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Abstract

In apparent contrast to the well-documented self-similar (i.e.,
monofractal) scaling behavior of measured LAN tra�c, re-
cent studies have suggested that measured TCP/IP and
ATM WAN tra�c exhibits more complex scaling behavior,
consistent with multifractals. To bring multifractals into
the realm of networking, this paper provides a simple con-
struction based on cascades (also known as multiplicative
processes) that is motivated by the protocol hierarchy of IP
data networks. The cascade framework allows for a plausi-
ble physical explanation of the observed multifractal scaling
behavior of data tra�c and suggests that the underlying
multiplicative structure is a tra�c invariant for WAN tra�c
that co-exists with self-similarity. In particular, cascades al-
low us to re�ne the previously observed self-similar nature of
data tra�c to account for local irregularities in WAN tra�c
that are typically associated with networking mechanisms
operating on small time scales, such as TCP 
ow control.

To validate our approach, we show that recent measure-
ments of Internet WAN tra�c from both an ISP and a cor-
porate environment are consistent with the proposed cas-
cade paradigm and hence with multifractality. We rely on
wavelet-based time-scale analysis techniques to visualize and
to infer the scaling behavior of the traces, both globally and
locally. We also discuss and illustrate with some examples
how this cascade-based approach to describing data network
tra�c suggests novel ways for dealing with networking prob-
lems and helps in building intuition and physical under-
standing about the possible implications of multifractality
on issues related to network performance analysis.

1 Introduction

The empirically observed self-similar or fractal nature of
aggregate network tra�c [17, 25] is caused by the high-
variability of the individual connections that make up the
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aggregate tra�c; in the LAN context, see [31]; for WANs,
see [25, 5, 16, 9, 30]. More precisely, aggregate packet-level
network tra�c is (asymptotically) self-similar, i.e., exhibits
fractal-like scaling behavior over time scales on the order
of a few hundreds of milliseconds and larger, if and only if
the durations (in seconds) or sizes (in bytes) of the individ-
ual sessions or connections that generate the aggregate traf-
�c have a heavy-tailed distribution with in�nite variance,
i.e., range from extremely short (small) to extremely long
(large). This ability to explain self-similarity of aggregate
tra�c streams has de-mysti�ed fractal tra�c modeling and
has opened up new opportunities for queueing and perfor-
mance analysis; in particular, it has provided new insights
into how self-similarity (through the underlying heavy-tailed
connections) can impact network performance, both quali-
tatively and quantitatively. It has also led to the realiza-
tion that the self-similarity property of the aggregate tra�c
does not seem to depend on the connections' local tra�c
characteristics, i.e., on how the individual packets within a
connection are sent over the network.

Yet, because of the predominant protocols and end-to-
end congestion control mechanisms that exist in today's In-
ternet and that determine the 
ow of packets at the di�er-
ent layers in the TCP/IP protocol hierarchy, networking re-
searchers have argued that to provide a complete description
of network tra�c, these local tra�c characteristics should
not be ignored and have asked the question \Where does
the impact of the network show up?" In this paper, we use
a number of di�erent high time-resolution packet-level traf-
�c traces collected from both a corporate and Internet Ser-
vice Provider (ISP) WAN environment to demonstrate that
(i) the impact of the network on the tra�c shows up when
studying network tra�c over small time scales, from a few
hundreds of milliseconds and downward; (ii) the empirically
observed local tra�c characteristics are consistent with mul-
tifractal scaling; (iii) there is a plausible physical \explana-
tion" for the multifractal nature of measured Internet WAN
tra�c over small time scales; and (iv) the multifractal �nd-
ing suggests a class of parsimonious models that provide a
more complete and accurate description of actual data traf-
�c than is available to date and hence allows for a systematic
investigation of a wide range of queuing/networking-related
performance issues.

While multifractals are new to the networking area, they
have been applied in the past to such diverse �elds as the sta-
tistical theory of turbulence, the study of strange attractors
of certain dynamical systems, and more recently, to physi-
cally based rain and cloud modeling; see for example [8, 14]
and references therein. In the present context, multifractals



extend and re�ne in a natural way the previously observed
fractal or self-similar behavior in measured network tra�c.
Indeed, while self-similarity or, more generally, monofractal
scaling, is characterized by a single scaling law that holds
globally in time and essentially involves only one parameter,
the Hurst parameter, multifractals allow for time-dependent
scaling laws and hence o�er great 
exibility in describing ir-
regular phenomena that are localized in time. The latter
are typically caused by network-speci�c mechanisms that
operate on small time scales and|depending on the state of
the network|can have a more or less severe impact on the
packet dynamics within individual connections.

From a networking perspective, the special appeal of
multifractals lies in their close connection to certain mul-
tiplicative processes or cascade models. Motivated by the
explicit hierarchical structure of modern data networks, it
is plausible to view WANs or other networks, together with
their protocols and controls, as specifying the mechanisms
and rules of a process that fragments units of information
at one layer in the networking hierarchy into smaller units
at the next layer, etc. Such a fragmentation mechanism
is called a cascade; it preserves the mass of the initial set
at each stage of the construction, the rules for fragmenta-
tion make up what is commonly referred to as the generator
of the cascade, and the limiting object or multiplicatively
generated multifractal is a mathematical construct that de-
scribes the highly irregular way the connection's total mass
(i.e., number of bytes or packets) has been redistributed
during this fragmentation procedure over the lifetime of the
connection. To validate this hypothesis of networks acting
as cascades, we develop and use a set of wavelet-based anal-
ysis and inference tools that are tailor-made for the multi-
plicatively generated class of multifractals considered in this
paper. We provide empirical evidence that measured WAN
tra�c conforms to the proposed cascade model, is consistent
with the intricate local irregularities exhibited by the corre-
sponding multiplicatively generated multifractal, and can-
not be completely described by self-similar (i.e., monofrac-
tal) or other strictly second-order tra�c processes.

Here, by a strictly second-order process, we mean a com-
plete description of tra�c in terms of its �rst- and second-
order statistical characteristics, i.e., its marginal distribu-
tion and autocorrelation function (or equivalently, its spec-
tral density). E.g., a Gaussian marginal distribution and an
autocorrelation function of the form r(k) = 2�1(jk + 1j2H

�2jkj2H + jk � 1j2H); k � 1; 0 < H < 1 completely de-
scribes the self-similar processes known as fractional Gaus-
sian noises; similarly, a Poisson process is fully character-
ized by requiring the marginal distribution to be Poisson and
the autocorrelation function to be identically zero. On the
other hand, using exclusively �rst- and second-order statis-
tical characteristics to specify an asymptotically self-similar
process with non-Gaussian marginals results only in an in-
complete description of the process|higher-order statistical
properties (e.g., expressions of the form E[XkXlXm]; k 6=
l 6= m) have to be speci�ed to provide a complete sta-
tistical description of the process. In fact, we will show
that the presence of non-trivial higher-order statistics in a
tra�c process is closely related to a non-degenerate mul-
tifractal scaling behavior. In this sense, multifractals o�er
great promise for providing a su�ciently complete descrip-
tion of network tra�c in cases when a speci�cation in terms
of purely second-order statistics is inadequate and may lead
to erroneous or misleading conclusions about expected im-
plications for network performance.

Empirical evidence in support of within-connection or

local tra�c characteristics in measured WAN traces that
can be traced to the protocol architecture of IP networks
has been reported in the original comprehensive analysis of
WAN tra�c by Paxson and Floyd [25], and more recently,
in work by Feldmann et al. [9]. The work by Paxson and
Floyd [25] is closest in spirit to our present study and con-
cerns some aspects of the local tra�c structure of individual
connections (e.g., telnet and ftp). Technically, our paper
is related to the works by Abry and Veitch [1] and Feld-
mann et al. [9] in the sense that we also rely crucially on
wavelet-based techniques. However, we pursue the wavelet-
based analysis of network tra�c one step further and de-
velop and illustrate tools that can be used for statistical
inference problems related to cascade models and their lim-
iting multifractals. Finally, our work is closely related to
that of Riedi and Levy-Vehel (e.g., see [26, 18] for TCP/IP
traces; for ATM WAN traces, see Mannersalo and Norros
[19]), who originally advocated the use of multifractals for
network tra�c modeling; though, for an earlier discussion,
see also [28]. In contrast to Riedi and Levy-Vehel's work,
this paper attempts to present, motivate and explain multi-
fractals in the networking context and qualitatively discusses
the relevance and impact of multifractal scaling in measured
data tra�c on network performance-related problems.

