot-spot source and
the destination nodes are less loaded than the minimum hop
paths. As a result, it is usually a good idea to be aggres-
sive and prefer an alternate path more often. In this Figure,
the triggering policy X/200%/2 performs better than pol-
icy E/200%. The fewer classes of policy X/200%/2 lead to
better performance since there are more chances for ties be-
tween paths resulting in more paths maintained during path
pre-computation.

In Figure 7(c) we evaluate the utility of extending the
path pre-computation phase to maintain paths with bottle-
neck capacity equal to that of shorter paths. When only
strictly longer alternate paths were maintained routing per-
formance was reduced for all triggering policies and weight
settings. In this particular topology, because of the trigger-
ing policies used and the quantized values being advertised,
it is quite likely that longer alternate paths have capacity
equal to that of the shorter direct path(s). Not keeping
these longer alternate paths, at least for the nodes with in-
creased tra�c levels, appears to severely impact routing per-
formance.

Randomized routing in the mesh topology did not achieve
any important improvement in routing performance for large



0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 200000 400000 600000

B
an

dw
id

th
 A

cc
ep

ta
nc

e 
R

at
io

Clamp Down Timer (msec)

T/10%
T/90%

Random-X/200%/4-Agressive
Random-E/200%-Agressive

E/200%

(a) E�ects of randomization

0.94

0.95

0.96

0.97

0.98

0.99

1

200000 400000 600000

B
an

dw
id

th
 A

cc
ep

ta
nc

e 
R

at
io

Clamp Down Timer (msec)

Random-X/200%/4-Agressive
Random-E/200%-Agressive

Random-X/200%/4-Conservative
Random-E/200%-Conservative

(b) E�ects of weight settings

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 200000 400000 600000

B
an

dw
id

th
 A

cc
ep

ta
nc

e 
R

at
io

Clamp Down Timer (msec)

T/60%
Random-X/200%/4-Agressive

Modified Random-X/200%/4-Agressive

(c) E�ects of modi�ed path computation phase

Figure 7: Performance of randomized routing

clamp down values for both uniform and hot-spot tra�c.
This is because, unlike the isp topology, mesh exhibits high
link sharing between minimum hop and alternate paths.
Even for the selection of hot-spot node pairs shown in Fig-
ure 1(b) both primary and alternate paths have to share
the two incident links in at least one of the pair's nodes.
This renders randomization ine�ective since even alternate
routed tra�c will have to compete for resources on the few
common links.

Summarizing, a) randomized routing when combined with
a non-pruning policy is e�ective at improving routing per-
formance for large clamp down values when the underly-
ing topology has alternate paths that are relatively dis-
joint and less loaded than the minimum hop paths and/or
tra�c is non-uniform. Under such conditions, randomiza-
tion can achieve signi�cantly better routing performance
than the non-randomized algorithm using any pruning and
non-pruning policy; b) modifying the path pre-computation
phase to maintain more paths is in most cases also advan-
tageous.

6 Processing Cost

In this section, we investigate the processing cost of the dif-
ferent solutions presented in the previous sections. With the
exception of the randomized routing algorithm, the presen-
tation so far assumed that paths were computed in an on-
demand fashion. This may result in large processing load,
proportional to the number of the requests placed on the
network. In some cases, as for example when large clamp
down values are used, the contents of the topology database
do not change very often, and performing a new path compu-
tation for each request can be wasteful since the same paths
will be re-discovered. In such cases, pre-computing paths is
a more reasonable alternative. Path pre-computation may
be necessary even in cases where there is no large clamp
down timer, if the processors in the routers can not cope
with the processing load of on-demand path computation.

6.1 Measuring the Processing Cost

The operations performed by the routing algorithms dis-
cussed in this paper can be distinguished into several cate-
gories. In Initialization, the QoS routing table is initialized.
The QoS routing table maintenance operations perform up-
dates to the QoS routing table by adding/deleting and re-
placing paths during the path computation phase. Node
Operations access the topology database to retrieve infor-
mation about a particular network element. Per Iteration
Operations maintain data needed by the Bellman-Ford al-
gorithm, mainly a queue of vertices to be expanded in the
next iteration. Finally, Path Selection determines a path for
a particular request using information in the QoS routing
table.

In order to meaningfully compare the processing cost of
the various routing alternatives considered in this paper, we
estimate the cost of each of the operation types described
above using specially designed benchmarks. The bench-
marks perform a sequence of path computations in an empty
network while the execution time of the various operations
is monitored using the pixie tool, available in the Digital
Unix platform used for the simulations. Then in later sim-
ulations, we maintain counts for each operation type, and
the time spent in routing algorithm operations is computed
for the whole network. The costs of the di�erent operations
are summarized in Table 1. The numbers are derived for
the architecture we used for the simulations: Alphaserver
2100 4/274 servers with 4 Alpha 21064A CPUs at 275 MHz,
256 Mbytes of real memory, and Digital Unix operating sys-
tem. The routing protocol code used is based on a random
access implementation of the link state database, achieving
therefore very e�cient access to link state information. Path
selection cost depends on the number of candidate paths but
it is negligible and is not reported here. This is also the case
for the randomized algorithm that performs more complex
operations during path selection and usually handles more
paths.

