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Abstract

There is an urgent need for e�ective multicast congestion
control algorithms which enable reasonably fair share of net-
work resources between multicast and unicast TCP tra�c
under the current Internet infrastructure. In this paper,
we propose a quantitative de�nition of a type of bounded
fairness between multicast and unicast best-e�ort tra�c,
termed \essentially fair". We also propose a window-based
Random Listening Algorithm (RLA) for multicast conges-
tion control. The algorithm is proven to be essentially fair
to TCP connections under a restricted topology with equal
round-trip times and with phase e�ects eliminated. The
algorithm is also fair to multiple multicast sessions. This
paper provides the theoretical proofs and some simulation
results to demonstrate that the RLA achieves good perfor-
mance under various network topologies. These include the
performance of a generalization of the RLA algorithm for
topologies with di�erent round-trip times.
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1 Introduction

Given the ubiquitous presence of TCP tra�c in the Internet,
one of the major barriers for the wide-range deployment
of reliable multicast is the lack of an e�ective congestion
control mechanism which enables multicast tra�c to share
network resources reasonably fairly with TCP. Because it is
crucial for the success of providing multicast services over
the Internet, this problem has drawn great attention in the
reliable multicast and Internet community. It was a central
topic in the recent Reliable Multicast meetings [8], and many
proposals have emerged recently [7, 15, 13, 1, 18, 3, 19]. In
this introductory section, we �rst give an overview of the
previous work and then we discuss our experience with the
problem and introduce our approach.

The basic problem can be described as the following.
Consider the transport layer of a multicast connection with

�This material is based upon work supported by the U.S. Army
Research O�ce under grant number DAAH04-95-1-0188.

one sender and multiple receivers over the Internet. The
sender has to control its transmission rate based on the loss
information obtained from all the receivers. We assume that
there is TCP background tra�c; the end-to-end loss infor-
mation is the only mechanism to indicate congestion; the
participating receivers have time-varying capacities; and dif-
ferent receivers can be losing di�erent information at di�er-
ent times. The objective of the control algorithm is to avoid
congestion and to be able to share network resources rea-
sonably fairly with the competing TCP connections. The
previously proposed multicast 
ow/congestion control algo-
rithms for the Internet can be broadly classi�ed into two
categories: 1) Use multiple multicast groups. 2) A single
group with rate-based feedback control algorithms.

The �rst category includes those proposals using forward
error correction (FEC) or layered coding [18, 19]. They re-
quire setting up multiple multicast groups and require co-
ordination between receivers, which are not always possible.
Some limitations of this type of control are identi�ed in [13].

Many of the proposed rate-based schemes share a com-
mon framework: The sender updates its rate from time to
time (normally at a relatively large interval on the order of
a second) based on the loss information obtained. It reduces
its rate multiplicatively (usually by half, the same as TCP
does) if the loss information indicates congestion, otherwise
it increases its rate linearly. Di�erent proposals di�er in
their ways of determining the length of the update interval
and acquisition of loss information; they have di�erent cri-
teria to determine congestion, etc. It is largely agreed that,
with no congestion, the rate should be increased linearly
with approximately one packet per round-trip time, which
is the same as TCP does. A critical aspect of these rate-
based algorithms is when to reduce the rate to half, or how
congestion is determined from the loss information from all
the receivers. Most of the proposed algorithms are designed
with the objective of identifying the bottleneck branches 1

of the multicast session and reacting only to the losses on
the bottleneck links [13, 7]. Some also try to be fair to TCP
[1, 15]. The algorithms have to be adaptive as well, i.e.,
be able to migrate to new bottlenecks once they come up
and persist for a long time. In the following, we discuss two
examples in detail.

The loss-tolerant rate controller (LTRC) proposal is based
on checking an average loss rate against a threshold [13].
The algorithm tries to react only to the most congested
paths and ignore other loss information. The algorithm

1By bottleneck branches, we refer to the branches where the band-
width share of multicast tra�c is the smallest among all multicast
paths, assuming equal share of all connections going through the path.



identi�es congestion and reduces the sender rate if the re-
ported loss rate (an exponentially-weighted moving average)
from some receiver is larger than a certain threshold. The
rate is not reduced further within a certain period of time af-
ter the last reduction. It is not clear how to choose the loss
threshold values for an arbitrary topology with any num-
ber of receivers to drive the system to the desired operating
region.

The monitor-based 
ow control (MBFC) is a double-
threshold-check scheme [15]. That is, a receiver is considered
congested if its average loss rate during a monitor period is
larger than a certain threshold (loss-rate threshold), and the
sender recognizes congestion only if the fraction of the re-
ceiver population considered congested is larger than a cer-
tain threshold (loss-population threshold). Using the loss-
population threshold to determine whether to reduce the
rate or not is a means to average the QoS over all receivers,
and is not aimed to work with the slowest receiver. As a
special case, with the loss-population threshold set to mini-
mum (one congested receiver is counted as congestion), the
MBFC reduces to the case of tracing the slowest receiver,
but, again, it is di�cult to derive a meaningful threshold
value to be able to single out the most congested receiver.
If the threshold value is too small, there could be excessive
congestion signals because di�erent receivers could experi-
ence congestion at di�erent times.

There are many other proposals which we cannot cover
in this introduction. Although many of the proposals are
claimed to be TCP-friendly based on the simulation results
for certain network topologies, none have provided a quanti-
tative description of fairness of their algorithms to TCP and
a proof of their algorithms' ability to guarantee fairness.

We have carried out extensive simulations to study the
interaction of TCP tra�c with other forms of rate-controlled
tra�c in both unicast and multicast settings, with both
drop-tail and RED (random early drop) gateways2. We
summarize our major observations here and the details are
discussed in the rest of this paper.

First of all, there is no consensus on the fairness issue
between reliable multicast and unicast tra�c, let alone a
useful quantitative de�nition. Should a multicast session be
treated as a single session which deserves no more band-
width than a single TCP session when they share network
resources? [8, 7]. Or should the multicast session be given
more bandwidth than TCP connections because it is in-
tended to serve more receivers? If the latter argument is
creditable, how much more bandwidth should be given to
the multicast session and how do we de�ne \fairness" in
this case? This paper addresses this problem and proposes
an algorithm which allows a multicast session to obtain a
larger share of resources when only a few of the multicast
receivers are much more congested than others.

However, we believe that a consensus on the de�nition
of relative fairness between multicast and unicast tra�c is
achievable once an algorithm shown to be \reasonably fair"
to TCP is accepted by the Internet community. The tough-
est barrier to designing a fair multicast congestion control
algorithm is that most of the current Internet routers are still
of drop-tail type. A drop-tail router uses a �rst in �rst out
(FIFO) bu�er to store arriving packets when the outgoing
link is busy. The FIFO bu�er has a �nite size and the arriv-
ing packet is dropped if the bu�er is already full. Since drop-
tail routers do not distinguish packets from di�erent tra�c

ows, they do not enforce any fairness for the connections

2Routers and gateways are used interchangeably in this paper. See
[5] for de�nitions for drop-tail and RED gateways.

sharing resources through them. Also with drop-tail routers,
the packet loss pattern is very sensitive to the way packets
arrive at the router and is di�cult to control in general.
Since TCP packets tend to arrive at the router in clusters
[21], any rate-based algorithm with an evenly-spaced packet
arrival pattern may experience a very di�erent loss rate from
that of the competing TCP connections through a drop-tail
gateway. Therefore, rate-based algorithms adjusting source
transmission rate based on average loss rate cannot be fair to
TCP in general. But, it has been pointed out that rate-based
schemes are better suited for multicast 
ow/congestion con-
trol than window-based schemes [15]. This is true in general
in terms of scalability and ease of design. However, if our de-
sign objective is to be fair to window-based TCP, rate-based
schemes have di�culty, if not an impossibility, in achieving
the goal without help from the networks.