The remaining part of the paper is structured as follows.
In Section 2, we use measured WAN traces to motivate the
use of multifractals as plausible models for WAN tra�c; we
introduce wavelets as our main mathematical technique, dis-
cuss the notions of global vs. local scaling, and give an in-
tuitive de�nition of monofractals and multifractals. Section
3 provides the mathematical framework for our proposed
cascade-based approach to modeling the multifractal nature
of WAN tra�c and presents the main results of the corre-
sponding wavelet-based analysis. In Section 4 we present
empirical evidence in favor of our assumption that IP net-
works act as cascades and we discuss a workload model for
data tra�c that captures both the multifractal (i.e., small
time scaling properties) as well as the asymptotically self-
similar (i.e., large time scaling properties) nature of mea-
sured WAN tra�c. We conclude in Section 5 by illustrating
with some examples the potential impact and relevance of
our �ndings for network performance analysis and tra�c
management.
Short description of data sets: Throughout this paper
we use the following high-quality data sets (i.e., packet drops
reported by tcpdump were negligible and other causes for
drops have been identi�ed to be negligible as well; high time
stamp accuracy of about 10-100 �sec). The trace dial1 was
gathered from an FDDI ring (with typical utilization levels
of 5-10%) that connects about 420 modems to the rest of
the Internet. Although we collect every packet seen on the
FDDI ring, dial1 contains (bidirectional) modem user traf-
�c only. It was collected on July 23, 1997 between 19:02
and 23:43 and consists of a total of 12,870,502 packets and
4.212 Gbytes. A 1-hour segment of this trace (from 22:00
to 23:00), referred to as dial2, contains 2,752,779 packets
(a total of 8,719,659 packets were seen on the FDDI ring
during this period). The trace dial3 was collected in the
same location as dial1, on July 22, 1997 between 22:00
and 23:00, and contains modem user as well as non-modem
user tra�c totaling 8,910,014 packets. A second dataset
was gathered o� a T3 backbone link of the same ISP; the
trace backb was collected on December 7, 1997 between
21:27 and 21:49 and consists of a total of 9,919,939 packets
and 2.617 Gbytes. Finally, a third, non-ISP related dataset,
consisting of 3,903,350 packets and 1.131 Gbytes, was col-



lected o� an Ethernet connecting AT&T Labs-Research at
Florham Park, NJ to the Internet via a fractional T3 con-
nection (3Mbps). The trace attlab1 was collected on Oc-
tober 19, 1997, between 12:15 and 20:05; the 1-hour segment
(16:00 to 17:00) is referred to as attlab2, and the 17:00-
18:00 hour segment by attlab3.

2 Wavelets and the nature of WAN tra�c

In this section we introduce wavelets as our main mathemat-
ical technique for detecting and identifying global and local
scaling of measured network tra�c. We explain the notions
of monofractal and multifractal on an intuitive level, and
relate them to the concept of self-similarity.

2.1 The discrete wavelet transform

The ability of wavelets to \localize" a signal in both time
and scale makes them an attractive mathematical tool for
many applications in the physical and engineering sciences;
see [15] for an introduction to wavelets, and [6] for a more
mathematical treatment of the subject. Wavelets provide
the mathematical framework in a multiresolution analysis
(MRA) that formalizes the notion of coarse and �ne approx-
imations and gives meaning to the increment in information
needed to pass from one level of approximation to another.
The key feature of an MRA is that we can write an approx-
imation, Xj, of a signal X, at scale j (with resolution 2j) as
the sum of a coarser approximation Xj+1 at scale j+1 (with
resolution 2j+1) and the \detail" Dj+1 = Xj � Xj+1; i.e.,
the di�erence between these two approximations. We may
iterate this procedure, writing the approximation at scale
j +1, Xj+1, as a sum of a coarser approximation Xj+2 and
the di�erence Dj+2 = Xj+1�Dj+2, and so on: Xj = Xj+1+
Dj+1 = Xj+2 +Dj+2 +Dj+1 : : :.

More formally, an MRA guarantees the existence of a
scaling function � (which is used to express the approxima-
tion) and a wavelet  (which is essential for the de�nition
of the details) such that a signal X can be written as

X =
X
k2Z

hX;�0;ki�0;k +
X
j�0

X
k2Z

hX; j;ki j;k (1)

=
X
j2Z

X
k2Z

hX; j;ki j;k;

where �j;k(t) = 2�j=2�(2�jt�k) and  j;k(t) = 2�j=2 (2�jt�
k) are the shifted and dilated versions of the scaling function
and the wavelet, respectively. For example, the wavelet  
given by  (t) = 1 if t 2 [0; 1=2),  (t) = �1 if t 2 [1=2; 1)
and  (t) = 0 otherwise, is known as the Haar wavelet, and
the corresponding scaling function � is given by �(t) = 1
if t 2 [0; 1) and 0 otherwise. The representation (1) is
called the wavelet decomposition of the signal X, and dj;k =
hX; j;ki, the inner product of X with  j;k is commonly
referred to as the wavelet coe�cient at scale j and time
2jk. The quantity jdj;kj

2 measures the amount of energy
in the signal X about the time t0 = 2jk and about the
frequency 2�j�0, where �0 is a reference frequency which
depends on the wavelet  . The set of all wavelet coe�cients
fdj;k : j 2 Z; k 2 Zg is called the discrete wavelet transform
(DWT) of the signal X and its key feature is that it con-
tains the same information as the signal X; i.e., it allows us
to reconstruct X completely from its wavelet coe�cients by
setting X(t) =

P
j2Z

P
k2Z

dj;k j;k(t).

Intuitively, the discrete wavelet transform divides a sig-
nal into di�erent frequency components and analyzes each
component with a resolution matched to its scale. Letting
k(t0; j) specify those wavelet coe�cients at scale j that are
in
uenced by the value of the signal X at time t0; i.e.,
dj;k(t0;j) is in the \cone of in
uence associated with the point
t0," we can use the wavelet coe�cients to study directly ei-
ther scale- or time-dependent properties of a given signal
X. For example, by �xing a given scale j and studying X
at that scale across time, we can obtain information about
the scaling behavior of X, as a function of j. On the other
hand, �xing a point t0 in time and investigating the wavelet
coe�cients fdj;k(t0;j) : j � 0g across �ner and �ner scales
results in powerful techniques for investigating the nature of
local irregularities or singularities in the signal, as a function
of t0. While the former method results in scaling properties
that hold globally (across the whole signal), the latter tech-
nique captures the idea behind the notion of \the wavelet
transform as a mathematical microscope" (e.g., see Arneodo
[2]), provides (local) information about the �ne structure of
the signal at a given point in time, and thus opens up new
ways for studying the intrinsic nature of \bursts" in mea-
sured network tra�c.

2.2 DWT and scale-localization: Self-similarity

We �rst illustrate that wavelets with their built-in scale-
localization ability provide an ideal mathematical tool for
investigating the scaling behavior of self-similar processes
across all (a wide range of) time scales.1 Abry and Veitch [1]
have shown that if X is a self-similar process with Hurst
parameter H 2 (1=2; 1), then the expectation of the energy
Ej that lies within a given bandwidth 2�j around frequency
2�j�0 is given by

E[Ej ] = E

�
1

Nj

X
k

jdj;kj
2

�
= cj2�j�0j

1�2H (2)

where c is a prefactor that does not depend on j, and where
Nj denotes the number of wavelet coe�cients at scale j. By
plotting log2 Ej against scale j (where j = 1 is the �nest
scale and j = N > 1 is the coarsest) and identifying scal-
ing regions, breakpoints and non-scaling behavior, we have
an unbiased scaling analysis of a given signal X that is sim-
ple, computationally e�cient and informative. For example,
the scaling analysis of a signal which is exactly self-similar
will yield a linear plot of log2 Ej vs. j for all scales; for a
fractional Gaussian noise trace with H = 0:7 and for a Pois-
son trace (i.e., H = 0:5), the corresponding scaling plots
are shown in Figure 1 (left). On the other hand, for an
asymptotically self-similar signal a linear relationship be-
tween log2 Ej and scale j will be apparent only for large
times or scales.