6.2 Reducing Processing Cost Through Path Pre-computation

There are two methods for deciding when to trigger a path
pre-computation:

� Pre-compute paths periodically: In this case, a reason-
able value for the pre-computation period is the clamp
down timer value. Periodic path pre-computation does
not necessarily need to be synchronous with the clamp
down timer used but providing link state information



Operation isp mesh

Node (Avg/Node) 5 3
Iteration (Avg/Iteration) 2 1.5
Data Structure (Avg/Operation) 4 4
Initialization (Avg/Path Computation) 120 47

Table 1: Cost of the operations performed by the routing
algorithms (in �sec)

more often than path pre-computation needs it is waste-
ful.

� Pre-compute on each received update: This can in-
crease the number of path pre-computations over the
previous approach by a factor of N , where N is the
number of nodes in the network. Indeed, with a clamp
down value C, over a period of time T there will be
about T=C path computations per node if the �rst
approach is used, for a total of NT=C path computa-
tions for the whole network. In the second approach
there will be T=C updates per node that each will
trigger NT=C path pre-computations in all the other
nodes in the network, for a total of N2T=C path pre-
computations.

An example of the processing cost of these two alterna-
tives is shown in Figure 8 for 5 Mbits/sec requests with dura-
tion of 3 minutes. The processing cost in this �gure is amor-
tized by dividing the total time spent in routing algorithm
computations by the duration of the simulation. Periodic
pre-computation can achieve very signi�cant processing cost
savings over on-demand computation. Triggering path pre-
computation on every update received increases processing
cost considerably. The relative cost of path pre-computation
compared to on-demand path �nding depends on the topol-
ogy. In general, the larger and less connected the topology
is, the larger the average cost of pre-computing paths to all
destinations will be compared to the cost of computing a
path to a single destination. This is why, the relative costs
are very di�erent for the mesh topology as can be seen in
Figure 8(b). In this topology, due to its small size and high
node degrees, computing paths to all destinations involves
on the average only a small amount of extra operations over
computing a path to a single destination.

While path pre-computation can achieve signi�cant re-
duction of processing cost it also has important e�ects on
routing performance. In experiments with periodic path pre-
computation, the non-pruning policies achieve better rout-
ing performance than the other triggering policies for large
clamp down values, similar to what was the case for on-
demand path computation. Periodic path pre-computation
results in some routing performance loss compared to on-
demand path computation using the same triggering policy.
An example of the relative performance of on-demand and
periodic path pre-computation is shown in Figure 9. There
is a similar routing performance loss for both pruning and
non-pruning policies that increases with increasing clamp
down timer values. This di�erence in routing performance
is reduced for smaller request sizes. Similar di�erences be-
tween path pre-computation and on-demand computation
can be observed for uniform tra�c. The performance dif-
ference between periodic and on-demand path computation
is eliminated when paths are pre-computed on every update
received. In this case, on-demand and path pre-computation

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200000 400000 600000P
ro

ce
ss

in
g 

C
os

t (
%

 o
f s

im
ul

at
io

n 
tim

e)

Clamp Down Timer (msec)

 On-demand T/60%
Pre-computed T/60%

Precomputed On Each Update T/60%

(a) isp topology, 5 Mbits/second

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

200000 400000 600000P
ro

ce
ss

in
g 

C
os

t (
%

 o
f s

im
ul

at
io

n 
tim

e)

Clamp Down Timer (msec)

 On-demand T/60%
Pre-computed T/60%

Precomputed On Each Update T/60%

(b) mesh topology, 5 Mbits/second

Figure 8: Comparison of processing cost

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0 200000 400000 600000

B
an

dw
id

th
 A

cc
ep

ta
nc

e 
R

at
io

Clamp Down Timer (msec)

Static
 On-demand T/60%

Pre-computed T/60%
On-demand E/200%

Pre-computed E/200%

Hot-spot tra�c, 5 Mbits/sec

Figure 9: Routing performance of path pre-computation

compute their paths using exactly the same network state
information,, and produce similar results with small di�er-
ences due to load balancing.

Summarizing, a) periodic path pre-computation results
in some routing performance loss compared to on-demand
path computation; this performance loss disappears if path
are pre-computed on each update received although this in-
creases the processing cost considerably; b) periodic path
pre-computation considerably reduced processing cost com-
pared to on-demand path computation even for smaller clamp
down values; pre-computing on each update is cheaper than
on-demand only for large clamp down values; c) non-pruning
update triggering policies still provide better routing per-
formance for large clamp down values, even when paths are
pre-computed.



