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Abstract

In apparent contrast to the well-documented self-similar (i.e.,
monofractal) scaling behavior of measured LAN traffic, re-
cent studies have suggested that measured TCP/IP and
ATM WAN traffic exhibits more complex scaling behavior,
consistent with multifractals. To bring multifractals into
the realm of networking, this paper provides a simple con-
struction based on cascades (also known as multiplicative
processes) that is motivated by the protocol hierarchy of IP
data networks. The cascade framework allows for a plausi-
ble physical explanation of the observed multifractal scaling
behavior of data traffic and suggests that the underlying
multiplicative structure is a traffic invariant for WAN traffic
that co-exists with self-similarity. In particular, cascades al-
low us to refine the previously observed self-similar nature of
data traffic to account for local irregularities in WAN traffic
that are typically associated with networking mechanisms
operating on small time scales, such as TCP flow control.

To validate our approach, we show that recent measure-
ments of Internet WAN traffic from both an ISP and a cor-
porate environment are consistent with the proposed cas-
cade paradigm and hence with multifractality. We rely on
wavelet-based time-scale analysis techniques to visualize and
to infer the scaling behavior of the traces, both globally and
locally. We also discuss and illustrate with some examples
how this cascade-based approach to describing data network
traffic suggests novel ways for dealing with networking prob-
lems and helps in building intuition and physical under-
standing about the possible implications of multifractality
on issues related to network performance analysis.

1 Introduction

The empirically observed self-similar or fractal nature of
aggregate network traffic [17, 25] is caused by the high-
variability of the individual connections that make up the
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aggregate traffic; in the LAN context, see [31]; for WANS,
see [25, 5, 16, 9, 30]. More precisely, aggregate packet-level
network traffic is (asymptotically) self-similar, i.e., exhibits
fractal-like scaling behavior over time scales on the order
of a few hundreds of milliseconds and larger, if and only if
the durations (in seconds) or sizes (in bytes) of the individ-
ual sessions or connections that generate the aggregate traf-
fic have a heavy-tailed distribution with infinite variance,
i.e., range from extremely short (small) to extremely long
(large). This ability to explain self-similarity of aggregate
traffic streams has de-mystified fractal traffic modeling and
has opened up new opportunities for queueing and perfor-
mance analysis; in particular, it has provided new insights
into how self-similarity (through the underlying heavy-tailed
connections) can impact network performance, both quali-
tatively and quantitatively. It has also led to the realiza-
tion that the self-similarity property of the aggregate traffic
does not seem to depend on the connections’ local traffic
characteristics, i.e., on how the individual packets within a
connection are sent over the network.

Yet, because of the predominant protocols and end-to-
end congestion control mechanisms that exist in today’s In-
ternet and that determine the flow of packets at the differ-
ent layers in the TCP /TP protocol hierarchy, networking re-
searchers have argued that to provide a complete description
of network traffic, these local traffic characteristics should
not be ignored and have asked the question “Where does
the impact of the network show up?” In this paper, we use
a number of different high time-resolution packet-level traf-
fic traces collected from both a corporate and Internet Ser-
vice Provider (ISP) WAN environment to demonstrate that
(i) the impact of the network on the traffic shows up when
studying network traffic over small time scales, from a few
hundreds of milliseconds and downward; (ii) the empirically
observed local traffic characteristics are consistent with mul-
tifractal scaling; (iii) there is a plausible physical “explana-
tion” for the multifractal nature of measured Internet WAN
traffic over small time scales; and (iv) the multifractal find-
ing suggests a class of parsimonious models that provide a
more complete and accurate description of actual data traf-
fic than is available to date and hence allows for a systematic
investigation of a wide range of queuing/networking-related
performance issues.

While multifractals are new to the networking area, they
have been applied in the past to such diverse fields as the sta-
tistical theory of turbulence, the study of strange attractors
of certain dynamical systems, and more recently, to physi-
cally based rain and cloud modeling; see for example [8, 14]
and references therein. In the present context, multifractals



extend and refine in a natural way the previously observed
fractal or self-similar behavior in measured network traffic.
Indeed, while self-similarity or, more generally, monofractal
scaling, is characterized by a single scaling law that holds
globally in time and essentially involves only one parameter,
the Hurst parameter, multifractals allow for time-dependent
scaling laws and hence offer great flexibility in describing ir-
regular phenomena that are localized in time. The latter
are typically caused by network-specific mechanisms that
operate on small time scales and—depending on the state of
the network—can have a more or less severe impact on the
packet dynamics within individual connections.

From a networking perspective, the special appeal of
multifractals lies in their close connection to certain mul-
tiplicative processes or cascade models. Motivated by the
explicit hierarchical structure of modern data networks, it
is plausible to view WANs or other networks, together with
their protocols and controls, as specifying the mechanisms
and rules of a process that fragments units of information
at one layer in the networking hierarchy into smaller units
at the next layer, etc. Such a fragmentation mechanism
is called a cascade; it preserves the mass of the initial set
at each stage of the construction, the rules for fragmenta-
tion make up what is commonly referred to as the generator
of the cascade, and the limiting object or multiplicatively
generated multifractal 1s a mathematical construct that de-
scribes the highly irregular way the connection’s total mass
(i.e., number of bytes or packets) has been redistributed
during this fragmentation procedure over the lifetime of the
connection. To validate this hypothesis of networks acting
as cascades, we develop and use a set of wavelet-based anal-
ysis and inference tools that are tailor-made for the multi-
plicatively generated class of multifractals considered in this
paper. We provide empirical evidence that measured WAN
traffic conforms to the proposed cascade model, i1s consistent
with the intricate local irregularities exhibited by the corre-
sponding multiplicatively generated multifractal, and can-
not be completely described by self-similar (i.e., monofrac-
tal) or other strictly second-order traffic processes.

Here, by a strictly second-order process, we mean a com-
plete description of traffic in terms of its first- and second-
order statistical characteristics, i.e., its marginal distribu-
tion and autocorrelation function (or equivalently, its spec-
tral density). E.g., a Gaussian marginal distribution and an
autocorrelation function of the form r(k) = 27! (|k 4+ 1*Z
—20kPF + |k — 11*7),k > 1,0 < H < 1 completely de-
scribes the self-similar processes known as fractional Gaus-
stan noises; similarly, a Poisson process is fully character-
ized by requiring the marginal distribution to be Poisson and
the autocorrelation function to be identically zero. On the
other hand, using exclusively first- and second-order statis-
tical characteristics to specify an asymptotically self-similar
process with non-Gaussian marginals results only in an in-
complete description of the process—higher-order statistical
properties (e.g., expressions of the form E[Xi X X.],k #
I # m) have to be specified to provide a complete sta-
tistical description of the process. In fact, we will show
that the presence of non-trivial higher-order statistics in a
traffic process is closely related to a non-degenerate mul-
tifractal scaling behavior. In this sense, multifractals offer
great promise for providing a sufficiently complete descrip-
tion of network traffic in cases when a specification in terms
of purely second-order statistics is inadequate and may lead
to erroneous or misleading conclusions about expected im-
plications for network performance.

Empirical evidence in support of within-connection or

local traffic characteristics in measured WAN traces that
can be traced to the protocol architecture of IP networks
has been reported in the original comprehensive analysis of
WAN traffic by Paxson and Floyd [25], and more recently,
in work by Feldmann et al. [9]. The work by Paxson and
Floyd [25] is closest in spirit to our present study and con-
cerns some aspects of the local traffic structure of individual
connections (e.g., TELNET and FTP). Technically, our paper
is related to the works by Abry and Veitch [1] and Feld-
mann et al. [9] in the sense that we also rely crucially on
wavelet-based techniques. However, we pursue the wavelet-
based analysis of network traffic one step further and de-
velop and illustrate tools that can be used for statistical
inference problems related to cascade models and their lim-
iting multifractals. Finally, our work is closely related to
that of Riedi and Levy-Vehel (e.g., see [26, 18] for TCP/IP
traces; for ATM WAN traces, see Mannersalo and Norros
[19]), who originally advocated the use of multifractals for
network traffic modeling; though, for an earlier discussion,
see also [28]. In contrast to Riedi and Levy-Vehel’s work,
this paper attempts to present, motivate and explain multi-
fractals in the networking context and qualitatively discusses
the relevance and impact of multifractal scaling in measured
data traffic on network performance-related problems.

