
Scalable QoS Provision Through Buffer Management

R. Guérin, S. Kamat, V. Peris, and R. Rajan
IBM, T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA
fguerin,sanjay,vperis,raju g@watson.ibm.com

Abstract

In recent years, a number of link scheduling algorithms have been
proposed that greatly improve upon traditional FIFO scheduling in
being able to assure rate and delay bounds for individual sessions.
However, they cannot be easily deployed in a backbone environ-
ment with thousands of sessions, as their complexity increases with
the number of sessions. In this paper, we propose and analyze an
approach that uses a simple buffer management scheme to provide
rate guarantees to individual flows (or to a set of flows) multiplexed
into a common FIFO queue. We establish the buffer allocation re-
quirements to achieve these rate guarantees and study the trade-off
between the achievable link utilization and the buffer size required
with the proposed scheme. The aspect of fair access to excess band-
width is also addressed, and its mapping onto a buffer allocation
rule is investigated. Numerical examples are provided that illus-
trate the performance of the proposed schemes. Finally, a scalable
architecture for QoS provisioning is presented that integrates the
proposed buffer management scheme with WFQ scheduling that
uses a small number of queues.

Keywords: Buffer Management, Rate Guarantees, Scheduling, Shar-
ing, Fairness

1 Introduction

Provision of serviceguarantees, especially rate guarantees, is be-
coming increasingly important in packet networks, and in particu-
lar the Internet. This is caused by both the heterogeneity of require-
ments from new applications, and the growing commercialization
of the Internet. For example, the latter often translates into the spec-
ification of “Service Level Agreements,” that define contracts, e.g.,
rate guarantees, between users and the network. The introduction
of such service guarantees means, that contrary to the currentbest-
effortnetworks which treat all flows equally, the network now needs
to differentiate between flows. Support for such differentiation re-
quires that the network control the amount of resources that each
flow or set of flows is allowed to consume. The network resources
whose consumption is to be controlled, consist primarily of buffers
and link bandwidth, with buffer management and scheduling being
the associated mechanisms.

The mechanisms used to provide such control do, however, come
at a price, which has two main components: the storage and pro-
cessing of the state information associated with service guarantees;
and the cost of making the per packet admission and transmission
decisions required to enforce service guarantees. These two dimen-
sions are obviously not independent, but the more significant one
appears to be the per packet cost. This is primarily because it di-
rectly impacts the speed and scalability of the associated mecha-
nisms. In particular, as link speeds keep increasing, the “process-
ing” time available for each packet decreases in proportion. This is
particularly significant as high speed mechanisms are often imple-
mented in hardware, and designed for worst case operation, i.e., the
smallest possible packet size (for a32-byte packet, this corresponds
to about107 nanoseconds on an OC-48 link).

In that context, packet scheduling costs are usually of a greater
concern than those associated with buffer management. This is be-
cause with most buffer management schemes, the decision to admit
or drop an incoming packet can be made based on a fixed amount of
state information. Specifically, this usually consists of some global
state information, e.g., the total buffer content, as well as additional
state information specific to the flow to which the packet belongs,
e.g., the number of packets the flow currently has in the buffer. For
example, this is true for threshold based mechanisms [2], schemes
such as Early Packet Discard (EPD) [7, 9], Random Early Discard
(RED) [3], and Fair RED (FRED) [5].

Scheduling decisions, on the other hand, require both flow spe-
cific state information, e.g., the last transmission time of a packet
from the flow, and operations involvingall the other flows currently
contending for access to the link. The latter is typically in the form
of insertion and deletion operations in a sorted list of packets wait-
ing for transmission. For example, in the case of algorithms such as
Weighted Fair Queuing (WFQ) [6] or rate controlled Earliest Dead-
line First (EDF) [4], the sorted list consists of departure deadlines
for packets from each active flow, where the departure deadline for
a flow is computed so as to ensure specific rate and/or delay guar-
antees. Reliance on a sorting operation that grows with the num-
ber of flows (or service guarantees) can be a major impediment to
scalability as speed increases. As a result, it is desirable to devise
approaches that limit this exposure, even if at the cost of some de-
crease in performance guarantees or increase in the cost of other
system components that are less critical for scalability purposes.

One possible direction is to lower the cost of sorting by allow-
ing some coarsening of the information to be sorted. This is the ap-
proach of [8], which achieves a reduction fromlogN to log logN
in complexity, whereN is the number of flows to be sorted. An-
other direction is to avoid reliance on sorting altogether as in the

Rotating Priority Queue (RPQ) proposal of [10]. This is the direc-
tion we pursue in this paper, where we take it to its extreme con-
figuration of limiting scheduling support to that of a simple FIFO
queue. In that context, we propose a scheme that provides rate
guarantees to individual flows (or set of flows) by relying solely on
buffer management mechanisms, i.e., packet admission decisions.

As mentioned earlier, buffer management operations typically
require only a constant amount of processing and state informa-
tion, compared to the sorting operations associated with a WFQ-
like scheduler. Furthermore, scheduling seeks to provide rate guar-
antees to flows by controlling the transmission opportunities that
each individual flow gets. However, there is little benefit in guar-
anteeing transmission opportunities to a flow, if it has no packets
waiting because another misbehaving flow is occupying the entire
buffer space. Thus, buffer management is required independently
of any scheduling, if rate guarantees are to be provided. As a result,
an approach that can provide rate guarantees by relying primarily
on simple buffer management is attractive as it removes much of
the complexity associated with scheduling.

As with the schemes of [8] and [10], there is obviously some
“penalty” associated with the simplification of providing rate guar-
antees only through buffer management. As we shall see in Section
2, this penalty is primarily in terms of looser delay guarantees to
individual flows and an increase in the amount of buffer space re-
quired to achieve a given link utilization.

Tight delay guarantees are clearly important to some real-time
applications. However, in the environments with which this paper
is concerned, namely, very high-speed links, even the worst case
delays are likely to be sufficiently small and tolerable to most real-
time applications. For example, the worst case delay caused by a
1MByte buffer feeding an OC-48 link (2:4Gbits/sec) is less than
3:5msec. In general, scheduling mechanisms that can provide tight
delay guarantees are most appropriate on lower speed links, where
not only queuing delays can be significant, but also scalability con-
straints are less of an issue. As a result, we believe that trading-off
some control on delay guarantees for a simpler implementation and
better scalability represents a reasonable design choice. Similarly,
the need for larger buffers does translate into additional cost. How-
ever, those costs are containable, e.g., the price of memory has been
regularly decreasing, and furthermore the scheme we propose offers
some flexibility in shifting cost between buffer and bandwidth.