For the algorithms assuming the same loss rate for the
competing connections, RED gateways can be used to achieve
the goal. The RED gateway is proposed as an active router
management scheme which enables the routers to protect
themselves from congestion collapse [5]. A RED gateway
detects incipient congestion by computing the average queue
size at the gateway bu�er. If the average queue size exceeds
a preset minimum threshold but below a maximum thresh-
old, the gateway drops each incoming packet with a certain
probability; if the maximum threshold is exceeded, all ar-
riving packets are dropped. RED gateways are designed so
that, during congestion, the probability that the gateway
noti�es a particular connection to reduce its window (or
rate) is roughly proportional to that connection's share of
the bandwidth through the gateway. Therefore, RED gate-
ways not only keep the average queue length low but ensure
fairness and avoid synchronization e�ects [6]. For our work,
the most important fact about the RED gateway is that all
connections going through it see the same loss probability.
RED gateways also make fair allocation of network resources
for connections using di�erent forms of congestion control
possible. Adoption of RED gateways will greatly ease the
multicast congestion control problem, but the current In-
ternet still uses mostly drop-tail gateways. Therefore, it is
important to design an algorithm which works for drop-tail
gateways and might work better for RED gateways.

However, even with RED gateways, it is still very di�-
cult to locate the bottlenecks of a multicast session based
on loss information alone (refer to section 3.2 for details).
Many proposals for reliable multicast 
ow control do try
to locate the bottleneck links using some threshold-based
mechanism, such as the LTRC (loss-tolerant rate controller)
discussed above, but it is very di�cult to choose a univer-
sal threshold which works for all kinds of network topolo-
gies. [16] has shown that a loss-threshold-based additive-
increase-multiplicative-decrease multicast control algorithm
is not fair to TCP with RED gateways.

Based on the above observations, we decided to choose
a window-based approach to design a usable mechanism to
do multicast congestion control in the current Internet in-
frastructure. Speci�cally, we propose a random listening
algorithm which does not require locating the bottleneck
link. The algorithm is simple and possesses great similarity
to TCP; it ensures some reasonable fairness, de�ned later as
\essential fairness", to TCP with RED gateways or drop-tail
gateways in a restricted topology to be de�ned in the next
section. Although the scheme inherits many of the identi�ed
drawbacks of TCP (some of them are alleviated in our mul-
ticast scheme), it might be the only way that the multicast
sessions can potentially share bandwidth reasonably fairly



with TCP connections with drop-tail routers.
The rest of the paper is organized as follows: We pro-

pose a quantitative de�nition for fairness between multicast
and unicast tra�c in section 2. Our algorithm is presented
in section 3, and we prove that it is essentially fair to TCP
in section 4. In section 5 we present some simulation re-
sults indicating the performance of our algorithm sharing
resources with TCP. We also brie
y discuss a generalization
of the algorithm which works for topologies with di�erent
round-trip times and its performance. Section 6 concludes
the paper by addressing some possible future work.

2 Design Objectives

Our design of the multicast congestion control algorithm
is motivated by the design of the TCP congestion control
scheme [9, 12]. We summarize the basic properties of the
TCP scheme in the following:
� Probing extra bandwidth: increase the congestion win-
dow by one packet per round-trip time until a loss is
seen.

� Responsive to congestion: reduce the congestion win-
dow to half upon a detection of congestion (i.e., a
packet loss).
� Fair: by using the same protocol, the TCP connec-
tions between the same source and destination pair
(along the same route) share the bottleneck bandwidth
equally in the steady state.3

Similarly we list our design objectives for the multicast
congestion control algorithm to be:
� Able to probe and grab extra bandwidth.
� Responsive to congestion.

� Multicast Fairness: multiple multicast sessions between
the same sender and receiver groups should share the
bandwidth equally on average over the long run.
� Fair to TCP: the multicast tra�c has to be able to
share the bandwidth reasonably fairly with TCP in
order to be accepted by the Internet community. This
is a complex issue to be addressed in the rest of this
section.

Note that our performance goals, including de�nitions of
fairness, are focused on the average behavior in the steady
state, assuming connections last for a long time. Our work
in this paper is based on this assumption. We do not try
to guarantee fairness to short-lived connections, but our al-
gorithm does provide opportunities for them to be set up
and to transmit data. This is a reasonable decision because
the multicast session is presumably cumbersome with many
links involved and thus it is impossible to react optimally to
every disturbance, especially short-lived ones.

2.1 Observations

We observe that TCP fairness is de�ned and achieved only
for the connections between the same sender and receiver,
that is, the paths have to have the same round-trip times

3Generally speaking, the TCP connections share bandwidth
equally as long as they have equal round-trip times and the same
number of congested gateways on their path. But a slight di�er-
ence in the round-trip times could result in very di�erent outcome in
bandwidth share due to the phase e�ect discussed in [5]; therefore, we
restrict the fairness de�nition to the connections between the same
source and destination pair along the same route which is the best
way of ensuring equal round-trip times.

and the same number of congested gateways. It is well-
recognized that the unfairness of the TCP congestion algo-
rithm, such as biases against connections with multiple con-
gested gateways, or against connections with longer round-
trip times and against bursty tra�c, is exhibited in networks
with drop-tail gateways [5]. This observation leads us to de-
�ne the relative fairness between multicast and TCP tra�c
on a restricted topology only, where the sender has the same
round-trip time to all the receivers in the multicast group.

As we mentioned in the introductory section, there is
no consensus on the issue of fairness between multicast and
unicast tra�c. But the following is obvious: An ideal sit-
uation is to be able to design a multicast algorithm which
can control and adjust the bandwidth share of the multi-
cast connection to be equal to some constant c times that
of the competing TCP connection, with c being controllable
by tuning some parameters of the algorithm. On the other
extreme, the minimum requirements of reasonable fairness
should include the following: 1) Do not shut out TCP com-
pletely. 2) The throughput of the multicast session does
not diminish to zero as the number of receivers increases.
Anything in between the ideal and the minimum could be
reasonable provided that the cost to achieve it is justi�able.
Loosely speaking, a useful de�nition for \essentially fair"
could be the following: when sharing a link with TCP, the
multicast session should get neither too much nor too lit-
tle bandwidth; that is, some kind of bounded fairness. We
quantify this de�nition next.

2.2 Concepts

First we introduce a restricted topology, referred to through-
out this paper, on which the fairness concepts are de�ned.
We also introduce the notation used throughout the paper.
Consider a multicast session fS ! Ri; i = 1; 2; : : : ;Ng with
one sender S and N receivers R1, : : : , RN . The sender also
has mi separate TCP connections to each Ri along the same
path (a branch of the multicast tree) [see �gure 1], where
mi could be zero (no competing TCP connection). Imagine
a virtual link (or a logical connection), Li, between S and
Ri. Note that the virtual links might share common phys-
ical paths. We assume that the round-trip times, RTTi , of
Li are equal on the average.4 Denote the minimum link
capacity (or available bandwidth) along Li by �i (pkt/sec).