Figure 1 shows the scaling analysis for �ve di�erent traf-
�c traces: August'89 Bellcore Ethernet LAN trace (left),
an 1994 LBL WAN trace (left), the WAN trace attlab2

(right), and WAN traces dial3 and backb (middle). The
LAN trace shows an approximate linear relationship for a
wide range of scales, with an estimated Hurst parameter of
about 0:8 (consistent with previously reported estimates,
e.g., [17, 1]), but with some deviations from linearity at
the very small scales. All the WAN traces show a scal-
ing behavior that is, in general, more complex than that
of the LAN trace: well-de�ned large-time scaling regions

1For the global scaling analysis presented in this subsection, we
use the Daubechies wavelets [6].
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Figure 1: Global scaling analysis of packet-level LAN and WAN and test traces: exactly self-similar trace with H = 0:7,
Poisson trace, i.e., H = 0:5, Bellcore'89 LAN, and LBL'94 WAN (left); dial3 (middle) and backb (middle); and attlab2

(right). Note the di�erent labeling at the bottom and the top of the plots: scale j (bottom, j = 1 is �nest scale); actual time
(top, in seconds). The vertical bars at each scale represent 95% con�dence intervals for log2(Ej).

where the relationship is roughly linear|con�rming the pre-
viously reported asymptotically self-similar nature of WAN
tra�c (e.g., see [25] for the 1994 LBL WAN trace); apparent
breakpoints at scales on the order of a few hundreds of mil-
liseconds; and complex small-time scaling behavior that is
distinctly di�erent from the large-time scaling features. For
a more comprehensive study of the global scaling properties
of measured WAN tra�c, see [9].

2.3 From self-similarity to multifractals

Figure 1 gives a concise picture of our current understanding
of WAN tra�c dynamics: measured WAN tra�c is consis-
tent with asymptotic self-similarity or large time scaling and
exhibits small time scaling features that are very di�erent
from those observed over large time scales. To provide an ad-
equate and complete description of WAN tra�c, it is there-
fore necessary to get a handle on those small time scaling
features. To this end, results by Erramilli et al. [7] suggest
that networking mechanisms operating on small time scales
are a possible explanation for the observed small time scal-
ing behavior in measured WAN tra�c. Such mechanisms
can cause the tra�c to exhibit pronounced local variations
and irregularities.

To quantify these local variations in the tra�c at a par-
ticular point in time t0, we turn to the tra�c rate process,
the number of packets or bytes in an interval [t0; t0 + �t] of
length �t at t0. We say that the tra�c has a local scaling
exponent �(t0) at time t0 if the tra�c rate process behaves

like (�t)�(t0) as �t! 0. Note that �(t0) > 1 corresponds to
instants with low intensity levels or small local variations,
while �(t0) < 1 is found in regions with high levels of bursti-
ness. Informally, signals with �(t0) = H at all instants
t0 are called monofractal (and include exactly self-similar
processes) while signals with nonconstant scaling exponent
�(t0) are called multifractal.

Unfortunately, to obtain detailed information about the
local variations of tra�c at a particular point in time, tradi-
tional statistical inference techniques|including the scaling
analysis presented in Section 2.2|are inadequate because
they are global in nature; i.e., they provide information that
holds across the whole trace. Instead, we rely here on the
ability of wavelets to serve as \mathematical microscope"
with which we can zoom in and examine the variations in
a trace at a particular point in time. Because the DWT
yields a complete reconstruction of a given signal, it can be
used to recover the local irregularities in the tra�c and, in

particular, to estimate the local scaling exponents. Roughly
speaking, if the signal or trace X has a local scaling ex-
ponent �(t0) at t0, then for large negative j-values (small
scales), the wavelet coe�cients a�ected by X(t0) behave like

dj;k(t0;j) � 2j(�(t0)+1=2) [6], where for two functions f and
g, f(j) � g(j) means that limj!�1 f(j)=g(j) = const, .

To illustrate this local scaling property in measured WAN
tra�c, we employ a naive wavelet-based heuristic for a crude
estimation of the scaling exponent associated with each point
in the trace.2 Then depending on the value of the scaling
exponent, we pick a gray scale and plot the correspond-
ing observation in the chosen shade of gray. The darker
the shade of gray, the smaller the scaling exponent or the
\burstier" the signal at that point in time; lighter shades of
gray correspond to instants with larger scaling exponents or
\lull" periods in the signal. Note that in theory, self-similar
or monofractal scaling should result in one shade of gray
throughout the entire trace, but in practice some variability
in the gray-shading has to be expected. To get a sense for
how much variability can be expected, the top plot in Fig-
ure 2 shows the results of applying our scaling heuristic to an
exactly self-similar trace and serves as an example against
which we can calibrate deviations from monofractal scaling.
For example, the remaining plots in Figure 2 depict the local
scaling behavior for a segment of the Bellcore'89 LAN trace
averaged over 10 milliseconds, a segment of the WAN trace
dial2 averaged over 500 milliseconds, and �nally a segment
of the WAN trace dial3 at the 1 millisecond time scale. Vi-
sually, the �rst two plots show a similar behavior, both in
terms of the predominant shades of gray as well with regard
to the relatively smooth transitions from one gray scale to
another. More importantly, the two plots suggest that dif-
ferences in the local scaling exponents (as expressed by the
di�erent shades of gray) in the LAN trace are well within the
natural variability associated with the limited local scaling
behavior of an exactly self-similar trace. In contrast, the 1
millisecond WAN trace (bottom plot) shows clear signs of
multifractal scaling behavior: instants with dark shades of
gray across the whole trace, abrupt transitions from dark- to
light-shaded periods and vice versa, and a much less smooth
overall texture than the top two plots. Note however that
when averaging WAN tra�c over 500 millisecond intervals,
it becomes more LAN-like or self-similar, though still with a

2To pick out the bursty regions, we threshold the wavelet coe�-
cients of the signal, keeping only those with magnitudes exceeding
a given value. Then we calculate the local scaling exponents of the
reconstituted signal via a linear regression of logdj;k(t0;j) versus j.
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Figure 2: Local scaling analysis of packet-level data traf-
�c; di�erent shades of gray indicate di�erent magnitudes
of the local scaling exponents at the di�erent point in the
tra�c trace (black for small scaling exponents or \bursty"
instants), light for large scaling exponents or \lull" peri-
ods). From top to bottom: (exactly) self-similar tra�c,
Bellcore'89 LAN trace, WAN trace dial2 averaged over 500
msec, WAN trace dial3 at the 1 msec time scale.

few instances where the local scaling exponents exceed the
variability associated with a monofractal trace. Thus, the
bottom two plots visualize the previously observed asymp-
totically self-similarity property of measured WAN tra�c:
the small time scaling properties appear to be consistent
with multifractal scaling behavior, and when aggregating
over larger time scales, the large time scaling features start
to conform to monofractality.

2.4 DWT and time-localization: Multifractals

Figure 2 depicts visually the distinctly di�erent local scaling
behavior of measured WAN tra�c, of an exactly self-similar
trace, and of measured LAN tra�c. Motivated by this visu-
ally appealing heuristic for qualitatively assessing the local
scaling behavior of a given trace, our goal is to develop a
quantitative approach that is more rigorous and allows us
to draw statistically sound conclusions about the local scal-
ing behavior (e.g., whether some scaling exponents occur
more frequently than others, and if so, which one).

To this end and to build intuition, we �rst assume that

there is only one scaling exponent � for the entire trace;
i.e., the trace is monofractal. Then the wavelet coe�cients
all behave like dj;k � 2j(�+1=2) as j tends to �1. In this
case evaluating the so-called wavelet-based partition func-
tion S(q; j), de�ned by summing across each level j the qth
moments (with q � 0) of the absolute value of the normal-

ized wavelet coe�cients ~dj;k = 2�j=2dj;k; i.e., setting

S(q; j) =
X
k

j ~dj;kj
q; (3)

we obtain S(q; j) � 2�j2j�q = 2�j(1��q). Note that for
q = 0, S(0; j) = Nj, the number of wavelet coe�cients at
scale j, and for q = 2, S(2; j) denotes the energy Ej at
scale j considered in the global scaling analysis in Section
2.2 (up to a normalization factor). Intuitively, for q > 2,
the function S(q; j) takes into account the e�ects of higher-
order statistics that may be present in a trace and hence
may be contained in the DWT of the trace. Moreover, be-
cause wavelet coe�cients tend to decorrelate quickly within
a given scale as well across di�erent scales (for the speci�c
case of fractional Brownian motion see [29] and for more
general settings see [21]), it can be expected that hardly
any information about possibly strong correlations within
the trace is lost by de�ning the partition function S(q; j) as
in (3).