The remaining part of the paper is structured as follows.
In Section 2, we use measured WAN traces to motivate the
use of multifractals as plausible models for WAN traffic; we
introduce wavelets as our main mathematical technique, dis-
cuss the notions of global vs. local scaling, and give an in-
tuitive definition of monofractals and multifractals. Section
3 provides the mathematical framework for our proposed
cascade-based approach to modeling the multifractal nature
of WAN traffic and presents the main results of the corre-
sponding wavelet-based analysis. In Section 4 we present
empirical evidence in favor of our assumption that IP net-
works act as cascades and we discuss a workload model for
data traffic that captures both the multifractal (i.e., small
time scaling properties) as well as the asymptotically self-
similar (i.e., large time scaling properties) nature of mea-
sured WAN traffic. We conclude in Section 5 by illustrating
with some examples the potential impact and relevance of
our findings for network performance analysis and traffic
management.
Short description of data sets: Throughout this paper
we use the following high-quality data sets (i.e., packet drops
reported by tcpdump were negligible and other causes for
drops have been identified to be negligible as well; high time
stamp accuracy of about 10-100 psec). The trace DIAL1 was
gathered from an FDDI ring (with typical utilization levels
of 5-10%) that connects about 420 modems to the rest of
the Internet. Although we collect every packet seen on the
FDDI ring, DIAL] contains (bidirectional) modem user traf-
fic only. It was collected on July 23, 1997 between 19:02
and 23:43 and consists of a total of 12,870,502 packets and
4.212 Gbytes. A 1-hour segment of this trace (from 22:00
to 23:00), referred to as DIAL2, contains 2,752,779 packets
(a total of 8,719,659 packets were seen on the FDDI ring
during this period). The trace DIAL3 was collected in the
same location as DIAL1, on July 22, 1997 between 22:00
and 23:00, and contains modem user as well as non-modem
user traffic totaling 8,910,014 packets. A second dataset
was gathered off a T3 backbone link of the same [SP; the
trace BACKB was collected on December 7, 1997 between
21:27 and 21:49 and consists of a total of 9,919,939 packets
and 2.617 Gbytes. Finally, a third, non-ISP related dataset,
consisting of 3,903,350 packets and 1.131 Gbytes, was col-



lected off an Ethernet connecting AT&T Labs-Research at
Florham Park, NJ to the Internet via a fractional T3 con-
nection (3Mbps). The trace ATTLAB1 was collected on Oc-
tober 19, 1997, between 12:15 and 20:05; the 1-hour segment
(16:00 to 17:00) is referred to as ATTLAB2, and the 17:00-
18:00 hour segment by ATTLAB3.

2  Wavelets and the nature of WAN traffic

In this section we introduce wavelets as our main mathemat-
ical technique for detecting and identifying global and local
scaling of measured network traffic. We explain the notions
of monofractal and multifractal on an intuitive level, and
relate them to the concept of self-similarity.

2.1 The discrete wavelet transform

The ability of wavelets to “localize” a signal in both time
and scale makes them an attractive mathematical tool for
many applications in the physical and engineering sciences;
see [15] for an introduction to wavelets, and [6] for a more
mathematical treatment of the subject. Wavelets provide
the mathematical framework in a multiresolution analysis
(MRA) that formalizes the notion of coarse and fine approx-
imations and gives meaning to the increment in information
needed to pass from one level of approximation to another.
The key feature of an MRA is that we can write an approx-
imation, X, of a signal X, at scale j (with resolution 27) as
the sum of a coarser approximation X;;1 at scale j+1 (with
resolution 2t1) and the “detail” Dji11 = X; — Xj41; i-e.,
the difference between these two approximations. We may
iterate this procedure, writing the approximation at scale
7+ 1, X;41, as a sum of a coarser approximation X;4o and
the difference Dj10 = X411 —Dj42, and soon: X; = X, 41+
Djpr = Xjpo + Djra+ Dygr ...

More formally, an MRA guarantees the existence of a
scaling function ¢ (which is used to express the approxima-
tion) and a wavelet ¢ (which is essential for the definition
of the details) such that a signal X can be written as

D (X dosdbon+ Y > AX Y (1)

keZ <0 keZ

DO X ),
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where ¢; x(t) = 277/2¢(277 t—k) and o, x (t) = 2772 (277 t—
k) are the shifted and dilated versions of the scaling function
and the wavelet, respectively. For example, the wavelet
given by ¢(t) = 1if t € [0,1/2), ¢(t) = =1 if ¢t € [1/2,1)
and ¢(t) = 0 otherwise, is known as the Haar wavelet, and
the corresponding scaling function ¢ is given by ¢(t) = 1
if ¢ € [0,1) and 0 otherwise. The representation (1) is
called the wavelet decomposition of the signal X, and d; =
(X, %;x), the inner product of X with ¢; is commonly
referred to as the wavelet coefficient at scale j and time
27k. The quantity |d;x|> measures the amount of energy
in the signal X about the time ¢y, = 2’k and about the
frequency 277 Ao, where Ao is a reference frequency which
depends on the wavelet . The set of all wavelet coefficients
{d;r:7 € Z,k € Z} is called the discrete wavelet transform
(DWT) of the signal X and its key feature is that it con-
tains the same information as the signal X i.e., it allows us
to reconstruct X completely from its wavelet coefficients by

setting X (t) = Z]ez ZkeZ dj kt5,r(t).

Intuitively, the discrete wavelet transform divides a sig-
nal into different frequency components and analyzes each
component with a resolution matched to its scale. Letting
k(to, ) specify those wavelet coeflicients at scale j that are
influenced by the value of the signal X at time to; i.e.,
d; k(to,5) 18 in the “cone of influence associated with the point
to,” we can use the wavelet coefficients to study directly ei-
ther scale- or time-dependent properties of a given signal
X. For example, by fixing a given scale j and studying X
at that scale across time, we can obtain information about
the scaling behavior of X, as a function of 5. On the other
hand, fixing a point ¢ in time and investigating the wavelet
coefficients {d; 1(s,,;) : J < 0} across finer and finer scales
results in powerful techniques for investigating the nature of
local irregularities or singularities in the signal, as a function
of to. While the former method results in scaling properties
that hold globally (across the whole signal), the latter tech-
nique captures the idea behind the notion of “the wavelet
transform as a mathematical microscope” (e.g., see Arneodo
[2]), provides (local) information about the fine structure of
the signal at a given point in time, and thus opens up new
ways for studying the intrinsic nature of “bursts” in mea-
sured network traffic.

2.2 DWT and scale-localization: Self-similarity

We first illustrate that wavelets with their built-in scale-
localization ability provide an ideal mathematical tool for
investigating the scaling behavior of self-similar processes
across all (a wide range of ) time scales.! Abry and Veitch [1]
have shown that if X is a self-similar process with Hurst
parameter H € (1/2,1), then the expectation of the energy
E; that lies within a given bandwidth 277 around frequency
277 )Xo is given by

1 _ _
E[EJ]=E[E;|dJ,k|2] =270 (2)

where ¢ is a prefactor that does not depend on j, and where
N; denotes the number of wavelet coefficients at scale 3. By
plotting log, E; against scale j (where j = 1 is the finest
scale and j = N > 1 is the coarsest) and identifying scal-
ing regions, breakpoints and non-scaling behavior, we have
an unbiased scaling analysis of a given signal X that is sim-
ple, computationally efficient and informative. For example,
the scaling analysis of a signal which is exactly self-similar
will yield a linear plot of log, E; vs. j for all scales; for a
fractional Gaussian noise trace with H = 0.7 and for a Pois-
son trace (i.e., H = 0.5), the corresponding scaling plots
are shown in Figure 1 (left). On the other hand, for an
asymptotically self-similar signal a linear relationship be-
tween log, F; and scale j will be apparent only for large
times or scales.