In the rest of this paper, we describe further the scheme we pro-
pose for ensuring rate guarantees, and identify properties of inter-
est. Section 2 establishes the basic results relating buffer allocation
and rate guarantees. In particular, it provides an explicit expres-
sion linking the amount of buffer allocated for a flow, to the rate
it is guaranteed to receive. The result is given for both constant
rate and bursty flows. Section 3 investigates the trade-offs involved
when providing rate guarantees by relying solely on buffer manage-
ment. This includes the impact on conformant and non-conformant
flows of lowering the buffer size below what is needed to ensure
rate guarantees. In addition, even when buffer sizes are sufficient
to ensure the rate guarantees of conformant flows, providing effi-
cient and fair access to excess resources is also of interest. Both
aspects are investigated, and comparisons to what can be achieved
using more sophisticated scheduling mechanisms, e.g., WFQ, are
also provided. Based on the understanding obtained in Section 3,
Section 4 investigates the potential benefits of hybrid schemes, that
combine limited scheduling with the buffer management based ap-
proach of the paper. The section reviews some of the basic design
choices of such combinations, and explores their potential benefits.
Finally, Section 5 briefly summarizes the results of the paper.

2 Rate Guarantees for FIFO schedulers

Consider a number of flows being multiplexed onto a link using a
simple FIFO scheduling policy. It is well known that with such
a scheduling policy, misbehaving or aggressive flows can easily
starve compliant flows. In other words, FIFO scheduling does not,
by itself, provide sufficient isolation between flows. The problem
we shall address in this section is that of controlling arrivals into
the buffer, in order to ensure that all flows receive their share of
link bandwidth even if some flows misbehave. In this section, we
shall consider a very simple buffer management policy – that of
logically partitioning the entire buffer into portions that may be
considered reserved for particular flows. The partitioning is called
logical because it is enforced by assigning a specific buffer occu-
pancy threshold to each individual flow rather than by physically
allocating buffer regions to flows. A packet belonging to a flow is
admitted if it would not raise the flow’s buffer occupancy beyond
its assigned threshold. It is dropped otherwise.

Clearly, enforcing such a policy requires only a constant num-
ber of operations, irrespective of the number of flows involved. We
first address the question of reserved buffer allocation, i.e., how
to compute buffer occupancy thresholds for flows given their traf-
fic profiles in order to ensure lossless service to each flow with no
assumptions on the behavior of other flows. The answer to this
question will immediately yield an admission control policy and a
corresponding schedulability region. We then go on to compare the
price we pay in terms of buffer requirements of this FIFO schedul-
ing combined with a simple buffer management policy to that of a
more sophisticated WFQ-like scheduling mechanism.

2.1 Rate guarantees based on peak rates

First, let us consider the case of two flows sharing a finite buffer
of sizeB, and being multiplexed onto a link of capacityR using
a FIFO scheduler. Flow 1 has peak rate�1, while flow 2 is po-
tentially aggressive, and could swamp the first flow if its arrival
into the buffer is unregulated. We address the problem of logically
partitioning the buffer sizeB into two portions,B1 andB2, that
correspond to the maximum occupancy levels allowed for flows 1
and 2, respectively, so as to ensure that flow 1 never loses a packet.

Intuitively, it seems clear that flow 1’s share of the buffer should
be at least as large as its share of the bandwidth, i.e.,

B1

B
� �1

R
:

We will assume a fluid model of flows to demonstrate the correct-
ness of our results. In the fluid model, each flow is comprised of
infinitesimal bits that are served on a FIFO basis. At any time in-
stantt, letQ1(t) andQ2(t) denote the respective buffer occupancy
levels of flows 1 and 2. Also, letA1(t) andA2(t) denote their cor-
responding cumulative volume of traffic admitted into the buffer by
time t.

Suppose thatB1 = B�1
R

, andB2 = B � B1. Initially, the
buffer is empty. Letu > 0 be the first time at which flow 1 loses
packets, so that at timeu we must have,Q1(u) = B1. Consider
then the bit that is the “oldest” one among flow 1’s bits in the buffer
at timeu. This bit must have arrived at some earlier time instant
v, such thatA1(v) = A1(u) � B1. On arrival, this bit sees sees
Q1(v) bits of flow 1 andQ2(v) bits of flow 2 already in the buffer.
As we assumed that flow 1 first experiences bit losses at timeu, we
have

Q1(v) < B1 =
B�1
R

(1)

Under the FIFO discipline, the bit arriving at timev will not spend
more than(Q1(v)+Q2(v))=R time in the queue. This implies that

u� v � (Q1(v) +Q2(v))=R:

Furthermore, arrivals from flow 1 between timesv andu are
bounded above by�1 � (u� v). Consequently,

Q1(u) � �1 � (u� v)

� �1 � Q1(v) +Q2(v)

R

< �1 � B1 + (B �B1)

R

=
B�1
R

:

This shows that the buffer occupancy of flow 1 never exceedsB�1=R.

The main result of this buffer management approach can then
be summarized in the following proposition.

Proposition 1 ConsiderN flows admitted into a common buffer
that is served by a FIFO scheduler with service rateR. It is given
that flowi requires a guaranteed service rate�i. If the flow is peak-
rate conformant, a buffer occupancy threshold ofB�i=R is suffi-
cient to guarantee lossless service.

Proof: The proof for flowi simply follows from the earlier discus-
sion of the case of 2 competing flows by considering the traffic of
all flows other than flowi as a single virtual flow.

Remark 1 While the above proposition assures us that conformant
flows do not lose packets, it is important to look at losses suffered
by non-conformant flows, as well. In this context, we assert that
if a flow exceeds its negotiated peak rate, then it will not be pe-
nalized excessively, i.e., it will have more bits delivered (up to any
time) than had it been a lower volume1 conformant flow. To see
this, imagine coloring all conformant bits of a flow green and non-
conformant bits red. If we pretend that green bits always have strict
priority over red bits, then the conformant portion of the flow does
not “see” the non-conformant portion, and hence never suffers loss.
We can equivalently carry out an accounting stratagem of inter-
changing the colors of an arriving green bit for that of the earli-
est red bit in the buffer. This shows that at least as many bits get
through as there are conformant bits.

Next, we show through an example, that assigning buffer thresh-
olds in proportion to rates is not only sufficient but also necessary.

Example 1 Consider two flows, the first conformant to a peak reser-
vation of�1 and the second greedy. As before we assume a FIFO
scheduler and a total buffer size ofB, of which flow1 can oc-
cupy at mostB1 = B�1

R
, while flow2 is entitled to the rest, i.e.,

B2 = B�B1. The cumulative arrival process of the first flow into
its buffer is given byA1(t) = �1 �t. The greedy nature of the second
flow means that its arrival process is such thatQ2(t) = B2, for all
t � 0.

We examine the dynamics of this system at a sequence of times
t0(= 0); t1; t2; : : :. These are successive times at which the buffer
content of flow2 “clears”, i.e., the last bit of flow2 to arrive into
buffer at timet0 leaves at timet1, and so on.

1A flow with arrival processA is said to be lower volume than another with arrival
processÂ if A(t� s) � Â(t� s) for any timess; t, with t � s.

Let us denote byR1
i andR2

i the service rates received by flows
1 and2 respectively during the interval betweenti�1 andti.