Next, to examine the scaling behavior of S(q; j) as the
time scale or resolution level becomes �ner and �ner (i.e.,
j ! �1), we consider the corresponding wavelet-based
structure function �(q) de�ned as the scaling exponent of
S(q; j), as j ! �1; that is,

�(q) = lim
j!�1

log S(q; j)

j log 2
: (4)

In other words, we check whether or not the partition func-
tion behaves like S(q; j) � 2j�(q) as we look at �ner and �ner
time scales (i.e., j ! �1). For the example at hand, it is
easy to see that �(q) = �q� 1; i.e., the structure function of
a monofractal signal is linear in q. In particular, if the trace
is self-similar with Hurst parameter H, then �(q) = Hq � 1
and H can be easily inferred from the structure function.

For a slightly more complicated example that shows that
�(q) indeed contains information about the frequency of oc-
currence of di�erent local scaling exponents, assume now
that 100
%(0 < 
 < 1) of the trace has a local scaling expo-
nent �1 and the other 100(1 � 
)% of the trace scales with
an exponent �2 6= �1. Then, for large negative j-values (�ne
resolution levels), 100
% of the wavelet coe�cients dj;k scale

like 2j(�1+1=2) and the other 100(1�
)% like 2j(�2+1=2); the
actual location of these two types of coe�cients within level
j is not crucial. A simple calculation shows that in this case,
the partition function behaves like

S(q; j) = 2�j(
��1q) + 2�j((1�
)��2q);

and that the structure function �(q) is determined by the
relative strengths of the local scaling exponents �1 and �2; in
fact, identifying the leading term in the limiting expression
limj!�1 log S(q; j)=(j log 2), we obtain

�(q) = min(�1q � 
;�2q � (1� 
)):

In other words, because the trace contains more than one
local scaling exponent, �(q) is no longer linear in q but is
instead a concave function of q. For this example, the struc-
ture function is in fact piecewise linear, following one of the



linear functions in the expression for �(q) for some values of
q and then following the other linear function for the larger
q values; furthermore, the location of the breakpoint re
ects
the composition of the scaling exponents in the trace.

These simple examples can easily be generalized to ac-
count for a �nite number of di�erent scaling exponents �i in
the trace, where a \histogram" f(�i) measures the number
of instants in the trace which have local scaling exponent
�i. For example, in the previous case of two di�erent scal-
ing exponents, we have f(�1) = 
 and f(�2) = 1 � 
. In
turn, this motivates the precise relationship that exists be-
tween the \histogram" f(�), commonly referred to as the
multifractal spectrum of the signal, and the partition func-
tion �(q):

�(q) = min
�
(�q� f(�)): (5)

The above examples also allow us to properly interpret the
�(q) function derived from the DWT of a given signal. A
more or less linear �(q) function is consistent with monofrac-
tal scaling and rules out multifractality. On the other hand,
the more concave the shape of �(q), the wider the range of
local scaling exponents found in the signal; in particular, a
concave shape of the structure function is consistent with
multifractality.

To illustrate the time-localization ability of wavelets to
infer mono- or multifractal scaling, Figure 3 shows the re-
sults of applying the (Haar wavelet-based) DWT structure
function method to a number of WAN and test traces. For
each trace, we picked 10 milliseconds as the �nest resolution
level (i.e., j = �18; for the shorter self-similar trace, the
�nest resolution level corresponds to j = �15) and examined
the scaling behavior of the partition function S(q; j) over a
range of �ne resolution levels, i.e., for j-values bigger than
�18.3 The four left plots in Figure 3 show the logarithm of
the modi�ed partition function log ~S(q; j) against j, for dif-
ferent q-values ranging from q = 0; 4; 8; 12; 16; 20, for the
Bellcore'89 LAN trace (top left), an exactly self-similar trace
(H = 0:7, top middle), and the WAN trace dial3 (bottom
left) and attlab3 (bottom middle). All partition function
plots suggest the presence of well-de�ned �ne-time scaling
regions (right-hand side of each plots, ranging over 10 or
more of the �nest time scales) where reading o� the slopes
of the di�erent lines, i.e., determining the value of the struc-
ture function �(q) at di�erent q's, appears to be relatively
insensitive to the particular choice of the upper cuto� scale
(i.e., coarse time scales or small negative j-values), beyond
which di�erent scaling regimes seem to exist. To illustrate
how to get the structure functions from the corresponding
partition function plots, consider for example, �(8) for the
Bellcore'89 LAN trace (top right plot); �(8) is obtained by
estimating the slope of the line labeled \q = 8" in the top
left partition function plot over scales (x-axis) ranging from,
say, j = �7 to j = �18. The resulting structure functions
�(q) are depicted in the two right plots in Figure 3. The
top right plot shows the �(q) functions for the Bellcore'89
LAN trace, the self-similar trace and a Poisson trace and il-
lustrates that all three traces result in linear �(q) functions
of the form �(q) = Hq � 1, and are hence fully consistent
with monofractal scaling behavior; in fact, one can easily
read o� the Hurst parameters for each of these three traces
from their structure function plots: H � 0:8 for the LAN

3Instead of using the partition de�ned in (3), we relied in our
analysis on the numerically more e�cient modi�ed partition function
~S(q; j) =

P
max

j ~dj;kjq, where the sum is taken over the local maxima

of the absolute value of the qth moment of the normalized wavelet
coe�cients ~dj;k.

trace, H � 0:7 for the self-similar trace, and H � 0:5 for the
Poisson trace. In contrast, the bottom right plot in Figure
3 shows the �(q) functions for the three WAN traces dial3,
backb and attlab3, all of which show indications of nonlin-
ear, i.e., concave shapes that are inconsistent with monofrac-
tal behavior and suggest multifractal structure over small
time scales. These results con�rm our earlier observations
that for strictly second-order models such as an exactly self-
similar Gaussian process or a Poisson process, multifractal
analysis should result in a trivial (i.e., linear) structure func-
tion, while the presence of higher-order statistics should be
re
ected in a more or less pronounced nonlinear structure
function. To this end, the LAN trace seems to be adequately
described by a purely second-order process, while the WAN
traces are not.

3 Structural modeling of WAN tra�c: Why multifractal?

In this section, we move beyond the empirical evidence that
measured WAN tra�c is consistent with multifractal scal-
ing behavior and turn our attention to the question \Why is
WAN tra�c multifractal?" We will answer this question in
two stages. First, we address the above question by claiming
that \WAN tra�c is multifractal because certain multiplica-
tive cascades lurk in the background." In a second stage, we
will investigate in Section 4 the problem of associating mul-
tiplicative structure in measured WAN tra�c with certain
layers in the TCP/IP protocol hierarchy.

3.1 Cascades and multifractals

Informally we say, following Evertsz and Mandelbrot [8],
that a process that fragments a set into smaller and smaller
components according to some rule, and at the same time
fragments the measure or mass associated with these compo-
nents according to some other rule is a multiplicative process
or cascade. The more formal mathematical construction of a
cascade starts with an initial mass M distributed uniformly
over the unit interval I = [0; 1). We assume for conve-
nience a dyadic partitioning of I, and in a �rst stage of the
cascade construction, we divide I into the two subintervals
I(0) = [0; 1=2) and I(1) = [1=2; 1) and assign mass xM to
I(0) and mass yM to I(1). The multipliers x and y are cho-
sen according to a particular rule that characterizes the type
of cascade and will be speci�ed shortly. Iterating this con-
struction process, we divide each parent interval into its two
dyadic subintervals, choose multipliers x and y in agreement
with the speci�ed rule, and assign the appropriate mass to
the left and right subinterval, respectively. To simplify no-
tation, we denote the dyadic intervals of resolution size 2�l

that are generated at the l-th stage of this cascade construc-

tion by I(j1; : : : ; jl) = [
Pl

k=1
jk2�k;