Figure 1 shows the scaling analysis for five different traf-
fic traces: August’89 Bellcore Ethernet LAN trace (left),
an 1994 LBL WAN trace (left), the WAN trace ATTLAB2
(right), and WAN traces DIAL3 and BACKB (middle). The
LAN trace shows an approximate linear relationship for a
wide range of scales, with an estimated Hurst parameter of
about 0.8 (consistent with previously reported estimates,
e.g., [17, 1]), but with some deviations from linearity at
the very small scales. All the WAN traces show a scal-
ing behavior that is, in general, more complex than that
of the LAN trace: well-defined large-time scaling regions

LFor the global scaling analysis presented in this subsection, we
use the Daubechies wavelets [6].
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Figure 1: Global scaling analysis of packet-level LAN and WAN and test traces: exactly self-similar trace with H = 0.7,
Poisson trace, i.e., H = 0.5, Bellcore’89 LAN, and LBL’94 WAN (left); D1AL3 (middle) and BACKB (middle); and ATTLAB2
(right). Note the different labeling at the bottom and the top of the plots: scale 5 (bottom, 5 = 1 is finest scale); actual time
(top, in seconds). The vertical bars at each scale represent 95% confidence intervals for log, (Ej).

where the relationship is roughly linear—confirming the pre-
viously reported asymptotically self-similar nature of WAN
traffic (e.g., see [25] for the 1994 LBL WAN trace); apparent
breakpoints at scales on the order of a few hundreds of mil-
liseconds; and complex small-time scaling behavior that is
distinctly different from the large-time scaling features. For
a more comprehensive study of the global scaling properties

of measured WAN traffic, see [9].

2.3 From self-similarity to multifractals

Figure 1 gives a concise picture of our current understanding
of WAN traffic dynamics: measured WAN traffic is consis-
tent with asymptotic self-similarity or large time scaling and
exhibits small time scaling features that are very different
from those observed over large time scales. To provide an ad-
equate and complete description of WAN traffic, it is there-
fore necessary to get a handle on those small time scaling
features. To this end, results by Erramilli et al. [7] suggest
that networking mechanisms operating on small time scales
are a possible explanation for the observed small time scal-
ing behavior in measured WAN traffic. Such mechanisms
can cause the traffic to exhibit pronounced local variations
and irregularities.

To quantify these local variations in the traffic at a par-
ticular point in time to, we turn to the traffic rate process,
the number of packets or bytes in an interval [{o, fo + dt] of
length 6t at to. We say that the traffic has a local scaling
exponent a(to) at time to if the traffic rate process behaves
like (5t)a(t0) as 8t — 0. Note that a(ts) > 1 corresponds to
instants with low intensity levels or small local variations,
while a(to) < 11is found in regions with high levels of bursti-
ness. Informally, signals with a(fg) = H at all instants
to are called monofractal (and include exactly self-similar
processes) while signals with nonconstant scaling exponent
a(ty) are called multifractal.

Unfortunately, to obtain detailed information about the
local variations of traffic at a particular point in time, tradi-
tional statistical inference techniques—including the scaling
analysis presented in Section 2.2—are inadequate because
they are global in nature; i.e., they provide information that
holds across the whole trace. Instead, we rely here on the
ability of wavelets to serve as “mathematical microscope”
with which we can zoom in and examine the variations in
a trace at a particular point in time. Because the DWT
yields a complete reconstruction of a given signal, it can be
used to recover the local irregularities in the traffic and, in

particular, to estimate the local scaling exponents. Roughly
speaking, if the signal or trace X has a local scaling ex-
ponent a(to) at to, then for large negative j-values (small
scales), the wavelet coeflicients affected by X (¢9) behave like
d; k(t,5) = 27(a(to)+1/2) [@], where for two functions f and
g, f(7) = g(j) means that lim;_,_ f(5)/g(s) = const, .

To illustrate this local scaling property in measured WAN
traffic, we employ a naive wavelet-based heuristic for a crude
estimation of the scaling exponent associated with each point
in the trace.? Then depending on the value of the scaling
exponent, we pick a gray scale and plot the correspond-
ing observation in the chosen shade of gray. The darker
the shade of gray, the smaller the scaling exponent or the
“burstier” the signal at that point in time; lighter shades of
gray correspond to instants with larger scaling exponents or
“lull” periods in the signal. Note that in theory, self-similar
or monofractal scaling should result in one shade of gray
throughout the entire trace, but in practice some variability
in the gray-shading has to be expected. To get a sense for
how much variability can be expected, the top plot in Fig-
ure 2 shows the results of applying our scaling heuristic to an
exactly self-similar trace and serves as an example against
which we can calibrate deviations from monofractal scaling.
For example, the remaining plots in Figure 2 depict the local
scaling behavior for a segment of the Bellcore’89 LLAN trace
averaged over 10 milliseconds, a segment of the WAN trace
DIAL2 averaged over 500 milliseconds, and finally a segment
of the WAN trace DIAL3 at the 1 millisecond time scale. Vi-
sually, the first two plots show a similar behavior, both in
terms of the predominant shades of gray as well with regard
to the relatively smooth transitions from one gray scale to
another. More importantly, the two plots suggest that dif-
ferences in the local scaling exponents (as expressed by the
different shades of gray) in the LAN trace are well within the
natural variability associated with the limited local scaling
behavior of an exactly self-similar trace. In contrast, the 1
millisecond WAN trace (bottom plot) shows clear signs of
multifractal scaling behavior: instants with dark shades of
gray across the whole trace, abrupt transitions from dark- to
light-shaded periods and vice versa, and a much less smooth
overall texture than the top two plots. Note however that
when averaging WAN traffic over 500 millisecond intervals,
it becomes more LAN-like or self-similar, though still with a

?To pick out the bursty regions, we threshold the wavelet coeffi-
cients of the signal, keeping only those with magnitudes exceeding
a given value. Then we calculate the local scaling exponents of the
reconstituted signal via a linear regression of log d; x(¢,,5) versus j.
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Figure 2: lLocal scaling analysis of packet-level data traf-
fic; different shades of gray indicate different magnitudes
of the local scaling exponents at the different point in the
traffic trace (black for small scaling exponents or “bursty”
instants), light for large scaling exponents or “lull” peri-
ods). From top to bottom: (exactly) self-similar traffic,
Bellcore’89 LAN trace, WAN trace DIAL2 averaged over 500
msec, WAN trace DIAL3 at the 1 msec time scale.

few instances where the local scaling exponents exceed the
variability associated with a monofractal trace. Thus, the
bottom two plots visualize the previously observed asymp-
totically self-similarity property of measured WAN traffic:
the small time scaling properties appear to be consistent
with multifractal scaling behavior, and when aggregating
over larger time scales, the large time scaling features start
to conform to monofractality.

2.4 DWT and time-localization: Multifractals

Figure 2 depicts visually the distinctly different local scaling
behavior of measured WAN traffic, of an exactly self-similar
trace, and of measured LAN traffic. Motivated by this visu-
ally appealing heuristic for qualitatively assessing the local
scaling behavior of a given trace, our goal is to develop a
quantitative approach that is more rigorous and allows us
to draw statistically sound conclusions about the local scal-
ing behavior (e.g., whether some scaling exponents occur
more frequently than others, and if so, which one).

To this end and to build intuition, we first assume that

there is only one scaling exponent « for the entire trace;
i.e., the trace is monofractal. Then the wavelet coefficients
all behave like d;; ~ 27(°71/?) as j tends to —oc. In this
case evaluating the so-called wavelet-based partition func-
tion S(q, j), defined by summing across each level j the gth
moments (with g > 0) of the absolute value of the normal-

ized wavelet coefficients cijyk = 2_J/2d]7k; le., setting
S(q,5) =Y |d;ul?, (3)
k

we obtain S(q,j) ~ 27727%9 = 2791=29)  Note that for
g = 0, 5(0,75) = Nj, the number of wavelet coeflicients at
scale j, and for ¢ = 2, S(2,j) denotes the energy E; at
scale j considered in the global scaling analysis in Section
2.2 (up to a normalization factor). Intuitively, for ¢ > 2,
the function S(q, j) takes into account the effects of higher-
order statistics that may be present in a trace and hence
may be contained in the DWT of the trace. Moreover, be-
cause wavelet coefficients tend to decorrelate quickly within
a given scale as well across different scales (for the specific
case of fractional Brownian motion see [29] and for more
general settings see [21]), it can be expected that hardly
any information about possibly strong correlations within
the trace is lost by defining the partition function S(q, j) as
in (3).