We de�ne the \soft bottleneck" of a multicast session, de-
noted by Lsb, as the branch with the smallest �i=(mi + 1).5

That is, Lsb = arg minif �i
mi+1

g. We say that the multicast

is \absolutely fair " to TCP if the multicast session operates
with an average throughput equal to minif�i=(mi + 1)g in
the steady state. In other words, \absolute fairness" re-
quires that the multicast session be treated as a single ses-
sion and equally share the bottleneck bandwidth with com-
peting TCP connections on its soft bottleneck paths.

As we mentioned before, absolute fairness is di�cult to
achieve based on loss information alone. By relaxing the def-
inition somewhat, we introduce an important concept called
\essential fairness". We say that a multicast session is \es-
sentially fair" to TCP if its average throughput, denoted by

4Notice that the round-trip time includes both queueing delay and
propagation delay. Therefore, it is time varying. In our analysis in
this paper, we assume a nice property of round-trip time: it is uni-
formly distributed between pure propagation delay and propagation
delay plus maximum queueing delay. It is based on the single bottle-
neck queue model.

5In contrast, a \hard bottleneck" would be the link with minimum
capacity � = mini �i . Also, there could be multiple soft bottlenecks
with equal �i=(mi + 1).
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�RLA, in the long run is bounded by a � �TCP < �RLA <
b��TCP , where �TCP is the average throughput of the com-
peting TCP connections on the soft bottleneck path, and a; b
are functions of N such that a � b < N . Absolute fairness
is a special case of essential fairness with a = b = 1 and
�TCP = �RLA = minif �i

(mi+1)
g. b=a can serve as an indica-

tion of the tightness of the fairness measure. The 
exibility
of allowing an interval of fairness is necessary because ab-
solute fairness might not be achievable in some networks
whereas a fairness measure is needed. It is a reasonable rep-
resentation of the vague term \reasonably fair", and would
appear to be acceptable by many applications. The merit
of the essential fairness concept lies in its boundedness, so
the networks and applications can have some idea of what
they can expect. Our de�nition can be used to measure and
compare the fairness of existing multicast algorithms. We
will prove later that the random listening algorithm we pro-
pose in this paper is essentially fair to TCP and it achieves
more tightly bounded fairness with RED gateways than with
drop-tail gateways.

In summary, we have de�ned three key concepts for mul-
ticast sharing with unicast tra�c on a restricted topology:
soft bottleneck, absolute fairness and essential fairness. The
de�nitions can be easily extended to the case with multi-
ple multicast sessions between the same sender and receiver
group. In the next section, we present a random listening
algorithm which achieves the design objectives described in
the beginning of this section.

3 Random Listening Algorithm (RLA)

In this paper, we focus on the congestion control problem.
We assume that the sender has in�nite data to send and the
receivers are in�nitely fast, so that the network is always
the bottleneck. Hereafter, we refer to a congested receiver,
meaning the path between the sender and the receiver is
congested, i.e., experiences packet drops. We also de�ne a
congestion signal as an indication of congestion according to
the algorithm; congestion probability as the ratio of the num-
ber of congestion signals the sender detected to the number
of packets the sender sent; congestion frequency as the av-
erage number of congestion signals the sender detected per
time unit. TCP considers packet losses as indications for
congestion. In particular, one or multiple packet drops from
one window of packets in TCP are considered as one con-
gestion signal since they usually cause one window cut (or
cause retransmission timeout) [4]. The number of window
cuts is equal to the number of congestion signals in TCP in

the ideal case without timeout event.
Our simulation experience convinced us that, with drop-

tail gateways, algorithms might have to be \TCP-like" in
order to be TCP-friendly. By TCP-like, we refer to the es-
sential feature of the congestion window adjustment policy:
increasing by one every round-trip time with no congestion
and reducing by half upon congestion. But TCP-like alone is
not enough to ensure TCP-friendliness. More importantly,
to be fair to TCP, we have to make sure that the multi-
cast sender and the competing TCP senders are consistent
in their way of measuring congestion. RED gateways ensure
that the competing connections sharing the same bottleneck
link experience the same loss probability no matter what
type of congestion control algorithms are used. However,
the situation with drop-tail gateways is more complicated.
We will show that, with some added random processing time
to eliminate phase e�ects, we can design our algorithm to
ensure that the competing connections see the same conges-
tion frequency. This problem is examined in detail next.

3.1 TCP's Macro-e�ect with Drop-tail Gateways

With drop-tail gateways, a basic feature of TCP tra�c is
that the sender increases its transmission rate to �ll up
the bottleneck bu�er until it sees a packet loss. Then the
sender's transmission rate is sharply reduced to allow the
bu�er to be drained. The TCP congestion control policy
results in a typical behavior of the bu�er in front of the bot-
tleneck router: the bu�er occupancy periodically oscillates
between empty (or almost empty) and full. Although this
periodicity is neither necessarily of equal interval nor deter-
ministic, depending upon the behavior of the cross tra�c
other than TCP, it is certainly the macroscopic behavior of
the network routers carrying TCP tra�c. We call the pe-
riod starting from a low occupancy to a full bu�er and then
dropping back to a low occupancy, a \bu�er period ".

Through simulation, we �nd that the bu�er period nor-
mally lasts much longer than two round-trip times, 2RTT ,
and the bu�er-full period 6, during which the bu�er is full or
nearly full, normally lasts around 2RTT or less in the steady
state. During the bu�er-full period within each bu�er pe-
riod, a sender could lose more than one packet. In our al-
gorithm to be presented, we group the losses within 2RTT
as one congestion signal. This way we approximately make
sure of one congestion signal per bu�er period if any packet
is dropped. The reason for doing so is that it is not desir-
able to reduce a window multiple times due to closely spaced
packet drops. TCP actually considers multiple packet drops
within one window as one congestion signal.

Another phenomenon is that, with drop-tail gateways,
the packet drop pattern is very sensitive to the packet ar-
rival pattern. In particular, we �nd that the packet drop
pattern is very sensitive to the interval between two consec-
utive packet arrivals at the bottleneck bu�er. If the interval
is slightly smaller than the service time of the bottleneck
server, the next packet is more likely to be dropped when the
bu�er is nearly full. Otherwise, if it is slightly larger than
the bottleneck server service time, the next packet is less
likely to be dropped because one packet will leave the bu�er
in between. This is one type of phase e�ect identi�ed in [5].
Phase e�ects do not take place in competing TCP connec-
tions when the round-trip times are exactly the same. But
in a multicast session which consists of multiple links with
di�erent instantaneous round-trip times, adding a random

6This time interval roughly corresponds to the \drop period" de-
�ned in [5].



amount of processing time is necessary to avoid the phase
e�ect. Therefore, a uniformly distributed random process-
ing time up to the bottleneck server service time is added
in our simulation with drop-tail gateways. The phase e�ect
might not be signi�cant in the real Internet because of mix-
ing of di�erent packet sizes, in which case our algorithm is
expected to work well, sharing bandwidth reasonably fairly
with TCP tra�c.