Pl

k=1
jk2�k + 2�l),

with jk 2 f0; 1g and l = 1; 2; : : :.
Cascade models have been especially popular in the sta-

tistical theory of turbulence (see references in [8]), and more
recently, in the hydrologic and atmospheric sciences [13].
In the networking context, cascades are motivated by the
TCP/IP protocol hierarchy and give rise to the conjecture
that IP networks act as cascades. Intuitively, this conjecture
can be substantiated by considering for example the dynam-
ics of a typical Web session: user clicks result in requests,
requests give rise to connections, connections are made up
of 
ows, and 
ows consist of individual packets. Note that
during this fragmentation process, the total number of bytes
transmitted during the Web-session is roughly preserved (or
grows slightly, due to headers, acknowledgment packets and
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Figure 3: DWT partition function analysis (left and middle) of packet-level LAN, test, and WAN traces; Bellcore'89 LAN (top
left), self-similar trace (top middle), dial3 (bottom left), and attlab3 (bottom middle). DWT structure function analysis
(on the right) of packet-level LAN, test, and WAN traces.

overhead). To satisfy this approximate mass preservation
property and to also allow for some degree of randomness
in the way mass gets redistributed in the process of this
construction, we consider in the following a semi-random
rule that assigns mass MW to the interval I(0) and mass
M(1 �W ) to I(1), where the \generator" W is a random
variable with mean 1=2, takes on values in (0; 1), and is sym-
metric about its mean. To iterate this procedure, we con-
sider a sequence of random variables W (j1; : : : ; jl); l � 1,
with a dependence structure given by

W (j1; : : : ; jl�1; 1) = 1�W (j1; : : : ; jl�1; 0): (6)

and where, because of the properties of the generator, the
random variables W (j1; : : : ; jl�1; 0) andW (j1; : : : ; jl�1; 1) =
1� W (j1; : : : ; jl�1; 0) are identically distributed as W . This
construction gives rise to a semi-random cascade4 and gen-
erates a collection of measures �l (think of the total number
of packets or bytes per interval, where l de�nes the time
scale) such that

�l
�
I(j1; : : : ; jl)

�
=MW (j1)W (j1; j2) � � �W (j1; : : : ; jl): (7)

Note that because of this multiplicative property, the �l's or,
in our case, the tra�c rate processes at �ne time scales (i.e.,
large l) have perforce approximately lognormal marginals.
The limiting object generated by a semi-random cascade
can be shown to de�ne a genuine multifractal; see [14, 11]
and references therein.

3.2 Wavelet analysis of semi-random cascades

For the remaining part of the paper, we will focus exclusively
on these semi-random cascades and variations thereof, where
the generator W is allowed to change at each stage of the
cascade construction in a way to be speci�ed shortly. We
summarize here the main results of a (Haar) wavelet-based
global and local scaling analysis applied to this class of semi-
random cascades (for further details and proofs, see [11]).
In e�ect, we show below that the DWT of semi-random

4Semi-random cascade are also called conservative cascades (B.B.
Mandelbrot, personal communication, 1998).

cascades gives rise to a set of analysis and inference tools
that allows us to detect and identify the global and local
scaling properties of multifractal objects generated by the
semi-random cascade.

To start, consider a semi-random cascade with �xed gen-
eratorW ; i.e.,W has mean 1=2, takes on values in (0; 1) and
is symmetric about its mean. If X denotes the limiting mul-
tifractal generated by this semi-random cascade, then X has
global linear scaling; that is (see Section 2.2, left-hand side
of Eq. (2)), the logarithm of the expected value of the en-
ergy El in X around level l in the cascade construction of
X depends linearly on l (plotted from large l, �ne scales, to
small l, coarse scales) and has the form

log2 E[El] = (1 + log2 E[W
2])l+ log2 E[(2W � 1)2]:

Note that the slope 1+ log2 E[W
2] depends only on E[W 2],

the second moment of the generator. Thus, if we want a non-
linear global scaling behavior for X, we need to change the
second moment of the generator W at each level (or within
a range of levels) in our cascade construction. One way to
achieve this is to let W (j1; : : : ; jl) be equal in distribution to
�lW+1=2(1��l) where �2l = Var(W (j1; : : : ; jl))=Var(W ) �
1. The limiting object X resulting from a semi-random cas-
cade construction with this type of variable generator can
be shown to exhibit non-linear global scaling behavior. In
particular, if the factors �2l associated with the generators
at each stage in the cascade construction increase (decrease)
monotonically as we go to �ner and �ner time scales, then
the slope of the global scaling analysis increases (decreases)
monotonically as we move from �ne to coarse scales.

Turning to the local scaling analysis of a multifractal X
generated by a semi-random cascade with �xed generator
W , the DWT structure function �(q) de�ned in (4), that is,
the scaling exponent of the partition function S(q; j) given
by (3), can be computed as

�(q) = �1� log2 E[W
q]; q > 0:

Moreover, the multifractal spectrum f(�) of X can be ob-
tained from �(q) by setting

f(�) = min
q
(q�� �(q)):



The same results hold if the �xed generator W is replaced
by a variable generator of the type considered above (i.e.,
W (j1; : : : ; jl) = �lW+1=2(1��l)), with a more complicated
expression for the DWT structure function associated with
the underlying limiting multifractal. These results make rig-
orous the arguments given in Section 2.4 for the class of
multifractals generated by semi-random cascades. To apply
these �ndings in practice, we must check whether or not a
given signal conforms to a semi-random cascade construc-
tion.

3.3 Aggregate WAN tra�c and semi-random cascades

To check whether or not a semi-random rule for redistribut-
ing mass (which we will equate with number of packets per
chosen time interval) from a parent to its child on the left
and to the one on its right is consistent with a given tra�c
trace, we describe in the following a procedure that essen-
tially inverts the cascade construction process in order to
gain information about its generation mechanism.
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Figure 4: Inferring the generator of a semi-random cascade:
density of the ratios for dial2 for levels 3, 9, and 14 in
the inverse cascade procedure (top); autocorrelations of the
ratios for dial2 for levels 3, 9, and 14 (the horizontal lines
de�ne the 95% con�dence band for the autocorrelations to
be statistically signi�cant).

The procedure consists of �xing a �ne time scale � (say,
1 or 10 msec intervals) and summing over non-overlapping
blocks of children of size 2, thereby calculating the \parent"
time series representing the number of packets per time unit
of size 2�, and iterating. In e�ect we obtain the time series
representing the total number of packets that each parent re-
distributed to its two children. We then check the properties
of the empirical distribution of the ratios number of packets
in the left (child) interval divided by number of packets in
the corresponding parent interval and use this information to
judge the appropriateness of a semi-random rule and to in-
fer the underlying generator W for the semi-random cascade
construction.

Figure 4 shows the results of applying this procedure to
dataset dial2. The top plot depicts the empirical probabil-
ity density functions of the ratios for a number of selected
stages in the process of inverting the cascade construction,
together with their �tted truncated normal distributions; for
the same stages, the subsequent three plots give the empir-
ical autocorrelation functions for the corresponding ratios.
Figure 4 suggests that across the di�erent levels in the con-
struction, the empirically observed properties of the ratios
agree reasonably well with a semi-random rule: the density
plots conform to a generator W that is symmetric around
1=2 (e.g., a truncated normal), and the autocorrelation plots
indicate no signi�cant dependence across a given level, ex-
cept for some small yet statistically signi�cant small-lag cor-
relations. Moreover, the plot in Figure 5 labeled dial2

which gives the empirical standard deviation of the ratios
(note log-scale on y-axis), as a function of scale (i.e., level
in the cascade construction), suggests a variable generator
W with a standard deviation that increases monotonically
when moving from coarse scales to �ner scales. Similar con-
clusions about the appropriateness of an underlying semi-
random cascade construction with a variable generator hold
for the other WAN traces, but only the plots of the empirical
standard deviation of the corresponding ratios are shown in
Figure 5.

There is nothing that prevents us from applying this
procedure to traces that are not generated via an underly-
ing semi-random cascade construction. Thus, the question
arises how to use this procedure to identify such cases and
how to distinguish them from those that are indeed consis-
tent with an underlying semi-random cascade construction.
To this end, we applied the procedure of inverting the cas-
cade construction to the dataset backb, and then generated
a synthetic trace according to a semi-random cascade con-
struction; as our generator W , we picked a truncated normal
on (0; 1), symmetric around 1=2, and we changed the vari-
ability of W according to the plot of the empirical standard
deviation of the ratios labeled backb in Figure 5. The re-
sulting trace agrees favorably with the data, not only with
respect to the traditionally and often exclusively used mea-
sures (i.e., their �rst- and second-order statistics; not shown
here), but also with respect to their structure functions �(q)
which capture the multifractal scaling properties of the data
and the synthetic trace, respectively; see the plots labeled
trace data and cascade trace in Figure 5. In stark contrast,
when performing the same experiment for a trace gener-
ated from a Poisson process (for a plot of the corresponding
empirical standard deviation of the ratios resulting from the
inverse cascade procedure applied to a Poisson trace, see line
labeled Poisson in Figure 5 (top)), the di�erence shows up
very clearly when analyzing the multifractal scaling behav-
ior of the trace data and the synthetic trace|see the �(q)-
functions labeled Poisson and cascade Poisson in Figure 5.
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Similar results hold when the Poisson process is replaced by,
for example, a self-similar trace.