Next, to examine the scaling behavior of S(q, j) as the
time scale or resolution level becomes finer and finer (i.e.,
j — —oo), we consider the corresponding wavelet-based
structure function 7(q) defined as the scaling exponent of
S(q,7), as 7 — —oo; that is,

. log S(q, 7)
= 1[[ _— 4
T(q) ]—1—00 ]10g2 ( )

In other words, we check whether or not the partition func-
tion behaves like S(q, 7) ~ 277(9) a5 we look at finer and finer
time scales (i.e., j — —oo). For the example at hand, it is
easy to see that 7(q) = ag—1; i.e., the structure function of
a monofractal signal is linear in ¢. In particular, if the trace
is self-similar with Hurst parameter H, then 7(q) = Hg—1
and H can be easily inferred from the structure function.

For a slightly more complicated example that shows that
7(q) indeed contains information about the frequency of oc-
currence of different local scaling exponents, assume now
that 1007%(0 < v < 1) of the trace has a local scaling expo-
nent o1 and the other 100(1 — ’y)% of the trace scales with
an exponent oz # a1. Then, for large negative j-values (fine
resolution levels), 1007% of the wavelet coeflicients d; i scale
like 27(®1%1/2) and the other 100(1—~)% like 27(@241/2). the
actual location of these two types of coefficients within level
7 1s not crucial. A simple calculation shows that in this case,
the partition function behaves like

S(q7 ]) = 2-](7—(11(1) + 2_J((1_W’)—o¢2q)7

and that the structure function 7(q) is determined by the
relative strengths of the local scaling exponents a1 and a2;in
fact, identifying the leading term in the limiting expression
lim;_, o log S(q,j)/(5log2), we obtain

7(q) = min(a1q — v, a2q — (1 — 7)).

In other words, because the trace contains more than one
local scaling exponent, 7(g) is no longer linear in ¢ but is
instead a concave function of ¢q. For this example, the struc-
ture function is in fact piecewise linear, following one of the



linear functions in the expression for 7(gq) for some values of
q and then following the other linear function for the larger
q values; furthermore, the location of the breakpoint reflects
the composition of the scaling exponents in the trace.
These simple examples can easily be generalized to ac-
count for a finite number of different scaling exponents «; in
the trace, where a “histogram” f(a;) measures the number
of instants in the trace which have local scaling exponent
a;. For example, in the previous case of two different scal-
ing exponents, we have f(a1) = v and f(a2) =1—7~. In
turn, this motivates the precise relationship that exists be-
tween the “histogram” f(a), commonly referred to as the
multifractal spectrum of the signal, and the partition func-

tion 7(q): .
7(¢) = min(ag — f(a)). (5)

The above examples also allow us to properly interpret the
7(q) function derived from the DWT of a given signal. A
more or less linear 7(g) function is consistent with monofrac-
tal scaling and rules out multifractality. On the other hand,
the more concave the shape of 7(q), the wider the range of
local scaling exponents found in the signal; in particular, a
concave shape of the structure function is consistent with
multifractality.

To illustrate the time-localization ability of wavelets to
infer mono- or multifractal scaling, Figure 3 shows the re-
sults of applying the (Haar wavelet-based) DWT structure
function method to a number of WAN and test traces. For
each trace, we picked 10 milliseconds as the finest resolution
level (i.e., 5 = —18; for the shorter self-similar trace, the
finest resolution level corresponds to j = —15) and examined
the scaling behavior of the partition function S(q, j) over a
range of fine resolution levels, i.e., for j-values bigger than
—18.7 The four left plots in Figure 3 show the logarithm of
the modified partition function log g(q, Jj) against j, for dif-
ferent g-values ranging from ¢ = 0, 4, 8, 12, 16, 20, for the
Bellcore’89 LAN trace (top left), an exactly self-similar trace
(H = 0.7, top middle), and the WAN trace DIAL3 (bottom
left) and ATTLAB3 (bottom middle). All partition function
plots suggest the presence of well-defined fine-time scaling
regions (right-hand side of each plots, ranging over 10 or
more of the finest time scales) where reading off the slopes
of the different lines, i.e., determining the value of the struc-
ture function 7(q) at different ¢’s, appears to be relatively
insensitive to the particular choice of the upper cutoff scale
(i.e., coarse time scales or small negative j-values), beyond
which different scaling regimes seem to exist. To illustrate
how to get the structure functions from the corresponding
partition function plots, consider for example, 7(8) for the
Bellcore’89 LAN trace (top right plot); 7(8) is obtained by
estimating the slope of the line labeled “¢ = 8” in the top
left partition function plot over scales (x-axis) ranging from,
say, 7 = —7 to y = —18. The resulting structure functions
7(q) are depicted in the two right plots in Figure 3. The
top right plot shows the 7(g) functions for the Bellcore’89
LAN trace, the self-similar trace and a Poisson trace and il-
lustrates that all three traces result in linear 7(q) functions
of the form 7(q) = Hq — 1, and are hence fully consistent
with monofractal scaling behavior; in fact, one can easily
read off the Hurst parameters for each of these three traces
from their structure function plots: H = 0.8 for the LAN

3Instead of using the partition defined in (3), we relied in our
analysis on the numerically more efficient modified partition function
S(q,4) = Zmax |cij)k|q, where the sum is taken over the local maxima
of the absolute value of the gth moment of the normalized wavelet
coefficients dj x.

trace, H a2 0.7 for the self-similar trace, and H =2 0.5 for the
Poisson trace. In contrast, the bottom right plot in Figure
3 shows the 7(q) functions for the three WAN traces DIAL3,
BACKB and ATTLABS3, all of which show indications of nonlin-
ear, 1.e., concave shapes that are inconsistent with monofrac-
tal behavior and suggest multifractal structure over small
time scales. These results confirm our earlier observations
that for strictly second-order models such as an exactly self-
similar Gaussian process or a Poisson process, multifractal
analysis should result in a trivial (i.e., linear) structure func-
tion, while the presence of higher-order statistics should be
reflected in a more or less pronounced nonlinear structure
function. To this end, the LAN trace seems to be adequately
described by a purely second-order process, while the WAN
traces are not.

3 Structural modeling of WAN traffic: Why multifractal?

In this section, we move beyond the empirical evidence that
measured WAN traffic is consistent with multifractal scal-
ing behavior and turn our attention to the question “Why is
WAN traffic multifractal?” We will answer this question in
two stages. First, we address the above question by claiming
that “WAN traffic 1s multifractal because certain multiplica-
tive cascades lurk in the background.” In a second stage, we
will investigate in Section 4 the problem of associating mul-
tiplicative structure in measured WAN traffic with certain
layers in the TCP/IP protocol hierarchy.

3.1 Cascades and multifractals

Informally we say, following Evertsz and Mandelbrot [8],
that a process that fragments a set into smaller and smaller
components according to some rule, and at the same time
fragments the measure or mass associated with these compo-
nents according to some other rule is a multiplicative process
or cascade. The more formal mathematical construction of a
cascade starts with an initial mass M distributed uniformly
over the unit interval I = [0,1). We assume for conve-
nience a dyadic partitioning of /, and in a first stage of the
cascade construction, we divide [ into the two subintervals
I1(0) =1[0,1/2) and I(1) = [1/2,1) and assign mass M to
1(0) and mass yM to I(1). The multipliers x and y are cho-
sen according to a particular rule that characterizes the type
of cascade and will be specified shortly. Iterating this con-
struction process, we divide each parent interval into its two
dyadic subintervals, choose multipliers x and y in agreement
with the specified rule, and assign the appropriate mass to
the left and right subinterval, respectively. To simplify no-
tation, we denote the dyadic intervals of resolution size 27
that are generated at the I-th stage of this cascade construc-
tion by I(j1,...,71) = [ Zi@:l jkz—k7zi€=1 Jx27F 4 270,
with 7, € {0,1} and I = 1,2,....