First, it is apparent that between the timest0 andt1, flow 1 re-
ceives no service, i.e.,R1

1 = 0, and flow 2 receives service at the
link rate, i.e.,R2

1 = R. This is because of the FIFO service disci-
pline and our assumption, that at timet0 we start out with no bits
of flow 1 in the buffer and flow2 occupying its maximum threshold
of B2. Thus,t1 = B2=R is the first time instance where the buffer
contains some bits of both flows that compete for service having
arrived simultaneously at an earlier time.

Also, note that flow2 seeks to greedily always occupy its max-
imum allowed buffer share. However, it can arrive into the buffer
only at the rate at which it is being served. Thus, during the first in-
terval(t0; t1), it replenishes itself in the buffer at rateR. However,
in the second interval(t1; t2), it replenishes itself at a lower rate,
since it shares the link capacity with some of the flow1 traffic that
arrived in the previous interval.

Now, at timet1, Q1(t1) = �1B2=R. Moreover, bits of flows1
and2 are interspersed with respect to the order in which they should
receive service. The last bit of flow2 in the buffer at timet1 will
depart after(Q1(t1) +Q2(t1))=R time, i.e.,

t2 = t1 +
Q1(t1)

R
+
Q2(t1)

R
= t1 +

�1(t1 � t0)

R
+
B2

R
:

The relative rates of service of the two flows after timet1 is then
in proportion to their rates of arrival into the buffer, i.e., bits of flow
1 will be drained at the rateR1

2 := �1
�1+R

R, while the remaining

rate of the serverR2
2 := R

�1+R
R will be dedicated to the second

flow. Note thatR1
2 < �1, so that even after timet1, flow 1 is not

receiving its guaranteed rate�1. However, as we shall see, flow
1 asymptotically achieves is guaranteed rate, and does so without
losing any bit, assuming the above buffer allocation.

In general, flow1 receives service at the rateR1
i , and flow2

receives rateR2
i between timesti�1 andti. The buffer occupancy

of flow 1 at timeti is �1 � (ti� ti�1), while that of flow2 is always
B2. Thus,

ti+1 = ti +
�1 � (ti � ti�1)

R
+
B2

R
:

If we setli := ti � ti�1, the above may be written as

li+1 =
�1
R
li +

B2

R
:

Moreover,
R2
i = B2=li; i = 1; 2; : : : ;

and
R1
i = R�R2

i :

It is easy to see that,

limi!1li =
B2

R� �1
limi!1ti = 1
limi!1R

1
i = �1

limi!1R
2
i = R� �1

In other words, the flow1 asymptotically fills its maximum allowed
share of buffer, but obtains the long term rate�1 despite the aggres-
siveness of the flow2.

2.2 Rate guarantees based on token rates and burst sizes

Describing a flow through its peak rate alone results in an over-
allocation of resources in the network. A popular alternative is to
use a leaky bucket profile, i.e., describe the flow through a token
rate� and burst size�. We would like to use this richer knowl-
edge of traffic burstiness to allocate reserved buffers for flows, so
as to ensure lossless service for compliant traffic. The following
proposition states the main result of this section.

Proposition 2 ConsiderN flows, where flowi has a token rate�i
bits/second and a burst size�i, multiplexed on a constant rate link
of rateR bits/second with a FIFO scheduler. If flowi is conformant,
a reserved buffer allocation of�i+B�i=R is sufficient to guarantee
lossless service to flowi.

Note: The previous example can be easily extended to show that
allocating less than�i +B�i=R to flow i will result in losses even
if flow i remains conformant. This is achieved by having flowi
transmit at rate�i without transmitting its burst of�i until it fills
theB�i=R portion of its buffer allocation2, which it can according
to the previous example, and then dumps its entire burst.

Proof : As before, let us consider two flows, one compliant and
the other greedy, both being multiplexed onto a buffer of sizeB
and served by a FIFO link scheduler, with a link capacity ofR.
Assume thatA1(t), the function describing the arrival process of
the first flow, is right continuous and(�1; �1) constrained, i.e.,

A1(t)�A1(s) � �1 + �1 � (t� s) 0 � s � t: (2)

We claim that a buffer threshold of sizeB1 = B�1
R

+�1 is sufficient
to serve flow 1 in a lossless manner3.

It is useful to associate a process called theburst potentialpro-
cess, with a flow. This process, denoted�i(t) for flow i, is defined
as

�i(t) := inf
s�t
fAi(s) + �i(t� s) + �ig �Ai(t): (3)

This process describes the size of the token pool in the leaky bucket
of the flow at a given time and thus captures the potential burstiness
of the flow’s arrival process at that instant. In other words, the RHS
of the above equation denotes the maximum number of bits that
could arrive for flowi instantaneously in a burst. In particular, from
equations (2) and (3) it is easy to deduce that for any times0 � v �
u,

A1(u) + �1(u) = inf
s�u

fA1(s) + �1(u � s) + �1g
� inf

s�v
fA1(s) + �1(u� s) + �1g

� inf
s�v

fA1(s) + �1(u� v) + �1(v � s) + �1g
� �1(u� v) + inf

s�v
fA1(s) + �1(v � s) + �1g

= A1(v) + �1(v) + �1(u� v): (4)

DefineM(t) := Q1(t) + �1(t)� �1.

Claim: With M defined as above,��1 � M(t) < B2�1
R��1

:= M̂

for all t � 0.

The first inequality is obvious. To show the second, note that
M(0) = 0, as the initial burst potential of flow 1 is�1(0) = �1,
and its buffer occupancyQ1(0) is zero.

2Or rather until it gets arbitrarily close to it.
3Assume thatB � B1 , i.e,B � R

R��1
�1 . We shall show later that a buffer of

at least this size is required for lossless service.

We demonstrate the second inequality, i.e.,M(t) < M̂ , for all
t, by contradiction. Let us assume that this inequality is violated, so
that there exists a smallest value ofu > 0 such thatM(u) = M̂ . (It
is possible to show thatM(t) is continuous, and hence such a time
does exist.) Look at the arrival timev of the ‘oldest’ bit of flow 1 in
the buffer. It is easy to see thatv < u, for if not, then all arrivals of
flow 1 must have occurred at the instantu. But there can be no more
than�1 such arrivals, which implies thatQ1(u) + �1(u) � �1, in
turn implying thatM(u) < M̂ , a contradiction. Thus,v < u,
M(v) < M̂ , which implies

Q1(v) < �1 � �1(v) +
B2�1
R� �1

LetD1(t) denote the cumulative departure process of the first flow.
As there may be bits that arrived at timev that have not departed
by timeu, we haveA1(v) � D1(u). Let � := A1(v)�D1(u). In
other words,� denotes the number of bits of flow 1 that arrived into
the buffer at timev but have not yet departed at timeu.