With drop-tail gateways and added randomness to elim-
inate the phase e�ect, our TCP-like multicast algorithm is
designed to make sure that the multicast sender sends pack-
ets in a fashion similar to the TCP senders. Then all senders
have a similar chance to encounter packet drops in a re-
stricted topology with equal round-trip times, provided that
the congestion window sizes are large enough. That is, both
the multicast and TCP senders see roughly the same number
of congestion signals over a long period of time, or the con-
gestion frequencies should be the same on the average over
a large number of simulations. For the connections with
smaller window sizes, they might experience fewer packet
drops, which results in a desirable situation for our prob-
lem of bandwidth allocation between multicast and unicast
tra�c. The reason is explained in section 5.

3.2 Rationale for Random Listening

If the objective is to achieve absolute fairness between multi-
cast and TCP tra�c, we have to locate the soft bottlenecks
of the multicast session and react only to the congestion
signals from the soft bottleneck paths. However, it is di�-
cult, if not impossible, to locate the soft bottlenecks based
on the loss information alone. For the TCP connections to
achieve the same average throughput, the larger the round-
trip time is, the larger the window and hence smaller loss
probability required. Therefore, for a multicast session with
di�erent round-trip times between the sender and receivers,
it is not reasonable to expect the bottleneck would be the
branch with the largest loss probability. Although, for the
restricted topology with equal round-trip times, the soft bot-
tlenecks are the branches with the largest loss probability,
it is still di�cult to locate them based on loss information
alone. This is because either the sender or the receiver has
to calculate a moving average of the loss probability for each
receiver and the sender has to react to only the loss reports
from the bottlenecks which have the largest loss probability.
But, since losses are rare and stochastic events, a certain
interval of time and enough samples are needed to make the
loss probability estimate signi�cant. It would take too long
to locate the soft bottlenecks correctly; the wrong action
based on the non-bottleneck branches could cause undesir-
able performance results. Based on these observations, we
decided to trade o� the absolute fairness (requiring locating
the soft bottlenecks) with fast response.

Now examine �gure 1. The multicast sender is receiving
congestion signals from all congested receivers. Obviously
the sender does not want to reduce its window upon each
congestion signal. Otherwise, as the number of receivers
increases, the number of congestion signals will increase, and
the throughput of the multicast session will decrease as the
number of receivers increases.

Suppose that the sender knows how many receivers, say
n, are reporting congestion. An appealing solution would
be to reduce the window every n congestion signals. To
see why, consider a simple 
at tree topology as in �gure
1 with all the receivers, links and background TCP connec-
tions identical and independent, and all connections starting

at the same time. Then the bu�er periods are synchronized
and the sender receives n congestion signals in each bu�er
period. Obviously it is desired that the sender only reduce
its window once every bu�er period. This deterministic ap-
proach is certainly a possible solution here. But in a more
realistic network with not everything identical, where bu�er
periods are asynchronous and congestion signals come at
di�erent times, the sequence of congestion signals arriving
at the sender could be very irregular, and thus the deter-
ministic approach would not work well. On the other hand,
in such a statistical environment, a random approach could
be a good candidate to produce good average performance.
This is the rationale we use to propose a random listening
scheme to handle a complex stochastic stream of congestion
feedback signals.

The basic idea is that, upon receiving a congestion signal,
the sender reduces its window with probability 1=n, where n
is the number of receivers reporting frequent losses. There-
fore, on the average, the sender reduces its window every n
congestion signals. If all the receivers experience the same
average congestion, the sender reacts as if listening to one
representative of them. If the sender detects one receiver
experiencing the worst congestion (on the soft bottleneck)
and the others in better condition with less frequent conges-
tion signals, it reduces the window less frequently than the
TCPs on the soft bottleneck branch, resulting in a larger
average window size of the multicast sender than that of the
TCP connections on this branch. But we can prove that
the multicast bandwidth share is bounded in terms of the
TCP bandwidth share. Based on this idea, we propose a
random listening algorithm to be presented next, with its
performance to be discussed in the rest of this paper.

3.3 The Algorithm

The design closely follows the TCP selective acknowledg-
ment procedure (SACK) [12]. We focus on the congestion
control part of the algorithm. Here we only outline the es-
sential part of the algorithm. The complete algorithm is
implemented using Network Simulator (NS2) [17], and more
information is available at [20].

The important variables are summarized below. Their
meaning and maintenance are the same as in TCP unless
speci�ed di�erently here. The items preceded by a bullet
are new to our algorithm.

- cwnd : congestion window size.
- ssthresh : slow start threshold.
- srtti : smoothed round-trip times between the sender
and receiver i.

- awnd : moving average of the window size.
� num trouble rcvr : a dynamic count of the number of
receivers which are reporting losses frequently.
� pthresh : a dynamically adjusted threshold to deter-
mine the probability of reducing the window upon a
congestion signal. For a restricted topology, pthresh =
1=num trouble rcvr.
� � : a random number uniformly distributed in (0, 1),
generated when a decision as to whether to reduce the
window or not is needed.
� last window cut : the time when the cwnd was re-
duced to half last time.
� cperiod starti : the starting time of a congestion pe-
riod (i.e., the period in which packets are dropped) at
receiver i. This is used to group the losses within two
round-trip times into one congestion signal.



� min last ack : the minimum value of the cumulative
ACK sequence number from all receivers. All pack-
ets up to this sequence number are received by all re-
ceivers.
� max reach all : the maximum packet number which is
correctly received by all receivers. It could be di�erent
from min last ack because selective acknowledgment
is used.

� rexmit thresh : if the number of receivers request-
ing a retransmission of a lost packet is larger than
rexmit thresh, the retransmission is multicasted. Oth-
erwise the retransmission is unicasted.

The skeleton of the RLA is the following:

1. Loss detection method. Our multicast receivers use
selective acknowledgments using the same format as
SACK TCP receivers [12]. A loss is detected by the
sender via identifying discontinuous ack sequence num-
bers or timeout. To accommodate out-of-order deliv-
ery of data, the sender considers a packet P is lost if
a packet with a sequence number at least three higher
than P is selectively ACKed.

2. Congestion detectionmethod. A congestion period starts
when a loss is detected and the cperiod starti is be-
yond 2 � srtti ago; then cperiod starti is reset to the
current time. The losses within 2�srtti of cperiod starti
are ignored.

3. Window adjustment upon a congestion detection. Upon
a congestion detected from receiver i by the above
method:

� update num trouble rcvr. If it is a rare loss from
a receiver not considered as a troubled receiver
(see rule 6 below), skip the following steps.
� if last window cut is beyond 2 � awnd � srtti, 7
cwnd cwnd=2. forced-cut.
� else, generate a uniform random number �,
if � > pthresh, ignore it.
else cwnd cwnd=2. randomized-cut.

4. Window adjustment upon ACKs. Once a packet is
ACKed by all the receivers, cwnd cwnd+1=cwnd.

5. The window lower bound moves when max reach all
increases, but the window upper bound should never
exceed min last ack plus available receiver bu�er size.

6. Update of num trouble rcvr: a congested receiver is
considered as a troubled receiver only if the receiver's
congestion probability is larger than a certain thresh-
old, which is set to 1=(� � min congestion interval).
� here is a constant, and is recommended to be set
to 20. min congestion interval is the smallest of the
exponentially-weighted moving average of the interval
lengths between congestion signals from all receivers.
This setting is justi�ed in the proof in the next section.
num trouble rcvr is the dynamic count of the number
of troubled receivers. A detailed implementation in-
struction is available at [20].