Cascade models have been especially popular in the sta-
tistical theory of turbulence (see references in [8]), and more
recently, in the hydrologic and atmospheric sciences [13].
In the networking context, cascades are motivated by the
TCP/IP protocol hierarchy and give rise to the conjecture
that TP networks act as cascades. Intuitively, this conjecture
can be substantiated by considering for example the dynam-
ics of a typical Web session: user clicks result in requests,
requests give rise to connections, connections are made up
of flows, and flows consist of individual packets. Note that
during this fragmentation process, the total number of bytes
transmitted during the Web-session is roughly preserved (or
grows slightly, due to headers, acknowledgment packets and
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Figure 3: DWT partition function analysis (left and middle) of packet-level LAN, test, and WAN traces; Bellcore’89 LAN (top
left), self-similar trace (top middle), DIAL3 (bottom left), and ATTLAB3 (bottom middle). DWT structure function analysis

(on the right) of packet-level LAN, test, and WAN traces.

overhead). To satisfy this approximate mass preservation
property and to also allow for some degree of randomness
in the way mass gets redistributed in the process of this
construction, we consider in the following a semi-random
rule that assigns mass MW to the interval I(0) and mass
M(1— W) to I(1), where the “generator” W is a random
variable with mean 1/2, takes on values in (0, 1), and is sym-
metric about its mean. To iterate this procedure, we con-

sider a sequence of random variables W(j1,...,5),1 > 1,
with a dependence structure given by
W, o, 5i—1,1) =1 =W(,..., ji—1,0). (6)

and where, because of the properties of the generator, the
random variables W (j1, ..., ji—1,0)and W(j1,..., ji—1,1) =
1— W(j1,...,51—1,0) are identically distributed as W. This
construction gives rise to a semi-random cascade® and gen-
erates a collection of measures 1 (think of the total number
of packets or bytes per interval, where [ defines the time
scale) such that

J)- (7)

Note that because of this multiplicative property, the y;’s or,
in our case, the traffic rate processes at fine time scales (i.e.,
large 1) have perforce approximately lognormal marginals.
The limiting object generated by a semi-random cascade
can be shown to define a genuine multifractal; see [14, 11]
and references therein.

wi(L(gr, - 50)) = MW (GOW (g1, j2) - W, -

3.2 Wavelet analysis of semi-random cascades

For the remaining part of the paper, we will focus exclusively
on these semi-random cascades and variations thereof, where
the generator W is allowed to change at each stage of the
cascade construction in a way to be specified shortly. We
summarize here the main results of a (Haar) wavelet-based
global and local scaling analysis applied to this class of semi-
random cascades (for further details and proofs, see [11]).
In effect, we show below that the DWT of semi-random

4Semi-random cascade are also called conservative cascades (B.B.
Mandelbrot, personal communication, 1998).

cascades gives rise to a set of analysis and inference tools
that allows us to detect and identify the global and local
scaling properties of multifractal objects generated by the
semi-random cascade.

To start, consider a semi-random cascade with fixed gen-
erator W; i.e., W has mean 1/2, takes on values in (0, 1) and
is symmetric about its mean. If X denotes the limiting mul-
tifractal generated by this semi-random cascade, then X has
global linear scaling; that is (see Section 2.2, left-hand side
of Eq. (2)), the logarithm of the expected value of the en-
ergy F; in X around level [ in the cascade construction of
X depends linearly on { (plotted from large I, fine scales, to
small I, coarse scales) and has the form

log, E[Ei] = (1 4 log, E[W?])l + log, E[(2W —1)°].
Note that the slope 1+ log, E[W?] depends only on E[W?],

the second moment of the generator. Thus, if we want a non-
linear global scaling behavior for X, we need to change the
second moment of the generator W at each level (or within
a range of levels) in our cascade construction. One way to
achieve this is to let W (71, ..., 51) be equal in distribution to
MW 41/2(1—=X;) where A} = Var(W (51,...,5))/Var(W) <
1. The hmiting object X resulting from a semi-random cas-
cade construction with this type of variable generator can
be shown to exhibit non-linear global scaling behavior. In
particular, if the factors A? associated with the generators
at each stage in the cascade construction increase (decrease)
monotonically as we go to finer and finer time scales, then
the slope of the global scaling analysis increases (decreases)
monotonically as we move from fine to coarse scales.

Turning to the local scaling analysis of a multifractal X
generated by a semi-random cascade with fixed generator
W, the DWT structure function 7(g) defined in (4), that is,
the scaling exponent of the partition function S(g, 5) given
by (3), can be computed as

7(q) = —1 —log, E[W*], ¢>0.

Moreover, the multifractal spectrum f(a) of X can be ob-
tained from 7(g) by setting

fla)= m;n(qoz —7(q)).



The same results hold if the fixed generator W is replaced
by a variable generator of the type considered above (i.e.,
W(gr,...,50) = aW4+1/2(1—X;)), with a more complicated
expression for the DWT structure function associated with
the underlying limiting multifractal. These results make rig-
orous the arguments given in Section 2.4 for the class of
multifractals generated by semi-random cascades. To apply
these findings in practice, we must check whether or not a
given signal conforms to a semi-random cascade construc-
tion.

3.3 Aggregate WAN traffic and semi-random cascades

To check whether or not a semi-random rule for redistribut-
ing mass (which we will equate with number of packets per
chosen time interval) from a parent to its child on the left
and to the one on its right is consistent with a given traffic
trace, we describe in the following a procedure that essen-
tially inverts the cascade construction process in order to
gain information about its generation mechanism.
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Figure 4: Inferring the generator of a semi-random cascade:
density of the ratios for DIAL2 for levels 3, 9, and 14 in
the inverse cascade procedure (top); autocorrelations of the
ratios for DIAL2 for levels 3, 9, and 14 (the horizontal lines
define the 95% confidence band for the autocorrelations to
be statistically significant).

The procedure consists of fixing a fine time scale A (say,
1 or 10 msec intervals) and summing over non-overlapping
blocks of children of size 2, thereby calculating the “parent”
time series representing the number of packets per time unit
of size 2A, and iterating. In effect we obtain the time series
representing the total number of packets that each parent re-
distributed to its two children. We then check the properties
of the empirical distribution of the ratios number of packets
in the left (child) interval divided by number of packets in
the corresponding parent interval and use this information to
judge the appropriateness of a semi-random rule and to in-
fer the underlying generator W for the semi-random cascade
construction.

Figure 4 shows the results of applying this procedure to
dataset DIAL2. The top plot depicts the empirical probabil-
ity density functions of the ratios for a number of selected
stages in the process of inverting the cascade construction,
together with their fitted truncated normal distributions; for
the same stages, the subsequent three plots give the empir-
ical autocorrelation functions for the corresponding ratios.
Figure 4 suggests that across the different levels in the con-
struction, the empirically observed properties of the ratios
agree reasonably well with a semi-random rule: the density
plots conform to a generator W that is symmetric around
1/2 (e.g., a truncated normal), and the autocorrelation plots
indicate no significant dependence across a given level, ex-
cept for some small yet statistically significant small-lag cor-
relations. Moreover, the plot in Figure 5 labeled DIAL2
which gives the empirical standard deviation of the ratios
(note log-scale on y-axis), as a function of scale (i.e., level
in the cascade construction), suggests a variable generator
W with a standard deviation that increases monotonically
when moving from coarse scales to finer scales. Similar con-
clusions about the appropriateness of an underlying semi-
random cascade construction with a variable generator hold
for the other WAN traces, but only the plots of the empirical
standard deviation of the corresponding ratios are shown in
Figure 5.

There 1s nothing that prevents us from applying this
procedure to traces that are not generated via an underly-
ing semi-random cascade construction. Thus, the question
arises how to use this procedure to identify such cases and
how to distinguish them from those that are indeed consis-
tent with an underlying semi-random cascade construction.
To this end, we applied the procedure of inverting the cas-
cade construction to the dataset BACKB, and then generated
a synthetic trace according to a semi-random cascade con-
struction; as our generator W, we picked a truncated normal

n (0,1), symmetric around 1/2, and we changed the vari-
ability of W according to the plot of the empirical standard
deviation of the ratios labeled BACKB in Figure 5. The re-
sulting trace agrees favorably with the data, not only with
respect to the traditionally and often exclusively used mea-
sures (i.e., their first- and second-order statistics; not shown
here), but also with respect to their structure functions 7(g)
which capture the multifractal scaling properties of the data
and the synthetic trace, respectively; see the plots labeled
trace data and cascade trace in Figure 5. In stark contrast,
when performing the same experiment for a trace gener-
ated from a Poisson process (for a plot of the corresponding
empirical standard deviation of the ratios resulting from the
inverse cascade procedure applied to a Poisson trace, see line
labeled Poisson in Figure 5 (top)), the difference shows up
very clearly when analyzing the multifractal scaling behav-
ior of the trace data and the synthetic trace—see the 7(q)-
functions labeled Poisson and cascade Poisson in Figure 5.



o
o
o
)
o O\O\
a O\o
~x ~o_
= o ~A o
R=R=1 ~x o
F 8] Ee_ oo
5o 2 ~o_
= Nt o= =] o o
= ~-o- -
S o S~al N,-o-©°
g5 SN
£ O —— DIAL 2 =
< JAN BACKB
ATTLAB 3
] POISSON
o
(=) "
S fine scale coarse scale
o
i . O‘:
4+ Poisson 0o°
S cascade Poisson .=°
O —— trace data o0 .
o4 cascade trace
—_ 22® L
Zeo
= -
<1
~
o

15 20

Figure 5: Variability of the ratios, as a function of the level
in the inverse cascade procedure for DIAL2, BACKB, ATT-
LAB3, and a Poisson trace (top). Structure functions 7(g)
for BACKB (at 10 millisecond resolution) and a Poisson trace,
and the corresponding cascade traces.