Now, we have

Q1(u) + �1(u) = A1(u)�D1(u) + �1(u)

� A1(v)�D1(u) + �1(v) + �1(u� v)

� � + �1(v) + �1(u� v):

Now,R � (u� v) � Q1(v)� � +Q2(v). Consequently,

Q1(u) + �1(u)

� � + �1(v) +
�1
R

(Q1(v)� � +Q2(v))

< � + �1(v) +
�1
R

�
�1 � �1(v) +

B2�1
R� �1

� � +B2

�

=
�
1� �1

R

�
(� + �1(v)� �1) + �1 +

B2�1
R� �1

:

To complete the proof, simply observe from equation (3), that
for any� > 0,

A1(v) + �1(v) � A1(v � �) + �1 + ��1

Taking limit as�! 0, and rearranging terms

�1 � A1(v)�A1(v�) + �1(v) � � + �1(v):

Now, combining this inequality with the above one forQ1(u) +
�1(u), we get

M(u) = Q1(u) + �1(u)� �1 < M̂

which contradicts our assumption that9u;M(u) = M̂ .

2.3 FIFO vs. WFQ: Worst Case Bu�er Requirements

We now examine the tradeoff between a purely buffer based re-
source management scheme, and a scheduling mechanism such as
WFQ, to provide lossless rate guarantees to individual flows. Sup-
pose that we haveN flows, where thei-th flow has a traffic profile
of (�i; �i). Suppose that all flows are conformant to their envelope.
In this case, a WFQ scheduler would require a buffer of�i bits for
flow i in order to provide lossless service4. Thus, the minimum
total buffering requirement for a WFQ scheduler would be�i. An-
other way of saying this is that the set ofN flows with envelopes

4We ignore packetization in making this calculation.

f(�i; �i)g is WFQ-schedulable on a link of rateR bits/second with
a fully partitioned buffer of sizeB bits if

R �
NX
i=1

�i; (5)

B �
NX
i=1

�i: (6)

In other words, equation (5) specifies the bandwidth constraint that
must be met to accept a new flow, while equation (6) gives the cor-
responding bandwidth constraint. Both constraints need to be satis-
fied for the flow to be accepted. In other words, if a new request is
rejected because the constraint of equation (5) is violated, then the
scheduler is deemed to be bandwidth limited. Conversely, it con-
sidered to be buffer limited if the new request is rejected because
the constraint of equation (6) is not met.

On the other hand, to schedule the same set of flows using a
FIFO scheduler combined with buffer management, not only do we
need to satisfy the bandwidth constraint expressed in equation (5),
but we also need to ensure that each flow has a reserved buffer share
Bi � B�i=R + �i . In other words, we must have

R �
NX
i=1

�i (7)

B � B

R

NX
i=1

�i +

NX
i=1

�i: (8)

Equation (8) can be rewritten as follows

B � R

R�PN

i=1
�i

NX
i=1

�i: (9)

Denoting the reserved link utilization byu =

P
N

i=1
�i

R
, this gives

B � 1

1� u

NX
i=1

�i: (10)

Equation (10) points to the fact that in order to avoid being
buffer limited in its call admission, the FIFO scheduler can require
substantially more buffers than the WFQ scheduler. In particular,
under FIFO scheduling, as the reserved link utilization goes to1,
the buffer requirements become unbounded. Note that the above
derivation does not take the peak rate of the source into account.
However, given a peak rate limit for the source a similar calculation
can be carried out and identical results are obtained.

3 Tradeo�s between WFQ and FIFO

The previous section established basic results and properties on how
to provide rate guarantees by relying solely on buffer management.
Expressions were derived that relate buffer allocations to the corre-
sponding rate guarantees. In addition, the amount of buffer needed
to guarantee losslessness to a conformant flow was obtained and
compared to what is required when a WFQ scheduler is used. It
was shown that the greater simplicity of buffer management based

scheme, came at the cost of potentially much higher buffer require-
ments, at least when the goal was to ensure losslessness.

Such a worst case comparison is certainly valuable and provides
a useful benchmark. However, comparisons for more “practical”
scenarios, e.g., when small losses are tolerated, are also of interest
as are other performance measures such robustness to traffic fluc-
tuations, sensitivity to buffer size, fairness in allocating idle band-
width, etc. In this section, we perform such comparisons by means
of simulation, and evolve a framework of performance measures
to better characterize the behavior of our buffer management based
approach. Based on those results, we also present simple modifica-
tions to the basic scheme, which allow us to “tune” the mechanism
to achieve an operating point that balances different QoS measures.

3.1 Performance Measures Comparison Bases

A router is required to manage link bandwidth and buffers to achieve
a reasonable tradeoff between different performance measures, which
are often at odds. We consider three major objectives in evaluat-
ing link and buffer management schemes: (1) link utilization (2)
delivery of rate guarantees to reserved flows (3) sharing of excess
bandwidth. The other dimension of interest is the complexity and
scalability of the solution used to achieve a given trade-off. As
mentioned earlier, this was the primary motivation for our inves-
tigation of a buffer management based scheme for providing rate
guarantees.

There is little need to emphasize that achieving high link utiliza-
tion is a desirable goal. A straightforward approach to this problem
is to admit as many packets as the buffer allows, and serve them in a
work conserving manner. However, such a strategy is at odds with
the second objective of providing a minimum level of service to
reserved flows. Aggressive flows could swamp the buffers, and de-
prive conformant reserved flows of transmission opportunities. This
suggests that we must, on occasion, prevent aggressive flows from
occupying an excessive portion of the buffers as was embodied in
the buffer management scheme described in the previous section. In
carrying out such buffer management, one must also seek to appor-
tion unreserved link capacity “fairly” among flows that can utilize
it. There are many notions of fairness, and a flexible resource shar-
ing scheme should be configurable to implement one that is suitable
for the particular operational environment.

In order to evaluate our buffer management based scheme and
the performance of several variants, we rely on several benchmarks.
The first is a simple work-conserving FIFO scheduler with no buffer
management. Such a scheme is commonly implemented in a best
effort internet, and has the virtues of simplicity, scalability, as well
as efficient utilization of link bandwidth. On the other hand, it is not
capable of providing differentiated access to resources. Thus, nei-
ther are conformant flows protected, nor is excess capacity shared
in a fair manner among competing flows. Our second benchmark is
at the other end of the spectrum in terms of capabilities, and is based
on a WFQ scheduler. Such schedulers, although relatively complex,
are quite effective at providing rate guarantees to flows, even with
relatively small buffers. Further, the WFQ automatically apportions
excess bandwidth in proportion to rate reservations, and is, in this
sense, fair to all flows. However, note that in order to deliver good
QoS, it is important to also couple WFQ schedulers with effective
buffer management schemes. As mentioned before, if access to the
buffer is not regulated, it is easy for an aggressive flow to “capture”
all spaces in the buffer, thus cornering all future transmission op-
portunities to itself. As a result, we also consider the performance
of third benchmark, namely a WFQ scheduler combined with buffer
management.