7In ideal TCP with deterministic losses, cwnd has a maximum
size of W and a minimum of W=2. cwnd is halved every W=2 round
trips, or RTT �W=2 seconds. Here for the multicast connection using
random listening approach, to avoid ignoring too many consecutive
congestion signals due to the randomness of the algorithm, we choose
to force the reduction of the congestion window if the previous window
cut happens at least 2�awnd round trips ago. The threshold value is
ad hoc but works well from our simulation experience: Basically we
don't want cwnd to grow too large or the forced-cut to happen too
often.

Note that there are two di�erent treatments to a con-
gestion signal: forced-cut and randomized-cut. The forced
actions are intended to protect the system by damping the
randomness. Without the forced-cut step, the algorithm
can possibly result in too long of a continuous increment of
cwnd, which is not desirable.

We also implemented a retransmission scheme 8 to re-
cover loss packets and a fast-recovery mechanism to pre-
vent a suddenly widely-open window which is undesirable
because it can cause congestion and a burst of packet losses.
Many details in the implementation are not described here
and can be found in [20]. Many of them are just straight-
forward extensions from the TCP algorithm. We believe it
is bene�cial to keep it as similar to TCP as possible. Then
any changes to TCP or in networks to improve TCP perfor-
mance can be easily incorporated and are likely to improve
the performance of our algorithm as well.

4 Fairness of the RLA

In this section, we prove that our RLA is essentially fair to
TCP. That is, with the restricted topology where a multicast
session is sharing resources with unicast TCP connections,
the multicast session gets a bandwidth share which is c times
the share of a competing TCP connection on the soft bot-
tleneck branch, where c is a bounded constant. We present
a simple proof based on some gross simpli�cations of the
system and the algorithm. Although a sophisticated proof
based on advanced stochastic processes, similar to the proof
for the TCP case [14], is possible, we choose a simple ap-
proach which is easier to understand and better illustrates
our idea. We also prove the multicast fairness property of
the RLA, one of the design objectives mentioned in section
2, using a simple two-session model.

We �rst present a simple estimation of TCP's perfor-
mance adopted from [14], then we use the same idea and
result to prove our theorems. The key part of the proofs
is to show that the RLA results in an average window size
bounded from above and below by functions of the con-
gestion probability (the ratio of the number of congestion
signals to the number of packets sent, see section 3) on the
soft bottleneck branch. Since on each common link, the
RLA sender and the competing TCP senders see the same
loss probability with RED gateways [6], or the same con-
gestion frequency with drop-tail gateways with phase e�ects
eliminated (see section 3.1), a relation between congestion
probabilities of the two types of tra�c can be derived, based
on which the bandwidth shares can be calculated.

4.1 Estimation of TCP Throughput

We consider TCP SACK here and use the approximation
technique introduced in [14]. Although there are many sub-
tleties in the implementation of fast retransmission and fast
recovery, etc., we list the most important parts of the algo-
rithm relevant to congestion control here.

The sender maintains cwnd and ssthresh, with the same
meaning as de�ned in section 3. The sender also estimates
the round-trip time and calculates the timeout timer based

8There could be di�erent ways of doing retransmission as long as
the retransmission tra�c does not interfere too much with the normal
transmission. In our implementation, the sender waits until it hears
from all the receivers and it retransmits a lost packet by multicast
if the number of receivers requesting it is larger than a threshold
(rexmit thresh) and by unicast otherwise. The receiver can also
trigger an immediate retransmission of a lost packet by unicast if it
sets a �eld in the packet.



on the estimation. The TCP congestion window cwnd evolves
in the following way:
(1) Upon receiving a new ACK:

if cwnd < ssthresh,
cwnd cwnd+ 1; slow start phase.

else cwnd cwnd+ 1=[cwnd];
congestion avoidance phase.

(2) Upon a loss detection:
set ssthresh cwnd=2, and cwnd cwnd=2:

(3) Upon timeout,
set ssthresh cwnd=2, and cwnd 1,

where [ x ] denotes the integer part of x.
We consider cwnd as a random process and are interested

in its average value in the steady state since it is roughly pro-
portional to the average throughput of the TCP connection.
Assume perfect detection of packet losses, and that the slow-
start and the timeout events can be ignored in the steady
state analysis [10]. Suppose we run the algorithm for a long
time and the resulting congestion probability (the number
of window cuts over the number of packets sent) is p. The
resulting average window size can be approximated in the
following way [14]. Denote the cwnd right after receiving
the acknowledgment with sequence number t by Wt. Then
in the steady state, the random process Wt evolves as fol-
lows: given Wt, with probability (1�p),Wt+1 = Wt+1=Wt;
and with probability p, Wt+1 = Wt=2. Wt stays constant
between jumps upon acknowledgment arrivals. Now consid-
ering the average drift of Wt if Wt = w, denoted by D(w),
we have D(w) = (1 � p)=w � p � w=2. Note D(w) = 0 if

w =
p
2(1 � p)=

p
p =: w�. The drift is positive if w < w�

and negative otherwise. Then the stationary distribution of
Wt must have most of its probability in the region around
w�. This gives an ad hoc approximation of the average win-
dow size, W , by

W =

p
2(1� p)p

p
�
p
2p
p
if p� 1; (1)

The unit is in terms of packet. Throughout this paper, we
call this approximation \proportional average (PA) window

size". It can be shown that W is a good approximation
to the time average of the random process Wt and in fact
is proportional to it. We adopt this simple approximation
approach in our analysis since it is adequate for our purpose.

Also note that the above simple derivation gives a result
similar to the popular formula for TCP throughput estima-
tion, bandwidth = 1:3=(RTT

p
p) (packets), as in [11], with

a slightly di�erent constant. Comparison of the two formu-
las shows that the average throughput is roughly propor-
tional to the ratio of the average window size to the average
round-trip time. Both formulas only work for the cases with
small loss probability. Therefore, in the rest of our paper,
we only consider the cases with p < 5% (used in [11]), called
moderate congestion. The performance of TCP (and TCP-
like algorithms) deteriorates in heavy congestion because of
frequent timeout events. Maintaining fairness is then not as
important an issue as long as no one is completely shut out.

4.2 Estimation of RLA Throughput

Applying the above drift analysis technique to our RLA al-
gorithm proposed in section 3, we can derive the following
proposition.
Proposition: Consider a restricted topology (with TCP
background tra�c and the RLA used by the multicast sender)

and n receivers persistently reporting congestion. The con-
gestion probabilities seen by the multicast sender from the
n receivers are pi, i = 1:::n, and congestion is moderate so
that pmax = maxi(pi) < 5%. Denote the proportional aver-

age of the congestion window size by W . Then W satis�es
the following:

p
2(1 � pmax)p

pmax
< W <

p
n �
p
2(1� pmax)p

pmax
: (2)

Due to space limitations, we cannot show the complete
proof which is available in reference [20]. The basic idea and
methodology are illustrated using the following simple case
of two receivers with independent loss path (see �gure 2(a)).
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R1 R2
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p p

2

(a) independent losses

R1 R2

1
p

S

G

(b) common losses

Figure 2: Two simple cases with two receivers only.