Similar results hold when the Poisson process is replaced by,
for example, a self-similar trace.

4 Networks as cascades

The results in Section 3.3 raise a fundamental networking
question: “Why does WAN traffic appear to be multiplica-
tively generated?” We do not answer this question directly,
but instead identify below levels in the protocol hierarchy
where the multiplicative structure is more apparent than at
other levels. Thus, by isolating those aspects of WAN traffic
that conform to a multiplicative structure from those that
do not, this study represents a first step in explaining how
and why data networks act as cascades.

4.1 Additive vs. multiplicative

The mathematical results and physical explanations of the
observed self-similarity or monofractal nature of measured
traffic traces state explicitly that self-similarity is an ad-
ditive property of network traffic. That is, self-similarity
arises from aggregating many ON/OF F-streams [31] or from
superposing many renewal-type connections (appropriately
“thinned” so that the resulting connection arrival process is
Poisson), provided the individual ON/OFF-periods or con-
nection durations/sizes exhibit extreme variability (i.e., are
heavy-tailed with infinite variance) [16, 30]. As such, self-
similarity is plausibly the result of user behavior (e.g., dy-
namics of web browsing), application-specific features (e.g.,
layout of web pages), and the inherent properties of the ob-
jects (e.g., sizes of text, picture, video, audio files) that are
sent across the network. In particular, these findings imply
that the precise nature of the local traffic structure within
individual ON-periods or connections is not essential for self-
similarity of the aggregate traffic stream. Being additive in
nature, aggregate network traffic will be approximately nor-
mal when viewed over sufficiently large time scales, provided

certain weak conditions on the individual traffic streams
(e.g., finite variance of their rates) hold for the central limit
theorem to apply.®

On the other hand, the observed multifractal nature of
network traffic over small time scales and the empirical ev-
idence presented in Section 3.3 in support of an underlying
cascade mechanism implies that over those fine time scales,
network traffic is multiplicatively generated. In other words,
at the microscopic level, the traffic rate process (e.g., number
of packets per small time unit) has an approximate lognor-
mal shape because it is the product of a large number of
more or less independent “multipliers” (see (7)).°

These observations give rise to the questions of where in
the network the multiplicative structure can be found most
easily, how the multipliers can be explained in a network-
ing context, and why network traffic might be multiplica-
tively generated. Leaving the last two questions for future
work, we tackle in this section the first question and iden-
tify layers in the protocol hierarchy of IP network where the
multiplicative structure seems to dominate. To contrast, we
also illustrate the cases, usually found at the higher levels
in the protocol hierarchy, where the additive aspects of net-
work traffic start to show up and ultimately to dominate the
multiplicative structure.

4.2 |IP flows and packets within IP flows

When we try to identify aspects of network traffic that are
not affected in a major way by additive components such as
its global connection-level characteristics, we have to look
at layers in the TCP/IP protocol hierarchy where the influ-
ence of user behavior and of application-related peculiarities
is no longer dominant but where the network, through its
end-to-end congestion control algorithms and other mecha-
nisms, determines the flow of packets across the network. An
obvious candidate for this purpose is the TCP layer where
we can study global traffic characteristics related to the ad-
ditive nature of network traffic (e.g., the arrival process of
TCP of connections, distribution of the connection dura-
tions or sizes) as well as the local traffic characteristics of
individual TCP connections (e.g., the packet arrival patterns
within individual TCP connections). To this end, we define
a port-to-port flow as consisting of all packets flowing in e:-
ther direction between two IP hosts that use the same source
and destination port numbers and that are separated in time
by less than 60 seconds (see [4, 10]). Notice that port-to-
port flows are reasonable substitutes for TCP connections
because most packets within a TCP connection are part of
a single port-to-port flow; in fact, only those packets within
a single TCP connection with idle times longer than 60 sec-
onds will be split among multiple port-to-port flows. One
advantage of using port-to-port flows rather than TCP con-
nections is that the former are also applicable to non-TCP
traffic such as UDP.

Applying this definition to trace DIAL2 results in 362,371
port-to-port flows, with an average number of packets (bytes)

5 Additive structure leading to normal distributions is discussed in
[22], where a central limit theorem argument for justifying the normal
distribution of the height of people is paraphrased by the popular
saying “... foot bone 'tached to leg bone, leg bone 'tached to the knee
bone, knee bone 'tached to the thigh bone, thigh bone 'tached to the
hip bone,” etc.

SMultiplicative structure giving rise to lognormal distributions is
exemplified by adapting Franklin’s proverb (see [22]) to the network-
ing setting as follows: “for the want of a packet a flow is needed, for
the want of a flow a TCP connection is needed, for the want of a TCP
connection an application is needed,” etc.
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of 35.5 (12,480) and a median of 9 (1466). The global scal-
ing analysis plots for the trace consisting of the number of
port-to-port flow arrivals per second for this time series as
well as for the WAN trace ATTLAB1 are given in Figure 6 and
illustrate the self-similar scaling property of network traffic
at the TCP layer over time scales larger than a few seconds.
This finding also confirms the additive nature of network
traffic at the level of global port-to-port characteristics: the
time series of the total number of port-to-port flows is gener-
ated by summing over all “sessions” each of which contains
a heavy-tailed number of flows (for details, see [9]).

Small time scaling properties that suggest multifractal
behavior at the level of individual port-to-port flows for trace
DIAL2 are shown in Figure 7. In particular, we consider the
top 1000 port-to-port flows which make up more than 40%
of the packets or bytes of the overall traffic; the largest flow
consists of 216,959 packets, the smallest flow considered has
about 1,000 packets. We then apply the inverse cascade pro-
cedure described in detail in Section 3.4 to each one of the
1000 flows and focus in Figure 7 on the properties of the log-
arithm of the empirical standard deviation of the ratios (as a
function of scale, where we go from fine to coarse scales; see
top plot in Figure 5) associated with the different flows. For
each flow, (flow index on the x-axis), we fit a least squares
line to the plot of the (logarithm of the) empirical standard
deviation of the ratios and plot in Figure 7 (top plot) the
slope (lower part) and the resulting R*-value (upper part)
where the latter serves as an indicator for the quality of
the linear fit (i.e., R?-values close to 1 indicate near-perfect
fit, low values of R? indicate that a linear fit is ill-advised).
The top plot in Figure 7 shows that slope-values around
—0.2 dominate and that a clear majority of linear fits result
in large R?-values, which we take as strong indication of
the appropriateness of a linear behavior (with slope around
—0.2) of the (logarithm of the) empirical standard devia-
tion of the ratios of a “typical” port-to-port flow. Picking
a port-to-port flow with a generator W* that shows this
“typical” behavior for the corresponding empirical standard
deviation of the ratios, the bottom plot in Figure 7 shows
the 7(g) functions resulting from the local scaling analysis
of the actual port-to-port flow trace that gave rise to this
variable generator, and of four synthetically generated real-
izations of a semi-random cascade with W™ as its variable
generator. The respective structure functions agree reason-
ably well, which we take as empirical evidence in favor of a
multiplicative mechanism that governs the highly irregular
traffic rate process within this port-to-port flow and that
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Figure 7: Port-to-port flows and their multifractal scaling
analysis (trace DIAL2): Slopes (lower part of top plot) and
R?-values (upper part of top plot) obtained from fitting a
least squares line to the logarithm of the empirical standard
deviation of the ratios associated with the semi-random gen-
erator inferred from each of the top 1000 port-to-port flows
(x-axis gives index of port-to-port flow); DWT structure
function 7(q) for a “typical” port-to-port flow trace and four
realizations of a semi-random cascade generated via the vari-
able generator corresponding to the “typical” flow (bottom).

gives rise to multifractal scaling behavior of the flow’s local
traffic dynamics.