Flow Peak rate Avg rate tkn bckt tkn rate
(Mbits/s) (Mbits/s) (KBytes) (Mbits/s)

0 16.0 2.0 50.0 2.0
1 16.0 2.0 50.0 2.0
2 16.0 2.0 50.0 2.0
3 40.0 8.0 100.0 8.0
4 40.0 8.0 100.0 8.0
5 40.0 8.0 100.0 8.0
6 40.0 4.0 50.0 0.4
7 40.0 4.0 50.0 0.4
8 40.0 16.0 50.0 2.0

Table 1: Traffic characteristics and reservation levels

In making comparisons between resource management schemes,
a key aspect of interest is the sensitivity to the available total buffer
size, especially when it is less than what is required to guarantee in-
dividual rates. In that context, we evaluate the performance of our
buffer management scheme as the total buffer size varies, and com-
pare it to the purely FIFO and WFQ schemes in terms of overall
throughput, ability to provide rate guarantees to conformant flows,
and ability to redistribute excess bandwidth. The aspect of efficient
and fair redistribution of excess bandwidth is further investigated
for buffer management schemes that are more aggressive in allow-
ing non-conformant flows to access free buffers. The trade-off in
this case is between higher link utilization, and the potential degra-
dation of rate guarantees for conformant flows.

3.2 Bu�er Thresholds

As indicated in Section 2.3, the buffer cost of providing rate guaran-
tees through buffer management in a FIFO queue can be substantial
when the (reserved) link utilization is high. It is, therefore, to be
expected that in some cases the total amount of buffers available
will be less than the sum of the buffer allocations required to pro-
vide strict rate guarantees to all flows. The scheme of Section 2
can be readily extended to handle this more general setting. This
is done simply by mapping buffer allocations into thresholds, that
determine when packets from a given flow should be dropped.

Specifically, flowi is assigned a threshold of size�i + �iB=R,
where�i and�i are the token bucket size and token rate specified
by the flow,B is the total number of buffers5, andR the link rate.
A packet is admitted if and only if there is room in the buffer and
the queue size of its flow is less than the flow’s threshold.

In the rest of this section, we study the performance of this
threshold based buffer management with a FIFO scheduler, by com-
paring it to the benchmarks mentioned earlier. Specifically, we sim-
ulate and evaluate various performance measures for the following
four schemes:

1. FIFO with threshold based buffer management.

2. WFQ with threshold based buffer management.

3. FIFO with no buffer management.

4. WFQ with no buffer management.

Simulation Setup: We simulate a link that is operating at 48Mb/s,
which is a little over T3 capacity, over which a number of flows with
various traffic patterns and rate guarantees are multiplexed. Each
flow behaves as a Markov-modulated ON-OFF source and speci-
fies a traffic profile (peak rate, token rate, and token bucket size).

5When the total number of buffers is larger than the sum of these thresholds, then
all thresholds are appropriately scaled up so as to fully partition the buffer.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
36

38

40

42

44

46

48

50

Th
ro

ug
hp

ut
 (M

bp
s)

Buffer Size (MBytes)

FIFO with thresholds
WFQ with thresholds
Link Speed
Mean offered load
WFQ/FIFO w/o buffer mgmt

Figure 1: Aggregate throughput with threshold based buffer man-
agement.

When the source is in the ON state, the flow continuously trans-
mits maximum size (500 bytes) packets at its peak rate. A subset of
the flows are conformant and this is achieved by having their traffic
regulated by a leaky bucket with parameters corresponding to their
traffic profile.

The traffic characteristics of each of the flows and their corre-
sponding rate guarantees (token rate) are listed in Table 1. Flows
0 through5 are conformant to their profile, i.e., their reservation
matches their traffic profile as ensured by the leaky bucket regu-
lators. Flows6 through8 are unregulated. Their token rate only
corresponds to the floor or minimum rate they are guaranteed, but
as can be seen their average rate is much higher. In addition, their
average burst size also exceeds their token bucket by a factor of
5. In the case of a WFQ scheduler, the token rate is used to de-
termine the weight used for the flow. For both WFQ and FIFO
schedulers, the thresholds used for buffer management purposes
are computed as described earlier based on both the token bucket
and the token rate. Note that these settings apply to both confor-
mant and non-conformant flows. By summing the token rate values
of Table 1, it can be seen that the aggregate reserved rate is 32.8
Mb/s, or about 68% of the link capacity. On the other hand, be-
cause non-conformant flows generate substantial traffic in excess
of their profile, the mean offered load is a little over 100% of the
output link’s capacity.

We averaged the results over 5 simulation runs and found the
95% confidence intervals for throughput measurements to be less
than 2% of the corresponding values. In the case of the packet loss
measurements most of the 95% confidence intervals were within
10% of the corresponding results.

Figure 1 presents the throughputs achieved by the four schemes
listed earlier. The total buffer size is varied from 500 KBytes to 5
MBytes. As expected, the FIFO scheduler with no buffer manage-
ment achieves 90% utilization with barely 500 KBytes of buffers,
while both WFQ and our FIFO scheme with threshold based buffer
management require more that 6 times that amount to achieve the
same utilization. When we compare the losses suffered by confor-
mant flows, which is a measure of flow isolation, across the four
scenarios, Figure 2 shows that the scheduling policies (FIFO and
WFQ) without any buffer management perform identically. This
is essentially a reflection of the fact that in both cases, aggressive
non-conformant flows are preventing the smaller conformant flows
from receiving transmission opportunities by filling up the buffers

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Lo
ss

 (p
er

ce
nt

)

Buffer Size (MBytes)

FIFO with thresholds
WFQ with thresholds
WFQ/FIFO w/o buffer mgmt

Figure 2: Loss for conformant flows with threshold based buffer
management.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

Th
ro

ug
hp

ut
 (M

bp
s)

Buffer Size (MBytes)

Mod. non−conf: FIFO with thresholds
Mod. non−conf: WFQ with thresholds
Aggr. non−conf: FIFO with thresholds
Aggr. non−conf: WFQ with thresholds
Aggr. flow offered load
Mod. flow offered load

Figure 3: Throughput for non-conformant flows with threshold
based buffer management.

whenever they burst. As these non-conformant sources are reason-
ably bursty, they result in periodic losses for the conformant traffic,
but do not succeed in utilizing the link fully.

Note that as expected, policies which include buffer manage-
ment are better at protecting flows. In addition, the threshold policy
with FIFO scheduling is worse than WFQ with a threshold policy,
in that the former requires 500 KBytes of buffer to achieve near 0
losses, while the latter merely requires 300 KBytes. This further
confirms the trade-off between scheduling and buffer costs.

Finally, Figure 3 illustrates for the above scenario how the link
bandwidth is shared by two non-conformant flows, flows6 and8,
that differ in the amount of excess traffic they generate, with flow8
generating substantially more excess traffic (see Table 1). The fig-
ure displays the expected behavior of WFQ with thresholds, where
the two flows roughly share the excess bandwidth in the ratio of
their reserved rates. rate reservations of the two flows, while none
of the other policies consistently achieves such sharing. This in-
cludes the proposed FIFO with buffer management scheme, even
when buffers are large enough to ensure rate guarantees. In the rest
of this section, we investigate modifications to the buffer manage-
ment scheme that aim at improving fairness in the sharing of excess

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
36

38

40

42

44

46

48

50

Th
ro

ug
hp

ut
 (M

bp
s)

Buffer Size (MBytes)

FIFO with sharing
WFQ with sharing
Link Speed
Mean offered load
WFQ/FIFO w/o buffer mgmt

Figure 4: Aggregate throughput with Buffer Sharing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Lo
ss

 (p
er

ce
nt

)

Buffer Size (MBytes)

FIFO with sharing
WFQ with sharing
WFQ/FIFO w/o buffer mgmt

Figure 5: Loss for conformant flows in Buffer Sharing.

bandwidth, without affecting significantly the ability to provide rate
guarantees.