4 Networks as cascades

The results in Section 3.3 raise a fundamental networking
question: \Why does WAN tra�c appear to be multiplica-
tively generated?" We do not answer this question directly,
but instead identify below levels in the protocol hierarchy
where the multiplicative structure is more apparent than at
other levels. Thus, by isolating those aspects of WAN tra�c
that conform to a multiplicative structure from those that
do not, this study represents a �rst step in explaining how
and why data networks act as cascades.

4.1 Additive vs. multiplicative

The mathematical results and physical explanations of the
observed self-similarity or monofractal nature of measured
tra�c traces state explicitly that self-similarity is an ad-
ditive property of network tra�c. That is, self-similarity
arises from aggregating many ON/OFF-streams [31] or from
superposing many renewal-type connections (appropriately
\thinned" so that the resulting connection arrival process is
Poisson), provided the individual ON/OFF-periods or con-
nection durations/sizes exhibit extreme variability (i.e., are
heavy-tailed with in�nite variance) [16, 30]. As such, self-
similarity is plausibly the result of user behavior (e.g., dy-
namics of web browsing), application-speci�c features (e.g.,
layout of web pages), and the inherent properties of the ob-
jects (e.g., sizes of text, picture, video, audio �les) that are
sent across the network. In particular, these �ndings imply
that the precise nature of the local tra�c structure within
individual ON-periods or connections is not essential for self-
similarity of the aggregate tra�c stream. Being additive in
nature, aggregate network tra�c will be approximately nor-
mal when viewed over su�ciently large time scales, provided

certain weak conditions on the individual tra�c streams
(e.g., �nite variance of their rates) hold for the central limit
theorem to apply.5

On the other hand, the observed multifractal nature of
network tra�c over small time scales and the empirical ev-
idence presented in Section 3.3 in support of an underlying
cascade mechanism implies that over those �ne time scales,
network tra�c is multiplicatively generated. In other words,
at the microscopic level, the tra�c rate process (e.g., number
of packets per small time unit) has an approximate lognor-
mal shape because it is the product of a large number of
more or less independent \multipliers" (see (7)).6

These observations give rise to the questions of where in
the network the multiplicative structure can be found most
easily, how the multipliers can be explained in a network-
ing context, and why network tra�c might be multiplica-
tively generated. Leaving the last two questions for future
work, we tackle in this section the �rst question and iden-
tify layers in the protocol hierarchy of IP network where the
multiplicative structure seems to dominate. To contrast, we
also illustrate the cases, usually found at the higher levels
in the protocol hierarchy, where the additive aspects of net-
work tra�c start to show up and ultimately to dominate the
multiplicative structure.

4.2 IP 
ows and packets within IP 
ows

When we try to identify aspects of network tra�c that are
not a�ected in a major way by additive components such as
its global connection-level characteristics, we have to look
at layers in the TCP/IP protocol hierarchy where the in
u-
ence of user behavior and of application-related peculiarities
is no longer dominant but where the network, through its
end-to-end congestion control algorithms and other mecha-
nisms, determines the 
ow of packets across the network. An
obvious candidate for this purpose is the TCP layer where
we can study global tra�c characteristics related to the ad-
ditive nature of network tra�c (e.g., the arrival process of
TCP of connections, distribution of the connection dura-
tions or sizes) as well as the local tra�c characteristics of
individual TCP connections (e.g., the packet arrival patterns
within individual TCP connections). To this end, we de�ne
a port-to-port 
ow as consisting of all packets 
owing in ei-
ther direction between two IP hosts that use the same source
and destination port numbers and that are separated in time
by less than 60 seconds (see [4, 10]). Notice that port-to-
port 
ows are reasonable substitutes for TCP connections
because most packets within a TCP connection are part of
a single port-to-port 
ow; in fact, only those packets within
a single TCP connection with idle times longer than 60 sec-
onds will be split among multiple port-to-port 
ows. One
advantage of using port-to-port 
ows rather than TCP con-
nections is that the former are also applicable to non-TCP
tra�c such as UDP.

Applying this de�nition to trace dial2 results in 362,371
port-to-port 
ows, with an average number of packets (bytes)

5Additive structure leading to normal distributions is discussed in
[22], where a central limit theorem argument for justifying the normal
distribution of the height of people is paraphrased by the popular
saying \... foot bone 'tached to leg bone, leg bone 'tached to the knee
bone, knee bone 'tached to the thigh bone, thigh bone 'tached to the
hip bone," etc.

6Multiplicative structure giving rise to lognormal distributions is
exempli�ed by adapting Franklin's proverb (see [22]) to the network-
ing setting as follows: \for the want of a packet a 
ow is needed, for
the want of a 
ow a TCP connection is needed, for the want of a TCP
connection an application is needed," etc.
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of 35.5 (12,480) and a median of 9 (1466). The global scal-
ing analysis plots for the trace consisting of the number of
port-to-port 
ow arrivals per second for this time series as
well as for the WAN trace attlab1 are given in Figure 6 and
illustrate the self-similar scaling property of network tra�c
at the TCP layer over time scales larger than a few seconds.
This �nding also con�rms the additive nature of network
tra�c at the level of global port-to-port characteristics: the
time series of the total number of port-to-port 
ows is gener-
ated by summing over all \sessions" each of which contains
a heavy-tailed number of 
ows (for details, see [9]).

Small time scaling properties that suggest multifractal
behavior at the level of individual port-to-port 
ows for trace
dial2 are shown in Figure 7. In particular, we consider the
top 1000 port-to-port 
ows which make up more than 40%
of the packets or bytes of the overall tra�c; the largest 
ow
consists of 216,959 packets, the smallest 
ow considered has
about 1,000 packets. We then apply the inverse cascade pro-
cedure described in detail in Section 3.4 to each one of the
1000 
ows and focus in Figure 7 on the properties of the log-
arithm of the empirical standard deviation of the ratios (as a
function of scale, where we go from �ne to coarse scales; see
top plot in Figure 5) associated with the di�erent 
ows. For
each 
ow, (
ow index on the x-axis), we �t a least squares
line to the plot of the (logarithm of the) empirical standard
deviation of the ratios and plot in Figure 7 (top plot) the
slope (lower part) and the resulting R2-value (upper part)
where the latter serves as an indicator for the quality of
the linear �t (i.e., R2-values close to 1 indicate near-perfect
�t, low values of R2 indicate that a linear �t is ill-advised).
The top plot in Figure 7 shows that slope-values around
�0:2 dominate and that a clear majority of linear �ts result
in large R2-values, which we take as strong indication of
the appropriateness of a linear behavior (with slope around
�0:2) of the (logarithm of the) empirical standard devia-
tion of the ratios of a \typical" port-to-port 
ow. Picking
a port-to-port 
ow with a generator W � that shows this
\typical" behavior for the corresponding empirical standard
deviation of the ratios, the bottom plot in Figure 7 shows
the �(q) functions resulting from the local scaling analysis
of the actual port-to-port 
ow trace that gave rise to this
variable generator, and of four synthetically generated real-
izations of a semi-random cascade with W � as its variable
generator. The respective structure functions agree reason-
ably well, which we take as empirical evidence in favor of a
multiplicative mechanism that governs the highly irregular
tra�c rate process within this port-to-port 
ow and that
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Figure 7: Port-to-port 
ows and their multifractal scaling
analysis (trace dial2): Slopes (lower part of top plot) and
R2-values (upper part of top plot) obtained from �tting a
least squares line to the logarithm of the empirical standard
deviation of the ratios associated with the semi-random gen-
erator inferred from each of the top 1000 port-to-port 
ows
(x-axis gives index of port-to-port 
ow); DWT structure
function �(q) for a \typical" port-to-port 
ow trace and four
realizations of a semi-random cascade generated via the vari-
able generator corresponding to the \typical" 
ow (bottom).

gives rise to multifractal scaling behavior of the 
ow's local
tra�c dynamics.