Similar results hold (not shown here) when analyzing
the other WAN traces or when replacing port-to-port flows
by flows that aggregate packets at a slightly higher level in
the network hierarchy (e.g., host-application flows defined
as consisting of all packets flowing in either direction be-
tween two IP hosts and separated in time by less than 60
seconds). Intuitively, replacing port-to-port flows by, for
example, host-application flows should not make a signif-
icant difference in identifying the multiplicative and addi-
tive aspects of data traffic. This replacement simply shifts
some higher-layer or user-specific activities to the within-
flow packet dynamics. The results of our analysis using
host-application flows (not shown here) confirm this intu-
ition and suggest that the empirically observed multiplica-
tive structure within flows offers great promise for gaining an
in-depth understanding of the origins and the implications
of the multifractal nature of measured WAN traffic.

4.3 Sessions and packets within sessions

For a more dramatic shift of user- and/or application-related
activities to local packet traffic characteristics, we consider
next network traffic aggregated over user sessions. Before



defining what we mean by a “user session”, recall that the
problem with studying traffic at the level of user sessions is
that determining from a packet-level WAN trace what con-
stitutes a user session and when it starts and ends is, in
general, difficult. This problem is apparent when we try to
extract information regarding Web sessions and it only be-
comes worse when we attempt to define user sessions that are
usually a mixture of many different applications, running ei-
ther in parallel or sequentially. However, we can avoid these
difficulties when we use WAN traces collected from certain
[SPs by combining the packet-level WAN trace information
with user information contained in other data bases main-
tained by the [SPs that provide details about every modem
call made to the particular ISP, including time of arrival
of call, duration (in seconds), size (in bytes) and source IP
address. Thus, in an ISP environment, by equating user ses-
sions with modem calls, we avoid the above difficulties and
can study in detail modem call-related ISP WAN traffic at
the session level. Note that this approach is similar in spirit
to the one pursued in [9], where modem calls were used as
approximate substitute for Web sessions. By considering
the ISP modem traffic trace DIAL1 and studying the global
session characteristics such as session arrivals and session
duration/size, our findings coincide with the ones reported
in [9] and allow us to view sessions as arriving in a more
or less Poisson fashion, carrying with them a “workload”
(e.g., duration in seconds or size in bytes) that follows a
heavy-tailed distribution with infinite variance.
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Figure 8: The inverse cascade procedure for user sessions
(trace DIAL1): Slopes (lower part of top plot) and R*-values
(upper part of top plot) obtained from fitting a least squares
line to the (logarithm of the) empirical standard deviation
of the ratios associated with the semi-random generator in-
ferred from each of the top 300 sessions (x-axis gives index
of session).

Next, we focus on individual sessions and find that a
total of 3,529 different sessions generated the modem call-
specific traffic, with a median number of packets per session
of about 1K and a mean of about 3.5K packets. To check
the multiplicative structure of the within-session packet rate
processes, we consider the top 300 sessions which contribute
about 56% of the packets (bytes) to the overall trace; the
largest user session consisted of 236,071 packets, while the
smallest of the 300 sessions contained about 9,000 packets.
Then we apply the inverse cascade procedure of Section 3.4
to each of the 300 sessions and obtain the variability plots of
the semi-random cascade generators inferred from the 300
session traces. Figure 8 shows the same information as the
top plot in Figure 7, with port-to-port flows replaced by

user sessions. Note however, that in contrast to the port-
to-port flow case, the resulting R?-values are “all over the
picture” (top part of the plot); this suggests that, in general,
fitting a least squares line to the (logarithm of the) empirical
standard deviation of the ratios associated with an inferred
semi-random generator is ill-advised and will perforce yield
a very shallow slope of about —0.1 (lower part of the plot).
Moreover, in this case, picking a session with a generator
W that shows a “typical” behavior for the corresponding
empirical standard deviation of the ratios seems hopeless
and is not recommended. Instead, we illustrate below with
three different examples of user sessions how the interplay
between the additive and multiplicative aspects of network
traffic can affect the multifractal scaling behavior of within-
session packet traffic.

To this end, we consider a user session (consisting of
25,979 packets and 1,100 port-to-port flows, with WWW
being the predominant application) whose inverse cascade
process yields a plot of the (logarithm of the) empirical stan-
dard deviation that decreases quickly for small scales and
then shows a more gradual decrease on the larger scales;
we denote the corresponding variable semi-random cascade
generator by Wi. Intuitively, this behavior can be explained
by the fact that the within-session traffic rate process not
only reflects within-port-to-port packet dynamics but also
application-specific variability due to, for example, the mix
of applications within a session or the user activity within a
Web session. As our second example, we pick another Web-
dominated user session (containing 11,660 packets, twice as
long in duration as the first example, with 725 flows) whose
associated empirical standard deviation plot of the ratios
decreases initially (small scales) but then starts to increase
again as we move to larger scales, and finally decrease again
for the largest scales; let W, denote the corresponding vari-
able generator for the inferred semi-random cascade associ-
ated with this user-session. Finally, as a third example, we
consider a user-session with a more or less linearly decreasing
plot of the (logarithm of the) empirical standard deviation
of the ratios (let W5 denote the corresponding generator),
suggesting a port-to-port like within-session structure, with
a relative low level of activity at the higher protocol layers.
This session contains 5,666 packets or 82 flows and appears
to be a gaming application.

To support this intuition about the dynamics of within-
session traffic rate processes, Figure 9 uses textured plots
(top) to depict the within-session dynamics at the level of
individual port-to-port flows (each points corresponds to the
arrival of a port-to-port flow, a visible horizontal line indi-
cates the duration of the corresponding flow), for the three
generators Wy (left), W (middle) and Ws (right). Also de-
picted in Figure 9 (bottom) are the structure functions cor-
responding to the traces whose generators are Wi, Wy, and
W3, respectively, and of four independent realizations gen-
erated by the corresponding semi-random cascade. On the
one hand, Figure 9 confirms our intuition that the session
with the low level of higher-layer activities (right) conforms
to an underlying multiplicative within-session structure and
agrees with the multifractal behavior observed earlier for
within port-to-port traffic. On the other hand, the left two
plots of Web-related user-sessions shows that high levels of
higher-layer activities can either be implicitly accounted for
by a semi-random cascade construction with a variable gen-
erator (middle) or cannot be adequately captured by such a
process. Thus, while the multiplicative structure of network
traffic can be clearly identified and isolated at the level of
individual port-to-port flows, this becomes less clear when
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Figure 9: Top: Textured plots of arrivals of port-to-port flows, with port-to-port flow duration, for three different user sessions.
Bottom: Multifractal analysis (structure function) of the three sessions with variable generators Wi (left), W, (middle) and

Ws (right).

considering network traffic aggregated to the level of indi-
vidual user sessions. The difficulties can be attributed to
the observation that higher-layer aspects of network traffic
can either be additive, or multiplicative, or a combination of
both, depending on, for example, the mix of applications or
the user behavior in a given session. Note however that by
aggregating over all user sessions, the aggregate packet-level
traffic fully reflects the combined additive and multiplicative
aspects observed at the user session level (see Sections 2 and
3).