In �gure 2(a), the sender sees independent congestion sig-
nals from receivers 1 and 2, denoted by R1 and R2, respec-
tively. We assume that all tra�c is persistent and thus, in
the steady state, n = num trouble rcvr = 2 and pthresh =
1
2 . Therefore, if the sender detects a congestion signal at

time t0, it cuts its window by half with probability 1
2 ; if the

outcome turns out to be ignoring the congestion signal, the
lost packet will be ACKed later (at time t1) and will cause
the congestion window to increase by 1

W
, based on the fourth

rule of the RLA (see section 3.3). In our proof, we ignore the
possible di�erence between the congestion window sizes at
time t0 and t1 since 1

W
is small for a relatively large window

size. Now for each packet sent by the sender, the possible
outcomes are (w.p. stands for with probability):

1. No congestion signal from both receivers, w.p. (1 �
p1)(1� p2);

then W  W + 1
W
.

2. Cause one congestion signal from R1, w.p. p1(1� p2);

then W  W + 1
W

w.p. 1
2 , or

W  W
2 w.p. 1

2 .

3. Cause one congestion signal from R2, w.p. (1� p1)p2;

then W  W + 1
W

w.p. 1
2 , or

W  W
2 w.p. 1

2 .
4. Cause two congestion signals from both receivers w.p.

p1p2;

then W  W + 1
W

w.p. 1
4 , or

W  W
2 w.p. 1

2 , or

W  W
4 w.p. 1

4 .

The positive drift of W is

1

W
f(1� p1)(1� p2) +

1

2
p1(1� p2) +

1

2
(1� p1)p2 +

1

4
p1p2g;

and the negative drift of W is

W

2
f1
2
p1(1� p2) +

1

2
(1� p1)p2 +

1

2
p1p2g+ 3W

4

1

4
p1p2:



The neutral point gives the approximation for the aver-
age window size to be

W
2
=

4f1� 1
2 (p1 + p2) + 1

4p1p2g
p1 + p2 � 1

4 p1p2
: (3)

It is easy to check out by simple algebraic manipulation

that, for any pmax > 0, W >
p
2(1� pmax)=

p
pmax holds.

To prove the upper bound in equation 2 with n = 2,
denote p2 = x � p1, and without loss of generality assume
0 < x � 1, that is, pmax = p1 > 0. Then the following
holds:

W
2
=

4f1 � 1
2 (1 + x)p1 +

x
4 p

2
1g

(1 + x)p1 � x
4 p

2
1

<
4(1� p1)

p1
;

if x � f(p1) = p1=(2 � 1:5 � p1). Note that f(p1) is an in-
creasing function of p1 for 0 < p1 < 1. Therefore, for p1 <
5%, x larger than 0.03 is su�cient for x � f(p1) to hold.
This condition is ensured in the RLA algorithm by control-
ling the way the variable \num trouble rcvr" is dynamically
counted. The RLA algorithm counts a receiver as a \trou-
bled receiver" only if the interval lengths between the con-
gestion signals are smaller than ��min congestion interval,
that is, its average congestion probability is larger than
1
�
� pmax. We recommend in our algorithm to take � = 20,

or 1
�
= 0:05 which leaves more room than the above 0.03

bound. Protocol designers can choose a proper value for �
based on the above analysis.

Note that we did not consider the forced-cut action in
the RLA algorithm, which is rarely invoked (as shown in
the simulation results). The e�ect of the forced-cut could
be a slightly smaller average window size which does not
a�ect our results in any signi�cant way.

With more complex algebraic manipulation involved, the
results can be extended to a case with n receivers with inde-
pendent loss paths. Using the same approach, for a topology
with common losses only (see �gure 2(b) for an illustration
of the case with two receivers), we can prove equation 2
holds. The general case stated in the Proposition can be
proved using the above results and the following Lemma:
Lemma: A higher degree of correlation in loss due to com-
mon path results in a larger average congestion window size
if the RLA is used.

The proof is omitted due to space limitations. Intuitively,
for the same congestion probability, correlation in the con-
gestion signals results in more window increments and less
window cuts on the average. This is because congestion sig-
nals come in groups in the correlated case. This has the
potential of causing a deep cut in cwnd at once, while the
independent congestion signals come one at a time but more
frequently, and cause potentially more window cuts.

We deliberately choose the bounds in the form of equa-

tion 2 because
p
2(1� p)=p is related to the average window

size of the competing TCP connections. Now we are ready
to proceed to show that the RLA is essentially fair to TCP.
Theorem I: Consider a restricted topology with RED gate-
ways. If there are n receivers persistently reporting conges-
tion and the largest congestion probability is less than 5%,
the RLA algorithm is essentially fair to TCP with a = 1

3

and b =
p
3n. 9

Due to space limitations, here we only outline the major
steps of the proof. First, since RED gateways ensure that
on each link, all competing connections see the same loss

9See section 2 for the de�nition of a and b.

probability [6], we denote the largest loss probability, occur-
ring at the soft bottleneck branches, by pl. We can derive
the relations between pl and the corresponding congestion
probabilities, pRLAc for the multicast connection, and pTCPc

for the TCP connection. Then, using these relations and
the Proposition, we can derive the following inequality:

2

3
WWTCP < WRLA <

p
3nWWTCP : (4)

Second, we have to consider the round-trip times in order
to estimate the throughput. Here we have to notice that
in the multicast RLA, a packet is considered acknowledged
only if the sender has received ACKs from all the receivers.
Then the round-trip time for each packet in the RLA is
always the largest among the round-trip times on all the
links when the packet is sent. Denote the average round-trip
time for RLA by RTT RLA and that for TCP by RTT (recall
each of the branches in the restricted topology (�gure 1) has
equal average round-trip times). Using the approximation
that the round-trip time is equal to a �xed propagation delay
plus a varying queueing delay, we can derive the following:

RTT � RTT RLA � 2RTT : (5)

Finally, combining the bounds for average window size
and average round-trip times, we have the following:

WWTCP

3RTT
<

WRLA

RTT RLA

<

p
3nWWTCP

RTT
(6)

That is, the long term average throughput of the multi-
cast sender is no less than a third of the TCP throughput
on the soft bottleneck branch, and no more than

p
3n times

that. Therefore, the RLA is essentially fair to TCP accord-
ing to the de�nition of essential fairness in section 2.
Theorem II: Consider a restricted topology with drop-tail
gateways and the phase e�ect eliminated. If there are n
receivers persistently reporting congestion and the largest
congestion probability is less than 5%, the RLA is essentially
fair to TCP with a = 1

4 , and b = 2n.
This theorem can be proved similarly to theorem I, us-

ing the fact that, with drop-tail gateways and the phase
e�ect eliminated, the competing RLA and TCP tra�c see
the same congestion frequency. The proof is omitted due to
space limitations.

4.3 Remarks

In the above two theorems, we proved that the RLA is es-
sentially fair to TCP with the restricted topology with equal
round-trip times. Note that the bounds in the theorems are
widely separated for sizable n; this is because they work for
all situations including the cases with extremely unbalanced
congestion branches. The algorithm actually delivers desir-
able performance in the following way: if all the troubled re-
ceivers have the same degree of congestion, the RLA results
in a throughput no larger than four times that of the com-
peting TCP throughput for any n (this can be proved [20]);
on the other extreme, if there is one most congested receiver
and the other n � 1 receivers experience only minor con-
gestion just enough to be counted as troubled receivers, the
actual throughput of the RLA is close to the upper bound
which is in the order of n for drop-tail gateways. That is,
the multicast connection on the soft bottleneck branch gets
c = O(n) times the smallest throughput among the compet-
ing TCP connections. This might be desirable because this



single bottleneck is slowing down the other n� 1 receivers.
If this is not desirable, the RLA can implement an option
to drop this slow receiver. For the situations in between
the above two extreme cases, the RLA gives reasonable per-
formance; this is demonstrated in the simulation results in
section 5.