7 Conclusions

In this work, we have investigated the cost-performance trade-
o� in QoS routing through simulation. First, to cope with
the negative e�ects of excessive alternate routing we devel-
oped a simple method for high level admission control and
demonstrated its e�ectiveness in the mesh topology.

With a detailed comparison of the routing performance
achieved from di�erent combinations of triggering policies
and parameter settings, we veri�ed that triggering policies
that do not result in pruning of links and advertise quan-
tized values can perform better in conditions of high random
inaccuracy, independently of the other details of triggering
policies such as number or type of classes.

This behavior is similar for both on-demand and path
pre-computation, although periodic path pre-computation
results in a small routing performance loss over on-demand.
The combination of path pre-computation and non-pruning
triggering policies provides an e�cient and very cost ef-
fective solution for routing when large clamp down timers
are used and outperforms other more sensitive triggering
policies that operate in either path pre-computation or on-
demand mode.

For random inaccuracy resulting from very large clamp
down settings, a randomization based path selection ap-
proach allows the routing algorithm to partially compensate
for the large inaccuracy in the link state information. We
demonstrated that this approach can increase routing per-
formance signi�cantly for larger clamp down values, mainly
in topologies where there are multiple disjoint alternate paths
and non-uniform tra�c. The network state inaccuracy may
also have negative e�ects on the path computation phase;
we brie
y discussed simple modi�cations that can improve
the resiliency of path computation to infrequent updates of
network state.

References

[1] R. S. Krupp, \Stabilization of Alternate Routing Net-
works," in IEEE International Communication Confer-
ence, Philadelphia, PA, 1982

[2] R.J. Gibbens, F. P. Kelly, and P. B. Key, \Dynamic
Alternate Routing - Modeling and Behaviour," in Tele-
tra�c Science for New Cost-E�ective Systems, Networks
and Services, ITC-12, Elsevier Science Publishers, 1989

[3] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick,
\A Framework for QoS-based Routing in the Internet,"
Internet Draft, QoS Routing Working Group, Internet
Engineering Task Force, expires October 1998

[4] \Interim Inter-Switch Signalling Protocol Version 1,"
ATM Forum, af-pnni-0055.000, March 1996

[5] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S.
Jamin, \Resource ReSerVation Protocol (RSVP) { Ver-
sion 1 Functional Speci�cation," Request For Com-
ments 2205, Internet Engineering Task Force, Septem-
ber 1997

[6] H. Ahmadi, J. S.-C. Chen, and R. Gu�erin, \Dynamic
Routing and Call Control in High-Speed Integrated
Networks", Proc. Proc. Workshop Sys. Eng. Traf. Eng.,
ITC'13, 1991

[7] Q. Ma and P. Steenkiste, \On Path Selection for Tra�c
with Bandwidth Guarantees," in proceedings of IEEE

International Conference on Network Protocols, Octo-
ber 1997

[8] R. Gu�erin, and A. Orda, \QoS Based Routing in Net-
works With Inaccurate Information: Theory and Algo-
rithms," in proceedings of INFOCOM, 1997

[9] Z. Wang, and J. Crowcroft, \Quality of Service Rout-
ing for Supporting Multimedia Applications," IEEE
Journal Selected Areas in Communications, 14(7):1228-
1234, 1996

[10] W. C. Lee, M. G. Hluchyj, and P. A. Humblet, \Routing
Subject to Quality of Service Constraints in Integrated
Communication Networks," IEEE Networks, pages 46-
55, July/August 1995

[11] R. Widyonon, \The Design and Evaluation of Routing
Algorithms for real-time Channels," Technical Report
TR-94-024, University of California at Berkeley, June
1994

[12] V. P. Kompella, J. C. Pasquale, and G. C. Poly-
zos, \Two Distributed Algorithms for the Constrained
Steiner Tree Problem," in proceedings of 2nd Inter-
national Conference on Computer Communication and
Networking, pages 343-349, 1993

[13] R. Gu�erin, D. Williams, and A. Orda, \QoS Routing
Mechanisms and QSPF extensions," in proceedings of
GLOBECOM, 1997

[14] A. Shaikh, J. Rexford, and K. Shin, \Dynamics of
quality-of-service routing with inaccurate link-state in-
formation," University of Michigan Technical Report
CSE-TR-350-97, November 1997

[15] J. Moy, \OSPF Version 2," Request For Comments
2178, Internet Engineering Task Force, July 1997

[16] C. Alaettinoglu, A. U. Shankar K. Dussa-Zieger, and I.
Matta. \Design and Implementation of MaRS: A Rout-
ing Testbed," Journal of Internetworking Research and
Experience, 5(1):17-41, 1994