4.4 Impact and relevance on workload modeling

Our analysis shows that the clearest distinction between
the additive aspect of measured network traffic (over large
time scales) and its multiplicative property (over small time
scales) can be seen at the level of port-to-port flows (or at
slightly higher aggregation levels). Given the findings re-
ported in Section 4.3, making such a distinction at the level
of individual user sessions seems to be less obvious. How-
ever, to keep things simple, we will ignore in the follow-
ing this difficulty related to user sessions when discussing
an Internet workload modeling approach that assumes that
user sessions (i) arrive in accordance to a Poisson process,
(ii) bring with them a workload (e.g., number of packets or
bytes, number of port-to-port flows, length of session) that
is heavy-tailed with infinite variance, and (iii) distribute the
workload over the lifetime of the session according to a mul-
tiplicatively generated multifractal with a semi-random cas-
cade generator. Thus, for ease of presentation, we assume
here that user sessions have within-session structure that
agrees with what we observed for port-to-port flows.” This

"Future work will consider the more appropriate case, suggested
by our findings earlier in this section, where port-to-port flow counts
are self-similar and where the individual flows are modeled as in (iii).

workload model is a generalization of Kurtz’s model [16, 30]
by allowing the within-session traffic rate process to be gen-
erated by a semi-random cascade model.

The attractive feature of this workload model is that it
accounts in a parsimonious manner for both the global as
well as local scaling characteristics observed in measured
WAN traffic. While the global scaling behavior is already
part of Kurtz’s original model (via the relationship between
heavy-tailed sizes or durations of the individual sessions
and the asymptotic self-similarity of the aggregate packet
stream) and is captured by the Hurst parameter H, the
original model does not incorporate local scaling behavior.
However, we have seen in Section 4.2 that choosing a variable
generator W* for a “typical” semi-random cascade model for
the within-flow traffic rate process is relatively obvious (lin-
early decreasing logarithm of the standard deviation from
small to coarse scales, with a slope of around —0.2) and gives
rise to multifractal scaling as captured by the corresponding
structure function 7(g). Note that the particular form of W*
retains the parsimonious nature of this workload model and
preliminary results suggest that the aggregate traffic gener-
ated by these sessions is at the same time asymptotically
self-similar (with Hurst parameter H) and multifractal (as
expressed in terms of 7(q)).

The practical relevance for such a workload model is that
it allows for a more complete description of network traf-
fic than exists to date in cases where higher-order statis-
tics or multiplicative aspects of the traffic play an impor-
tant role but cannot be adequately accounted for by tradi-
tional strictly second-order descriptions of network traffic.
By aiming for a complete description of traffic, a compre-
hensive analysis of network performance-related problems
becomes feasible and desirable. In the past, thorough an-
alytical studies of which aspects of network traffic are im-
portant for which aspects of network performance have of-



ten been prevented due to a lack of models that provide
provably complete descriptions of the traffic processes under
study. This situation can lead to misconceptions and misun-
derstandings of the relevance of certain aspects of traffic for
certain aspects of performance (e.g., see [27] and [12]). Fi-
nally, in terms of practical relevance, we also argue that by
incorporating—via multifractals—local scaling characteris-
tics of the traffic into a workload model, it may become in
fact feasible to adequately describe traffic in a closed system
(like the Internet) with an open model.

5 Conclusions and outlook

By analyzing a number of different packet-level WAN traces
from different WAN environments and at different layers
within the TCP /IP protocol architecture, we attempt in this
paper to provide an answer to the question of why measured
WAN traffic appears to be multifractal. In effect, we pro-
pose and empirically validate that measured network traffic
conforms to an underlying cascade construction and identify
aspects of network traffic where its multiplicative properties
can be examined in detail. In this sense, we make rigorous
and validate empirically the intuitive notion that networks
act like certain cascades called semi-random cascades and il-
lustrate that they give rise to intricate features in the tempo-
ral dynamics of network traffic that agree with the local and
global scaling phenomena observed in measured WAN traf-
fic. One of our main findings is that the cascade paradigm
or multiplicative nature of network traffic over small time
scales (i.e., where the influence of higher-layer activities is
negligible) appears to be robust across different WANs and
under changes in the underlying WAN environment and traf-
fic conditions, and hence constitutes a new traffic invariant
for WAN traffic that can co-exist with the concept of self-
similarity. At the same time, through the implied complex
local scaling structure, multiplicatively generated multifrac-
tals promise great flexibility in accounting for and, in turn,
detecting and identifying network/application /user-specific
features. While the paper puts in place a structure that pro-
vides for extensive and novel explorations of these areas of
interest to the networking community, we have barely begun
exploring this yet uncharted territory.

To study the local scaling phenomena of measured net-
work traffic, we introduce and illustrate in this paper ap-
propriate methods and techniques for analyzing and infer-
ring multifractal scaling behavior. Our methods are based
on wavelets and their natural ability for scale- and time-
localization, and the techniques (as well as the practical
implementation of the techniques) rely on the theoretical
properties of the discrete wavelet transform in a multireso-
lution analysis. In particular, moving beyond the traditional
applications of wavelets to study scale-dependent global fea-
tures of traffic, we emphasize here their ability for time-
localization which can be interpreted as providing a mathe-
matical microscope for detecting and identifying local irreg-
ularities in a trace; e.g., location-dependent scaling features.
Future work will focus on relating such features to specific
networking conditions. By developing practical tools for dis-
tinguishing between monofractal and multifractal scaling,
we make 1t easier for networking researchers and engineers
to gain access to a new area of traffic analysis (i.e., investi-
gating local structure) that has been off limits in the past.

A natural next step is to explore how this new and im-
proved understanding of modern data networks and data
traffic can be exploited for network engineering and traffic
management. In addition to the already mentioned impli-

cation of multifractals for workload modeling, we conclude
with a brief discussion of some aspects of network engineer-
ing where knowing either the global or local (or both) scaling
behaviors 1s essential for tackling specific networking prob-
lems.

(1) Generating realistic data network traffic: The phys-
ical explanation advocated in this paper for the observed
multifractal nature of measured WAN traffic gives rise to
a simple recipe for synthetically generating realistic data
network traffic. Indeed, we demonstrate in Section 3 how
semi-random cascades are able to accurately match a given
trace not only with respect to its first- and second-order
statistical properties but also in terms of the higher-order
statistics (e.g., multifractal scaling).

(2) Inferring fine-time scaling behavior from coarse-time
measurements: Typical network operations systems collect
link-level traffic statistics every 5-15 minutes. However, to
predict, for example, that the traffic levels on a trunk stay
within safe operating regions, we must to be able to infer the
burstiness behavior of the traffic over small-time scales from
the large-time scale operational measurements. For multi-
fractal traffic, we can use the underlying semi-random cas-
cade paradigm that determines (via the cascade generator)
how a certain workload, measured over large-time scales, is
distributed over smaller time scales. In effect one can use
the cascade to extend the coarse-scale time series to finer
time scales.

(3) Global and local scaling behavior and round-trip time
of packets: The global scaling analysis plots in Figure 1
raise a natural question about the pronounced change in the
global scaling behavior from small-time to large-time scales,
around time scales on the order of a few hundred millisec-
onds or seconds. It may be that the location of the “knee” is
related to properties of the round-trip time in the network
or to some other aspects of the particular network under
study. A natural approach to study in detail the precise
relationship between round-trip time and local and global
scaling behavior is to experiment with the generator of the
semi-random cascade construction in a controlled network
environment. The ns simulator [20] is an ideal tool for this,
and initial ns-based experiments show promising results in
support of these partly heuristic, partly empirical-based ar-
guments.

(4) Exploiting a new dimension in network traffic anal-
ysis: To date, network traffic analysis has focused almost
exclusively on first-order (e.g., mean, variance, marginal dis-
tributions) and second-order (e.g., autocorrelations, spectral
density) statistical properties of measured data, and exist-
ing traffic models fully reflect that attitude. The empirical
finding of multifractal scaling properties in measured WAN
traffic opens up new opportunities for improving our current
understanding of modern networks and the traffic that they
carry by providing a new perspective (i.e., local scaling) and
a new mathematical tool (i.e., multifractal analysis) to in-
vestigate aspects of measured traffic that have so far been
off limits to network researchers and engineers. These as-
pects concern the detailed nature of the local irregularities
in traffic caused by networking-related mechanisms operat-
ing on small-time scales and we can expect them to be of
significant importance when we try to infer network-specific
properties and/or user-perceived network performance from
active network measurements. Intuitively, the relevant in-
formation contained in measurements obtained by sending
certain test traffic into the network and recording specific
responses (e.g., see Paxson [24]) is often contained in the
measurements’ local irregularities rather than in their global



statistical properties. As such, multifractal analysis is likely
to impact how results from active network measurement ex-
periments will be analyzed in the future and how active net-
work measurements will be used to help manage tomorrow’s
data networks.
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