In summary, the RLA achieves a higher share of band-
width than the TCPs on the soft bottleneck branches when
only a few receivers in the multicast session are much more
congested than others. This is reasonable because the mul-
ticast session serves more receivers and it should su�er less
on a single highly congested bottleneck.

4.4 Multicast Fairness of RLA

The RLA is fair in the sense that the senders of compet-
ing multicast sessions between the same sender and receiver
group will have the same average cwnd in the steady state.
Consider a simple case with two competing sessions with n
receivers in each session on the same topology of the form in
�gure 1. The cwnd's of the two senders are correlated ran-
dom processes. The problem can be modeled as a randomly
moving particle on a plane, with x and y axes being the cwnd
of sender 1 and 2, respectively (see �gure 3). This model is a
generalization of the deterministic model for unicast conges-
tion control used in [2], where the authors proved that the
linear increase/multiplicative decrease scheme converges to
the fair operating point. Our algorithm is a generalization of
the unicast algorithm to multiple receivers and introduces
randomness. We will show that although the cwnd does
not converge to a single point, the desired operating point
(equal share of the bottleneck bandwidth, see �gure 3) is a
recurrent point and most of the probability mass would be
focused on the general area of this point.

cwnd1

cwnd 2

fairness line

desired operating point

x0

x1

x2

x3

pipe1 pipe2

pipe3

pipe1

pipe2

pipe3

X

Y

x4

x5

x6

x7

x8

Figure 3: Fairness of RLA to each other.

In our analysis below, we assume there is no feedback
delay.10 Since the two sessions share exactly the same path,
the two senders get the same congestion signals. The senders
are informed of congestion by receiver i if cwnd1 + cwnd2
exceeds the pipe size of virtual link Li which is the largest
RTT value times the available bandwidth of the link (see �g-
ure 3). Otherwise the sender is informed of no congestion.
Focus on the troubled receivers, recalling there are n of them
per session. We order the pipe sizes of these troubled links
as pipe1 < pipe2 < : : : < pipek and there are ni(i = 1; : : : ; k)

receivers with pipe size pipei and
Pk

1 ni = n. In �gure 3,

10This assumption is necessary to allow us to use a simple and
neat analysis. Our simulation results indicated that the fairness we
claimed here still holds when propagation delay is involved.

cwnd1 + cwnd2 < pipe1 in the white region with no con-
gestion here; pipe1 < cwnd1 + cwnd2 < pipe2 in the lightly
shaded region and the senders receive n1 congestion signals
once they enter this region; and pipe2 < cwnd1 + cwnd2 <
pipe3 in the dark shaded region and the senders receive
n1+n2 congestion signals once they enter this region, and so
on... If there is no congestion, both cwnd's increase linearly
which results in an upward movement of the particle along
the 45o line (see the movement of x0 to x1 in �gure 3). In
the congested region with a certain number of congestion sig-
nals fed to the senders, each sender independently generates
a random number to decide whether to increase or cut the
window. In our model, the particle randomly chooses one of
the moving directions which are combinations of increasing
or cutting of each window. For example, in �gure 3, assum-
ing n1 = 1, after a round-trip time, x1 = (cwnd1; cwnd2)
can move to (cwnd1+1; cwnd2+1), or (cwnd1=2; cwnd2=2),
or (cwnd1 + 1; cwnd2=2), or (cwnd1=2; cwnd2 + 1).

Obviously the movement of the particle is Markovian
since the next movement only depends on the current lo-
cation of the particle. From this Markovian model, we can
draw several conclusions about the system. First, the de-
sired operating point (see �gure 3) is a recurrent point. This
is because from any starting point, there exists at least one
convergent path to the desired point (e.g., x2 ! x3 ! : : :!
x8 ! ::: along the dotted line in �gure 3) with positive
probability. Note that, in our model, there is a positive
probability for the cwnd to grow to in�nity, but this does
not happen in the real system because we incorporated a
forced-cut mechanism in the algorithm.

Secondly, the average cwnd's of the two senders are the
same. This is obvious because the two senders get the same
congestion signals and react randomly but identically and
independently, that is, the roles of the two senders are inter-
changeable. In other words, if we switch the x and y axes,
the moving particle follows the same stochastic process, and
the marginal distributions along the axes are the same which
gives the same mean value.

Finally, most of the probability mass would be focused
on the general area of the desired operating point in �gure
3. To illustrate the idea, we consider a simple case where all
of the n links have the same pipe size pipe. Then the plane
is divided into two regions: a non-congested region with
cwnd1+ cwnd2 < pipe and the rest a congested region with
n congestion signals arriving to the sender upon each packet
loss. Since in the RLA, the losses within two RTTs are
grouped into one congestion signal, we consider a discrete-
time version of the system with the time unit being two
round-trip times, i.e., �t = 2RTT . Denote cwnd of the kth
multicast session by Wk, k = 1; 2. If there is no congestion,
Wk(t + �t) = Wk(t) + 2 (because �t = 2RTT ). Upon
congestion with n congestion signals,
Wk(t+�t) =Wk(t) + 2, w.p. (1� 1

n
)n =: p0:

Wk(t+ �t) = Wk(t)=2
i, w.p.

�
n
i

�
(1� 1

n
)n�i( 1

n
)i =: pi

for i = 1; : : : ; n; and k = 1; 2. W1 and W2 control the
movement of the particle along x and y axes, respectively.
The average drift along the x axis is 2 if W1 +W2 < pipe;
or 2 � p0 �

Pn

i=1
(1�W1=2

i) � pi if W1 +W2 � pipe. The
time unit is 2RTT . The average drift along the y axis is
symmetric and can be obtained by replacing W1 with W2

in the above equation. The drift diagram with n = 3 and
pipe = 10 is drawn in �gure 4; the drift is scaled down by a
factor of 5 to make the picture clear.

The drift diagram shows that the particle controlled by
the two congestion window sizes along the two axes has a
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Figure 4: Average drift diagram of two competing cwnd's.

trend to move towards the desired operating point. Fig-
ure 5 is the density plot of the occurrence of the point
(cwnd1; cwnd2) during one simulation run; 11 the higher
numbers of occurrence, the darker the area. It shows that
most of the probability mass is in an area centered around
the desired operating point which is (20, 20) in this case.
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Figure 5: Density plot of the occurrence of (cwnd1; cwnd2).

5 Performance Evaluation

A version of the RLA is implemented in Network Simulator
(NS2) for simulation purposes to test the RLA performance
under various network topologies. Here we present some
of the simulation results in a four-level tertiary tree network
topology (see �gure 6), where the links and nodes are labeled
with the �rst number index indicating their level and the
second indicating an order in each level.