3.3 Bu�er Sharing

We now seek to improve the threshold based buffer management
scheme so as to increase link utilization, and promote sharing of
excess bandwidth. For that purpose, we define a buffer sharing
scheme with thresholds, where the amount of buffers that need to
be reserved for each flow is calculated identically as in the Fixed
Partition case. The main difference with the Fixed Partition scheme
is that we now allow active flows to access unused buffer space.
In order to achieve fairness, we want the unused buffer space to
be equally distributed among contending flows. However, in order
to avoid any substantial impact to rate guarantees, we also reserve
a certainheadroomfor flows that are below their threshold (and
hence entitled to more buffer room). As a result, the buffers avail-
able for sharing are unused buffers from which the headroom has
been subtracted. We denote those buffers asholes.

Access to buffers is controlled as follows. Whenever a packet
arrives, we determine if the flow is below its threshold. If it is, we
first attempt to use buffer space from the holes to accommodate the
packet. If the space from the holes is insufficient, then buffer space

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18
Th

ro
ug

hp
ut

 (M
bp

s)

Buffer Size (MBytes)

Mod. non−conf: FIFO with sharing
Mod. non−conf: WFQ with sharing
Aggr. non−conf: FIFO with sharing
Aggr. non−conf: WFQ with sharing
Aggr. flow offered load
Mod. flow offered load

Figure 6: Throughput for non-conformant flows with Buffer Shar-
ing.

from the reserved headroom is used. If the available space is still
insufficient, the packet is dropped. On the other hand, if the packet
belongs to a flow which is above its threshold, the packet will be ac-
commodated only if there is sufficient buffer space from the holes.
Furthermore, in order to enforce some fairness in how holes are to
be shared among flows, a packet is accepted only if the amount of
buffer space occupied by the flow minus its reserved share, is less
than the amount of remaining space in the holes. In other words, the
amount of additional buffer space that a flow can grab, cannot ex-
ceed the amount of holes that are left. This sharing model is similar
to the Dynamic Threshold scheme of [1]. The differences with the
Dynamic Threshold scheme are the flow specific packet acceptance
rules when a flow is below its threshold, and the use of a headroom
to limit the amount of buffer space that can be shared.

When a packet departs, the holes and headroom counters are
updated as follows:

headroom += packetlength;
holes += MAX(headroom - H, 0);
headroom = MIN(headroom, H);

This ensures that the amount of buffer space freed up by the packet
departure is used preferentially to increment the headroom to a
maximum ofH, and only when this maximum value is reached
is it applied to increasing the holes.

Simulation: We use a setting similar to the one previously de-
scribed and compare FIFO scheduling coupled with the above buffer
sharing scheme to WFQ with the same buffer sharing scheme. The
goal is to investigate any improvement in sharing of excess band-
width for the FIFO based scheme. Alternatively, we also want to
assess the sensitivity of the scheme to the valueH chosen for the
headroom, and in particular how if affects the ability to provide rate
guarantees to conformant flows.

In our simulation setup, we first choose a headroom ofH = 2
MBytes. While studying link utilization, we recall our earlier base-
lines of FIFO/WFQ without any buffer management. As can be
seen from comparing the throughput tradeoff in Figure 4 with Fig-
ure 1, we are quite successful in improving link utilization with
the buffer sharing scheme. From Figure 5, it is apparent that this
increase in throughput does not lead to worse protection for confor-
mant flows. In Figure 6, we see that FIFO scheduling with buffer
sharing based on thresholds successfully mimics WFQ in being able
to distribute excess bandwidth in proportion to the reserved rate of
the flow. The headroom provides a measure of protection for con-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Lo
ss

 (p
er

ce
nt

) x
 1

0−3

HeadRoom (MBytes)

FIFO with sharing

Figure 7: Effect of varying the headroom in terms of loss for con-
formant flows.

formant flows, in that it acts as a reserved space for incoming flows
that are within their thresholds. Increasing the headroom has the
benefit of protecting conformant flows, while reducing the shared
buffer space available for non-conformant flows. Figure 7 quanti-
fies the protection offered to conformant flows as we vary the size
of the headroom. In this instance, the size of the buffer is fixed at 1
MByte.

4 Extensions and Design Options

In this section, we discuss a possible extension to the schemes de-
scribed in the previous sections. Specifically, at one extreme, we
considered the use of a simple FIFO queue, with flow isolation and
fairness provided solely through the use of buffer management. At
the other end, we have considered an involved scheduling mech-
anism such as WFQ coupled with buffer management, to achieve
the same objectives. Each of these solutions suffers from particular
disadvantages. With the former, the penalty is paid in terms of in-
creased buffer requirement while the main drawbacks of the latter
involve issues of scalability and simplicity of implementation. A
natural direction is then to explore what happens when the single
FIFO queue is replaced by multiple FIFO queues, with a sched-
uler providing each queue its own rate guarantee. In each queue,
the buffer management technique of the paper could then be used
to further provide rate guarantees to individual flows. By keeping
the number of such queues fixed and reasonably small, the over-
all architecture still remains scalable in terms of the total number
of flows. We call such an architecturehybrid, and investigate its
potential benefits.

There are some interesting questions and design parameters that
arise in this architecture. For example, how many queues should we
use to group the flows, how to assign flows to each queue, and how
to determine the aggregate service rate to assign to each queue. In
particular, the relation between increasing the number of queues
and a potential decrease in the total buffer size required to provide
a set of flows with rate guarantees, is not immediately apparent.
Similarly, for a fixed number of queues, there may be a grouping of
flows which results in the lowest possible total buffer requirement,
and the identification of such a grouping and even its existence are
again not simple issues. Clearly, such aspects need to be balanced
with practical considerations that may prevent us from always en-
forcing an optimal flow grouping, i.e., as flows come and go, reas-

signing flows to different queues may not feasible. Nevertheless,
gaining some basic understanding into these issues is of value as it
may be enable us to devise practical schemes.

4.1 Rate allocations in a Hybrid System

In this sub-section, we provide some partial answers to the above
questions. In particular, for a given number of queues and grouping
of flows in each queue, we identify rate allocations to each queue
that result in significant reduction in the possible total buffer re-
quirement. While this does not necessarily result in an optimal
grouping and rate allocation, it provides some insight into the kind
of grouping that can lower the overall buffer size.

It is useful to introduce some additional notation here:

� R is the link rate as before.

� � and� denote the sum of rates and bursts of all flows.

� k is the number of FIFO queues in which flows are classified.

� Ri denotes the rate at which theith FIFO queue is served by
a WFQ-like scheduler.