Similar results hold (not shown here) when analyzing
the other WAN traces or when replacing port-to-port 
ows
by 
ows that aggregate packets at a slightly higher level in
the network hierarchy (e.g., host-application 
ows de�ned
as consisting of all packets 
owing in either direction be-
tween two IP hosts and separated in time by less than 60
seconds). Intuitively, replacing port-to-port 
ows by, for
example, host-application 
ows should not make a signif-
icant di�erence in identifying the multiplicative and addi-
tive aspects of data tra�c. This replacement simply shifts
some higher-layer or user-speci�c activities to the within-

ow packet dynamics. The results of our analysis using
host-application 
ows (not shown here) con�rm this intu-
ition and suggest that the empirically observed multiplica-
tive structure within 
ows o�ers great promise for gaining an
in-depth understanding of the origins and the implications
of the multifractal nature of measured WAN tra�c.

4.3 Sessions and packets within sessions

For a more dramatic shift of user- and/or application-related
activities to local packet tra�c characteristics, we consider
next network tra�c aggregated over user sessions. Before



de�ning what we mean by a \user session", recall that the
problem with studying tra�c at the level of user sessions is
that determining from a packet-level WAN trace what con-
stitutes a user session and when it starts and ends is, in
general, di�cult. This problem is apparent when we try to
extract information regarding Web sessions and it only be-
comes worse when we attempt to de�ne user sessions that are
usually a mixture of many di�erent applications, running ei-
ther in parallel or sequentially. However, we can avoid these
di�culties when we use WAN traces collected from certain
ISPs by combining the packet-level WAN trace information
with user information contained in other data bases main-
tained by the ISPs that provide details about every modem
call made to the particular ISP, including time of arrival
of call, duration (in seconds), size (in bytes) and source IP
address. Thus, in an ISP environment, by equating user ses-
sions with modem calls, we avoid the above di�culties and
can study in detail modem call-related ISP WAN tra�c at
the session level. Note that this approach is similar in spirit
to the one pursued in [9], where modem calls were used as
approximate substitute for Web sessions. By considering
the ISP modem tra�c trace dial1 and studying the global
session characteristics such as session arrivals and session
duration/size, our �ndings coincide with the ones reported
in [9] and allow us to view sessions as arriving in a more
or less Poisson fashion, carrying with them a \workload"
(e.g., duration in seconds or size in bytes) that follows a
heavy-tailed distribution with in�nite variance.
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Figure 8: The inverse cascade procedure for user sessions
(trace dial1): Slopes (lower part of top plot) and R2-values
(upper part of top plot) obtained from �tting a least squares
line to the (logarithm of the) empirical standard deviation
of the ratios associated with the semi-random generator in-
ferred from each of the top 300 sessions (x-axis gives index
of session).

Next, we focus on individual sessions and �nd that a
total of 3,529 di�erent sessions generated the modem call-
speci�c tra�c, with a median number of packets per session
of about 1K and a mean of about 3.5K packets. To check
the multiplicative structure of the within-session packet rate
processes, we consider the top 300 sessions which contribute
about 56% of the packets (bytes) to the overall trace; the
largest user session consisted of 236,071 packets, while the
smallest of the 300 sessions contained about 9,000 packets.
Then we apply the inverse cascade procedure of Section 3.4
to each of the 300 sessions and obtain the variability plots of
the semi-random cascade generators inferred from the 300
session traces. Figure 8 shows the same information as the
top plot in Figure 7, with port-to-port 
ows replaced by

user sessions. Note however, that in contrast to the port-
to-port 
ow case, the resulting R2-values are \all over the
picture" (top part of the plot); this suggests that, in general,
�tting a least squares line to the (logarithm of the) empirical
standard deviation of the ratios associated with an inferred
semi-random generator is ill-advised and will perforce yield
a very shallow slope of about �0:1 (lower part of the plot).
Moreover, in this case, picking a session with a generator
W that shows a \typical" behavior for the corresponding
empirical standard deviation of the ratios seems hopeless
and is not recommended. Instead, we illustrate below with
three di�erent examples of user sessions how the interplay
between the additive and multiplicative aspects of network
tra�c can a�ect the multifractal scaling behavior of within-
session packet tra�c.

To this end, we consider a user session (consisting of
25,979 packets and 1,100 port-to-port 
ows, with WWW
being the predominant application) whose inverse cascade
process yields a plot of the (logarithm of the) empirical stan-
dard deviation that decreases quickly for small scales and
then shows a more gradual decrease on the larger scales;
we denote the corresponding variable semi-random cascade
generator by W1. Intuitively, this behavior can be explained
by the fact that the within-session tra�c rate process not
only re
ects within-port-to-port packet dynamics but also
application-speci�c variability due to, for example, the mix
of applications within a session or the user activity within a
Web session. As our second example, we pick another Web-
dominated user session (containing 11,660 packets, twice as
long in duration as the �rst example, with 725 
ows) whose
associated empirical standard deviation plot of the ratios
decreases initially (small scales) but then starts to increase
again as we move to larger scales, and �nally decrease again
for the largest scales; let W2 denote the corresponding vari-
able generator for the inferred semi-random cascade associ-
ated with this user-session. Finally, as a third example, we
consider a user-session with a more or less linearly decreasing
plot of the (logarithm of the) empirical standard deviation
of the ratios (let W3 denote the corresponding generator),
suggesting a port-to-port like within-session structure, with
a relative low level of activity at the higher protocol layers.
This session contains 5,666 packets or 82 
ows and appears
to be a gaming application.

To support this intuition about the dynamics of within-
session tra�c rate processes, Figure 9 uses textured plots
(top) to depict the within-session dynamics at the level of
individual port-to-port 
ows (each points corresponds to the
arrival of a port-to-port 
ow, a visible horizontal line indi-
cates the duration of the corresponding 
ow), for the three
generators W1 (left), W2 (middle) and W3 (right). Also de-
picted in Figure 9 (bottom) are the structure functions cor-
responding to the traces whose generators are W1, W2, and
W3, respectively, and of four independent realizations gen-
erated by the corresponding semi-random cascade. On the
one hand, Figure 9 con�rms our intuition that the session
with the low level of higher-layer activities (right) conforms
to an underlying multiplicative within-session structure and
agrees with the multifractal behavior observed earlier for
within port-to-port tra�c. On the other hand, the left two
plots of Web-related user-sessions shows that high levels of
higher-layer activities can either be implicitly accounted for
by a semi-random cascade construction with a variable gen-
erator (middle) or cannot be adequately captured by such a
process. Thus, while the multiplicative structure of network
tra�c can be clearly identi�ed and isolated at the level of
individual port-to-port 
ows, this becomes less clear when
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Figure 9: Top: Textured plots of arrivals of port-to-port 
ows, with port-to-port 
ow duration, for three di�erent user sessions.
Bottom: Multifractal analysis (structure function) of the three sessions with variable generators W1 (left), W2 (middle) and
W3 (right).

considering network tra�c aggregated to the level of indi-
vidual user sessions. The di�culties can be attributed to
the observation that higher-layer aspects of network tra�c
can either be additive, or multiplicative, or a combination of
both, depending on, for example, the mix of applications or
the user behavior in a given session. Note however that by
aggregating over all user sessions, the aggregate packet-level
tra�c fully re
ects the combined additive and multiplicative
aspects observed at the user session level (see Sections 2 and
3).

4.4 Impact and relevance on workload modeling

Our analysis shows that the clearest distinction between
the additive aspect of measured network tra�c (over large
time scales) and its multiplicative property (over small time
scales) can be seen at the level of port-to-port 
ows (or at
slightly higher aggregation levels). Given the �ndings re-
ported in Section 4.3, making such a distinction at the level
of individual user sessions seems to be less obvious. How-
ever, to keep things simple, we will ignore in the follow-
ing this di�culty related to user sessions when discussing
an Internet workload modeling approach that assumes that
user sessions (i) arrive in accordance to a Poisson process,
(ii) bring with them a workload (e.g., number of packets or
bytes, number of port-to-port 
ows, length of session) that
is heavy-tailed with in�nite variance, and (iii) distribute the
workload over the lifetime of the session according to a mul-
tiplicatively generated multifractal with a semi-random cas-
cade generator. Thus, for ease of presentation, we assume
here that user sessions have within-session structure that
agrees with what we observed for port-to-port 
ows.7 This

7Future work will consider the more appropriate case, suggested
by our �ndings earlier in this section, where port-to-port 
ow counts
are self-similar and where the individual 
ows are modeled as in (iii).

workload model is a generalization of Kurtz's model [16, 30]
by allowing the within-session tra�c rate process to be gen-
erated by a semi-random cascade model.