We describe most of the simulation parameters used in
the simulations shown below. In �gure 6, all senders (RLA
or TCP) are located at the root node S, all receivers at leaf
nodes R1 through R27. The nodes in between are gateways;
they could be either drop-tail or RED type. All nodes have
a bu�er of size 20 packets. In the case of RED gateways,

11The simulation setup consists of two multicast sessions with 27
receivers in each in a topology of the form shown in �gure 1. There is
one TCP session from the sender node to each of the receiver nodes.
All receivers have the same capability. Each path has a delay band-
width product of 60 shared by 2 multicast and 1 TCP sessions. There-
fore, each session is supposed to get an average cwnd of 20.
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Figure 6: Four-level tertiary tree.

the minimum threshold is 5 and the maximum threshold is
15. (Other parameters are the default values used in the
standard NS2.0 RED gateway). The one-way propagation
delays of the �rst three level links are all 5 ms, and those
of the last level links are 100 ms. We tested the situations
with bottleneck links at di�erent levels to study the e�ect
of independent or correlated losses. All the non-bottleneck
link speeds are set to 100 Mbps. Data packet size is set
to 1000 bytes. All simulations have 27 receivers (except for
the case with di�erent round-trip times), and all receivers
are troubled receivers. In the simulation results presented
here, rexmit thresh is set to 0 (i.e., all retransmissions are
multicasted). All simulations are run for 3000 seconds and
statistics are collected after the �rst 100 seconds. The sim-
ulation results are brie
y summarized in the following.

5.1 Multicast Sharing with TCP

The results for drop-tail gateways are shown in �gure 7 and
�gure 9 for RED gateways. There are 5 cases with di�erent
soft bottleneck locations. The second row (most congested
links) in the �gures indicates the soft bottleneck location.
The corresponding link speeds are set so that the soft bot-
tleneck bandwidth share is mini

�i
mi+1

= 100 packets per

second (recall mi is the number of background TCP con-
nections between the sender and receiver i). We list the
performance of the RLA, including the average throughput
in packets per second, average congestion window size, av-
erage round-trip time (for those packets correctly received
without retransmissions), the number of congestion signals
the multicast sender detected from all receivers, the number
of window cuts and the number of forced window cuts, over
the entire simulation period (after the �rst 100 seconds).
We also list the worst and the best case TCP performance
(WTCP and BTCP rows in the �gures) among the compet-
ing TCP 
ows.

As we can see from �gure 7, the RLA achieves reasonable
fairness with TCP even with drop-tail gateways. Compar-
ing cases 1, 2 and 3, we can see that a higher correlation
among the packet losses results in a larger average window
size and a higher throughput. This agrees with our Lemma
in section 4.2. The throughputs of the RLA and TCP con-
nections in all cases satisfy the essential fairness requirement
with a = 1=4 and b = 2n. In fact, the bounds are quite loose
for these cases. The actual performance of the RLA algo-
rithm in most cases is much more \reasonable" than the
bounds indicated, in the sense that in most cases the RLA
can achieve a tighter bounded fairness. With the simulation
setup, the measured essential fairness has bounds a = 1 and



b = 3 in these cases, which is very reasonable performance
and acceptable for many applications.
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Figure 7: Simulation results with drop-tail gateways.

We can also see from �gure 7 that the number of window
cuts taken by the RLA sender is roughly 1

27
of the conges-

tion signals the multicast sender detected, as desired. In �g-
ure 8, we consider the congestion signals from each receiver
separately and list the worst, best and average number of
congestion signals the sender detected from each of the re-
ceivers on the links with the same level of congestion. The
number is over the entire simulation period (2900 seconds).
We also list the results for the competing TCP connections.
It demonstrates that the TCP sender and the RLA sender
see roughly the same number of congestion signals on each
branch on average. Therefore, they see the same conges-
tion frequency, as we argued in section 3.1. Note that the
discrepancies between the RLA and TCP congestion fre-
quencies are larger in cases 4 and 5. This is because their
congestion window sizes are very di�erent (refer to �gure
7 for window sizes). In these cases, a larger window likely
incurs more losses. Although it breaks the assumption of
equal congestion frequencies, it creates a desired balance:
the larger the window, the more losses and then the window
is more likely to be reduced to half and vice versa. This
balance actually helps to achieve a tighter bounded fairness
as we observed in the simulations.
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Figure 8: Statistics of the number of congestion signals.

Figure 9 shows the corresponding results for the RED
gateways. All simulation setups are the same except that
the gateway type is changed to RED, and we do not use
random overhead in these simulations because RED gate-
ways eliminate the phase e�ect. The results show that with
RED gateways, the fairness between multicast and TCP is
closer to absolute, especially in case 1. This is expected as

suggested by the bounds derived in section 4 and is also intu-
itive because RED gateways are designed to enforce fairness.
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Figure 9: Simulation results with RED gateways.

5.2 Multiple Multicast Sessions

To test the multicast fairness property of the RLA algo-
rithm, we have simulated the above scenarios with two over-
lapping multicast sessions from the sender to the same re-
ceivers. In all cases, the two multicast sessions share band-
width almost equally and have roughly the same average
window size. In particular, in the topology of case 3 men-
tioned above, the two multicast senders achieve throughputs
of 65.1 and 65.9 pkt/sec respectively, and average window
sizes of 19.9 and 20.1 packets respectively.

5.3 Di�erent Round-Trip Times

This paper has focused on the restricted topology with equal
round-trip times where fairness is meaningfully de�ned. But,
in reality, most multicast sessions comprise receivers located
at di�erent distances from the sender. These cases have to
be addressed properly in order for an algorithm to be ac-
cepted. We have a generalized version of the RLA algo-
rithm presented in section 3 to work for the cases with dif-
ferent round-trip times. The basic idea is to set pthresh =
f( rtti

rttmax
)=num trouble rcvr. In our experiment, we are us-

ing the function of the form f(x) = x2, because it has
been shown that, for TCP-like window adjustment policy,
the average throughput is proportional to (RTT )k, where
1 � k < 2 and k = 2 if there are no queueing delays [5, 10].
Note that in the case of equal round-trip times, the above
pthresh is the same as in the original RLA. In the case of
di�erent round-trip times, the receiver with a smaller round-
trip time has a much smaller pthresh, that is, a much larger
fraction of the congestion signals is ignored.

In the case of di�erent round-trip times, we are not able
to provide any theoretical proofs of bounded fairness. But
our initial experimental results show the generalized algo-
rithm is promising in providing a reasonable share of band-
width among multicast and TCP tra�c. Here we present a
set of simulation results with the same topology as in the
above simulations but adding the nodes G31 through G39
also as receivers which are of signi�cantly di�erent round-
trip times from the leaf nodes since the level four links have



a one-way propagation delay of 100 ms. Here we show sim-
ulation results for two cases with the bottlenecks at level 2
links or level 3 links respectively. Both cases have a total
of 36 receivers, all troubled receivers. The results are sum-
marized in �gure 10 and they show a reasonable share of
bandwidth between the multicast and TCP tra�c.
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Figure 10: Results with di�erent round-trip times.

6 Conclusions and Future work

In this paper, we introduced a quantitative de�nition for
essential fairness between multicast and unicast tra�c. We
also proposed a random listening algorithm (RLA) to achieve
essential fairness for multicast and TCP tra�c over the In-
ternet with drop-tail or RED gateways. RLA is simple and
achieves bounded fairness without requiring locating the soft
bottleneck links. Although our RLA is based on the TCP
congestion control mechanism, it is worth noting that the
idea of \random listening" can be used in conjunction with
other forms of congestion control mechanism, such as rate-
based control. The key idea is to randomly react to the con-
gestion signals from all receivers and to achieve a reasonable
reaction to congestion on the average over a long run. There
are many interesting possibilities which are worth exploring
in this direction.

Due to space limitations, many details of the algorithm
and simulation results are not shown in this paper. Our on-
going work is to carry out more and larger scale simulations
and to re�ne the algorithm based on the experience gained
from the simulations.
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