� �̂i is the sum of the rate requirements of all flows inith queue.

� �̂i is the sum of the burst requirements of all flows in theith
queue.

� Bi denotes the minimum amount of buffer space required for
theith queue. Assuming that more than one flow6 is grouped
into queuei, from equation (9) we have,

Bi =
Ri�̂i
Ri � �̂i

: (11)

� Bhybrid andBFIFO denote the buffer requirements for the
hybrid system usingk FIFO queues and the earlier single
FIFO queue, respectively.

Bhybrid =

kX
i=1

Ri�̂i
Ri � �̂i

(12)

and

BFIFO =
R�

R� �
: (13)

Clearly, any rate assignment to thek queues should satisfy:

kX
i=1

Ri = R andRi � �̂i:

Thus, we may assign rates to individual queues asRi = �̂i +

�i(R��), where0 < �i � 1 and
Pk

i=1
�i = 1. This assigns each

queue the minimum requested rate plus a fraction of the excess link
capacity. Note that we assume here that the assignment of flows to
queues is given, i.e., we are not attempting a joint optimization, and
are simply trying to find the best rate assignment given an arbitrary
partitioning of flows.

One plausible way to assign the excess available capacity may
be to assign it in proportion to the total rate requirement of individ-
ual queues, i.e.,�i = �̂i=�. However, it is easy to see that such
an assignment does not reduce the overall buffer requirement, i.e.,
Bhybrid = BFIFO. The allocation of excess available capacity

6For a single flow the buffer requirement is simply the burst size of the flow

must somehow take both the rate and burst requirements of differ-
ent queues into account. Ideally, we would like to choose�i’s so
thatBhybrid in equation (12) is minimized. The following proposi-
tion states how this can be achieved.

Proposition 3 In a hybrid system withk queues, the total buffer
size required to provide rate guarantees to individual flows is mini-
mized if link rateR is partitioned among queues asRi = �̂i +�i �
(R� �) where�i is chosen as

�i =

p
�̂i�̂iPk

i=1

p
�̂i�̂i

: (14)

Proof: Substituting forRi in equation (12), the expression for the
buffer requirement of the hybrid system is as follows

Bhybrid =

kX
i=1

�̂i�̂i + �̂i�i � (R � �)

�i � (R� �)

= � +
1

(R� �)
�

kX
i=1

�̂i�̂i
�i

:

Let f(�1; �2; : : : ; �k) be defined as

f(�1; �2; : : : ; �k) =

kX
i=1

�̂i�̂i
�i

: (15)

It can be verified thatBhybrid is minimized by minimizing the func-
tion f(�), which attains its minimum at(�1; : : : ; �k) defined by
equation (14), by ascertaining that for arbitraryf�ig1�i�k, such
that�i+ �i > 0 and

Pk

i=1
�i = 0, the differencef(�1+ �1; �2+

�2; : : : ; �k + �k)� f(�1; �2; : : : ; �k) is non-negative.

The following claim states by how much this specific rate as-
signment can reduce the overall buffer requirement of the hybrid
system with respect to the single queue FIFO scheduling approach.

Claim: If in the hybrid scheme, rates to queues are assigned as

Ri = �̂i +

p
�̂i�̂i
S

� (R� �); (16)

whereS =
Pk

i=1

p
�̂i�̂i, then the difference in buffer requirement

between a single FIFO queue and the hybrid system withk queues
is

BFIFO �Bhybrid =

Pk

i;j=1
(
p
�̂i�̂j �

p
�̂j �̂i)

2

(R� �)
: (17)

For the rate assignment of equation (16), an individual queue’s
buffer requirement is given by equation (11) which can be rewritten
as

Bi = �̂i +
S
p
�̂i�̂i

R� �
: (18)

By summing over all queues, we get the total buffer requirement as

Bhybrid = � +
S2

R� �
: (19)

From equations (19) and (13) we obtain

BFIFO �Bhybrid =
R�

R� �
� � � S2

R � �

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
36

38

40

42

44

46

48

50
Th

ro
ug

hp
ut

 (M
bp

s)

Buffer Size (MBytes)

Hybrid
WFQ with sharing
Link Speed
Mean offered load
WFQ/FIFO w/o buffer mgmt

Figure 8: Hybrid System, Case 1: Aggregate throughput with
Buffer Sharing.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Lo
ss

 (p
er

ce
nt

)

Buffer Size (MBytes)

Hybrid
WFQ with sharing
WFQ/FIFO w/o buffer mgmt

Figure 9: Hybrid System, Case 1: Loss for conformant flows with
Buffer Sharing.

=
��� S2

R� �

=
(
Pk

i=1
�̂i)(
Pk

i=1
�̂i)� (

Pk

i=1

p
�̂i�̂i)

2

(R� �)

=

Pk

i;j=1
(
p
�̂i�̂j �

p
�̂j �̂i)

2

(R� �)
:

Since the numerator in the above expression is a sum of non-
negative terms, the differenceBFIFO�Bhybrid is also non-negative.
This result indicates that with proper rate assignment, one can po-
tentially reduce the overall buffer requirement by splitting a set of
flows served by one FIFO queue into more FIFO queues. In the ex-
treme, we have one flow per queue, and the hybrid system reduces
to a pure WFQ system. The choice of a given number of queues
is primarily dictated by the implementation complexity that can be
tolerated for the scheduler, i.e., the size of the sorted list that needs
to be updated after each packet transmission. Once the number of
queues has been fixed, the result also suggests that grouping flows
such that one queue has significantly lower rate and burst require-
ments compared to another is beneficial. While it is clearly not

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

Th
ro

ug
hp

ut
 (M

bp
s)

Buffer Size (MBytes)

Mod. non−conf: Hybrid
Mod. non−conf: WFQ with sharing
Aggr. non−conf: Hybrid
Aggr. non−conf: WFQ with sharing
Aggr. flow offered load
Mod. flow offered load

Figure 10: Hybrid System, Case 1: Throughput for non-conformant
flows with Buffer Sharing.

practical to continuously shuffle flows between queues to maintain
this property, it suggests a potentially useful broad classification of
flows. For example, low bandwidth and burstiness IP telephony
flows could be assigned to one queue, while higher bandwidth and
burstiness video on demand streams would be mapped onto another
queue.

4.2 Hybrid Systems: Performance Tradeo�s

To conclude this section, we consider two examples of hybrid sys-
tems and compare their behavior. For both examples, we again as-
sume the 48 Mbits/sec link speed of the previous section.

Case 1: 9 Flows
In this scenario, we consider the performance of the hybrid sys-

tem for the same simulation example with 9 flows considered in the
previous section. In this case, we group the flows into 3 queues.
The 3 small conformant flows 0, 1 and 2 are grouped into queue
1, the next 3 large conformant flows 3, 4 and 5 into queue 2, and
the three non-conformant flows 6, 7 and 8 into queue 3. Having
grouped flows in this manner, we compute the weighting factors
�i as given by equation (14). These determine how excess band-
width is to be allocated to queuei, and its minimum buffer re-
quirementBmin

i based on equation (18). Given a buffer of size
B, we then partition the buffer amongst the queues in proportion to
their minimum buffer requirement, i.e., queuei gets a buffer of size

Bi = B
Bmin
iP

3

i=1
Bmin
i

. An individual flow j within queuei is then

allocated a threshold of�j +
�j
�̂i
�Bi, where as beforê�i is the rate

allocated to queuei.