The attractive feature of this workload model is that it
accounts in a parsimonious manner for both the global as
well as local scaling characteristics observed in measured
WAN tra�c. While the global scaling behavior is already
part of Kurtz's original model (via the relationship between
heavy-tailed sizes or durations of the individual sessions
and the asymptotic self-similarity of the aggregate packet
stream) and is captured by the Hurst parameter H, the
original model does not incorporate local scaling behavior.
However, we have seen in Section 4.2 that choosing a variable
generatorW � for a \typical" semi-random cascade model for
the within-
ow tra�c rate process is relatively obvious (lin-
early decreasing logarithm of the standard deviation from
small to coarse scales, with a slope of around �0:2) and gives
rise to multifractal scaling as captured by the corresponding
structure function �(q). Note that the particular form ofW �

retains the parsimonious nature of this workload model and
preliminary results suggest that the aggregate tra�c gener-
ated by these sessions is at the same time asymptotically
self-similar (with Hurst parameter H) and multifractal (as
expressed in terms of �(q)).

The practical relevance for such a workload model is that
it allows for a more complete description of network traf-
�c than exists to date in cases where higher-order statis-
tics or multiplicative aspects of the tra�c play an impor-
tant role but cannot be adequately accounted for by tradi-
tional strictly second-order descriptions of network tra�c.
By aiming for a complete description of tra�c, a compre-
hensive analysis of network performance-related problems
becomes feasible and desirable. In the past, thorough an-
alytical studies of which aspects of network tra�c are im-
portant for which aspects of network performance have of-



ten been prevented due to a lack of models that provide
provably complete descriptions of the tra�c processes under
study. This situation can lead to misconceptions and misun-
derstandings of the relevance of certain aspects of tra�c for
certain aspects of performance (e.g., see [27] and [12]). Fi-
nally, in terms of practical relevance, we also argue that by
incorporating|via multifractals|local scaling characteris-
tics of the tra�c into a workload model, it may become in
fact feasible to adequately describe tra�c in a closed system
(like the Internet) with an open model.

5 Conclusions and outlook

By analyzing a number of di�erent packet-level WAN traces
from di�erent WAN environments and at di�erent layers
within the TCP/IP protocol architecture, we attempt in this
paper to provide an answer to the question of why measured
WAN tra�c appears to be multifractal. In e�ect, we pro-
pose and empirically validate that measured network tra�c
conforms to an underlying cascade construction and identify
aspects of network tra�c where its multiplicative properties
can be examined in detail. In this sense, we make rigorous
and validate empirically the intuitive notion that networks
act like certain cascades called semi-random cascades and il-
lustrate that they give rise to intricate features in the tempo-
ral dynamics of network tra�c that agree with the local and
global scaling phenomena observed in measured WAN traf-
�c. One of our main �ndings is that the cascade paradigm
or multiplicative nature of network tra�c over small time
scales (i.e., where the in
uence of higher-layer activities is
negligible) appears to be robust across di�erent WANs and
under changes in the underlying WAN environment and traf-
�c conditions, and hence constitutes a new tra�c invariant
for WAN tra�c that can co-exist with the concept of self-
similarity. At the same time, through the implied complex
local scaling structure, multiplicatively generated multifrac-
tals promise great 
exibility in accounting for and, in turn,
detecting and identifying network/application/user-speci�c
features. While the paper puts in place a structure that pro-
vides for extensive and novel explorations of these areas of
interest to the networking community, we have barely begun
exploring this yet uncharted territory.

To study the local scaling phenomena of measured net-
work tra�c, we introduce and illustrate in this paper ap-
propriate methods and techniques for analyzing and infer-
ring multifractal scaling behavior. Our methods are based
on wavelets and their natural ability for scale- and time-
localization, and the techniques (as well as the practical
implementation of the techniques) rely on the theoretical
properties of the discrete wavelet transform in a multireso-
lution analysis. In particular, moving beyond the traditional
applications of wavelets to study scale-dependent global fea-
tures of tra�c, we emphasize here their ability for time-
localization which can be interpreted as providing a mathe-
matical microscope for detecting and identifying local irreg-
ularities in a trace; e.g., location-dependent scaling features.
Future work will focus on relating such features to speci�c
networking conditions. By developing practical tools for dis-
tinguishing between monofractal and multifractal scaling,
we make it easier for networking researchers and engineers
to gain access to a new area of tra�c analysis (i.e., investi-
gating local structure) that has been o� limits in the past.

A natural next step is to explore how this new and im-
proved understanding of modern data networks and data
tra�c can be exploited for network engineering and tra�c
management. In addition to the already mentioned impli-

cation of multifractals for workload modeling, we conclude
with a brief discussion of some aspects of network engineer-
ing where knowing either the global or local (or both) scaling
behaviors is essential for tackling speci�c networking prob-
lems.

(1) Generating realistic data network tra�c: The phys-
ical explanation advocated in this paper for the observed
multifractal nature of measured WAN tra�c gives rise to
a simple recipe for synthetically generating realistic data
network tra�c. Indeed, we demonstrate in Section 3 how
semi-random cascades are able to accurately match a given
trace not only with respect to its �rst- and second-order
statistical properties but also in terms of the higher-order
statistics (e.g., multifractal scaling).

(2) Inferring �ne-time scaling behavior from coarse-time
measurements: Typical network operations systems collect
link-level tra�c statistics every 5{15 minutes. However, to
predict, for example, that the tra�c levels on a trunk stay
within safe operating regions, we must to be able to infer the
burstiness behavior of the tra�c over small-time scales from
the large-time scale operational measurements. For multi-
fractal tra�c, we can use the underlying semi-random cas-
cade paradigm that determines (via the cascade generator)
how a certain workload, measured over large-time scales, is
distributed over smaller time scales. In e�ect one can use
the cascade to extend the coarse-scale time series to �ner
time scales.

(3) Global and local scaling behavior and round-trip time
of packets: The global scaling analysis plots in Figure 1
raise a natural question about the pronounced change in the
global scaling behavior from small-time to large-time scales,
around time scales on the order of a few hundred millisec-
onds or seconds. It may be that the location of the \knee" is
related to properties of the round-trip time in the network
or to some other aspects of the particular network under
study. A natural approach to study in detail the precise
relationship between round-trip time and local and global
scaling behavior is to experiment with the generator of the
semi-random cascade construction in a controlled network
environment. The ns simulator [20] is an ideal tool for this,
and initial ns-based experiments show promising results in
support of these partly heuristic, partly empirical-based ar-
guments.

(4) Exploiting a new dimension in network tra�c anal-
ysis: To date, network tra�c analysis has focused almost
exclusively on �rst-order (e.g., mean, variance, marginal dis-
tributions) and second-order (e.g., autocorrelations, spectral
density) statistical properties of measured data, and exist-
ing tra�c models fully re
ect that attitude. The empirical
�nding of multifractal scaling properties in measured WAN
tra�c opens up new opportunities for improving our current
understanding of modern networks and the tra�c that they
carry by providing a new perspective (i.e., local scaling) and
a new mathematical tool (i.e., multifractal analysis) to in-
vestigate aspects of measured tra�c that have so far been
o� limits to network researchers and engineers. These as-
pects concern the detailed nature of the local irregularities
in tra�c caused by networking-related mechanisms operat-
ing on small-time scales and we can expect them to be of
signi�cant importance when we try to infer network-speci�c
properties and/or user-perceived network performance from
active network measurements. Intuitively, the relevant in-
formation contained in measurements obtained by sending
certain test tra�c into the network and recording speci�c
responses (e.g., see Paxson [24]) is often contained in the
measurements' local irregularities rather than in their global



statistical properties. As such, multifractal analysis is likely
to impact how results from active network measurement ex-
periments will be analyzed in the future and how active net-
work measurements will be used to help manage tomorrow's
data networks.
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