Figures 8, 9, and 10 illustrate the performance tradeoffs of us-
ing the hybrid system. It is clear from these simulations that the
performance of the 3-queue hybrid system is very close to that of
WFQ with buffer sharing which maintains separate queues for each
flow. However, this is not entirely unexpected, since we only have
3 flows in each queue.

Case 2: 30 Flows
In order to explore a more realistic example, we consider next

a hybrid system with30 flows grouped in three queues as shown in
Table 2.

In this system, the first 10 flows (0–9) areconformantto their
requested token rates and token bucket sizes. The next 10 aremod-

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
43

44

45

46

47

48

49

50

51

52

53
Th

ro
ug

hp
ut

 (M
bp

s)

Buffer Size (MBytes)

Hybrid
WFQ with sharing
Link Speed
Mean offered load

Figure 11: Hybrid System, Case 2: Aggregate throughput with
Buffer Sharing.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10

Lo
ss

 (p
er

ce
nt

)

Buffer Size (MBytes)

Conf: Hybrid
Conf: WFQ with sharing
Mod. non−conf: Hybrid
Mod. non−conf: WFQ with sharing

Figure 12: Hybrid System, Case 2: Loss for conformant and mod-
erately conformant flows with Buffer Sharing.

erately non-conformant, in that their mean rate and average burst
size conform to their specified token parameters. However, they
are Markov modulated ON-OFF sources with which are not re-
shaped by a token bucket, and their traffic can, therefore, temporar-
ily exceed their traffic profile. The last 10 flows are aggressive,
in the sense that their actual arrival rates are over 8 times their re-
quested reservation rates, and in addition their average burst size is
500KBytes which is way in excess of their token bucket.

The results are shown in Figures 11, 12, and 13. It is clear
from these simulations that the performance of the hybrid system
remains close to that of WFQ with buffer sharing, even for this
larger number of flows.

5 Conclusion and Future Work

In this paper, we have established how rate guarantees can be pro-
vided by simply using buffer management. Exact expressions were
provided that associate rate guarantees with buffer allocation in a
simple FIFO queue. The efficiency of the scheme was investigated
in terms of both the buffer size required to provide rate guarantees,
and the ability of the scheme to enforce guarantees while allowing

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1.8

1.9

2

2.1

2.2

2.3

2.4

Th
ro

ug
hp

ut
 (M

bp
s)

Buffer Size (MBytes)

Mod. non−conf: Hybrid
Mod. non−conf: WFQ with sharing
Aggr. non−conf: Hybrid
Aggr. non−conf: WFQ with sharing

Figure 13: Hybrid System, Case 2: Throughput for non-conformant
flows with Buffer Sharing.

Flow Peak rate Avg rate tkn bckt tkn rate
(Mbits/s) (Mbits/s) (KBytes) (Mbits/s)

0-9 8.0 0.6 15.0 0.6
10-19 24.0 2.4 30.0 2.4
20-29 8.0 2.4 35.0 0.3

Table 2: Case 2: Traffic characteristics and reservation levels

efficient sharing of idle resources. The performance of the scheme
was compared to that of a scheduler based scheme, i.e., WFQ, and
the associated trade-offs were identified. A hybrid scheme where
the FIFO queue is replaced by a small number of queues served by
a WFQ scheduler was also investigated, and some potential benefits
of grouping flows into separate queues were identified.

This combination of buffer management and limited schedul-
ing, appears capable of a broad range of trade-offs between effi-
ciency and complexity. However, understanding and defining the
best possible combinations is an area that requires additional work.
Another aspect of interest is the ability to provide different band-
width sharing models through simple modifications to the buffer
management scheme. Specifically, buffer management can provide
a single mechanism to both enforce rate guarantees and control
sharing of idle bandwidth. In contrast, most scheduling mecha-
nisms, e.g., WFQ, usually imply a specific sharing model which
cannot be easily adjusted without affecting the scheduling mecha-
nism itself.

For example, in Section 3, it was shown how going from com-
plete buffer partitioning to an approach with greater flexibility in
sharing free buffers, resulted in different allocation of excess band-
width across flows. Specifically, when full partitioning was used,
excess bandwidth was redistributed in proportion to each flow’s
reserved rate, while active flows received, in addition to their re-
served rate, an equal share of the excess bandwidth when buffer
sharing was allowed. This represents only one example from a
wide range of options available for controlling bandwidth sharing
through buffer management. For example, one could also envision
allowing adaptive flows to share buffers with reserved flows, while
non-adaptive ones would be prevented from doing so. This would
provide adaptive flows with greater access to available bandwidth
without impacting reservations, and without entirely shutting off
non-adaptive flows from accessing idle resources. However, under-
standing fully how variations in buffer sharing translate into band-

width sharing requires more work.

References

[1] A. K. Choudhury and E. L. Hahne. Dynamic queue length
thresholds in a shared memory ATM switch. InProceedings of
INFOCOM, pages 679–687, San Francisco, CA, April 1996.

[2] I. Cidon, R. Guérin, and A. Khamisy. Protective buffer man-
agement policies.IEEE/ACM Trans. Networking, 2(3):240–
246, June 1994.

[3] S. Floyd and V. Jacobson. Random early detection gateways
for congestion avoidance.IEEE/ACM Trans. Networking,
1(4):397–413, August 1993.

[4] L. Georgiadis, R. Gu´erin, V. Peris, and K. N. Sivarajan. Ef-
ficient network QoS provisioning based on per node traffic
shaping. IEEE/ACM Trans. Networking, 4(4):482–501, Au-
gust 1996.

[5] D. Lin and R. Morris. Dynamics of random early detection. In
Proceedings of SIGCOMM, pages 127–137, Sophia Antipolis,
France, September 1997.

[6] A. K. J. Parekh.A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks. PhD the-
sis, Laboratory for Information and Decision Systems, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139,
February 1992. No. LIDS-TH-2089.

[7] A. Romanow and S. Floyd. Dynamics of TCP traffic over
ATM networks.IEEE J. Sel. Areas Commun., 13(4):633–641,
May 1995.

[8] S. Suri, G. Varghese, and G. Chandranmenon. Leap forward
virtual clock: A new fair queueing scheme with guaranteed
dealy and throughput fairness. InProceedings of INFOCOM,
pages 558–566, Kobe, Japan, April 1997.

[9] J. Turner. Maintaining high throughput during overload in
ATM switches. InProceedings of INFOCOM, pages 287–
295, San Francisco, CA, April 1996.

[10] D. Wrege and J. Liebeherr. A near-optimal packet scheduler
for QoS networks. InProceedings of INFOCOM, pages 577–
585, Kobe, Japan, April 1997.

