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Abstract

In Layer Four switching, the route and resources allocated
to a packet are determined by the destination address as well
as other header �elds of the packet such as source address,
TCP and UDP port numbers. Layer Four switching uni�es
�rewall processing, RSVP style resource reservation �lters,
QoS Routing, and normal unicast and multicast forwarding
into a single framework. In this framework, the forwarding
database of a router consists of a potentially large number
of �lters on key header �elds. A given packet header can
match multiple �lters, so each �lter is given a cost, and the
packet is forwarded using the least cost matching �lter.

In this paper, we describe two new algorithms for solv-
ing the least cost matching �lter problem at high speeds.
Our �rst algorithm is based on a grid-of-tries construction
and works optimally for processing �lters consisting of two
pre�x �elds (such as destination-source �lters) using linear
space. Our second algorithm, cross-producting, provides
fast lookup times for arbitrary �lters but potentially requires
large storage. We describe a combination scheme that com-
bines the advantages of both schemes. The combination
scheme can be optimized to handle pure destination pre�x
�lters in 4 memory accesses, destination-source �lters in 8
memory accesses worst case, and all other �lters in 11 mem-
ory accesses in the typical case.

1 Introduction

With everyone building Web Sites, Internet usage has been
expanding at a rate more commonly associated with nuclear
reactions. Internet tra�c is exploding because of a growing
number of users as well as a growing demand for bandwidth
intensive data. Multimedia applications, for instance, can
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easily consume megabytes of bandwidth. To keep up with
increased tra�c, link speeds in the Internet core have been
increased to 622 Mbps, and a number of vendors are provid-
ing faster routers.

A traditional router performs two major tasks in for-
warding a packet: looking up the packet's destination ad-
dress in the router database, and switching the packet from
an incoming link to one of the outgoing links. With recent
advances [18, 30], the task of switching is well understood,
and most vendors use fast buses or crossbar switches. Sev-
eral new algorithms have been developed recently for ad-
dress lookup as well [9, 31, 22, 27]. Thus it would appear
that there is no inherent impediment to building Gigabit
routers for traditional data forwarding in the Internet.

Increasingly, however, users are demanding, and some
router vendors are providing, a more discriminating form of
router forwarding. To quote John McQuillan [19]:

Routing has traditionally been based solely on destination
host numbers. In the future it will also be based on source
host or even source users, as well as destination URLs (uni-
versal resource locators) and speci�c business policies : : :
Thus, in the future, you may be sent on one path when you
casually browse the Web for CNN headlines. And you may
be routed an entirely di�erent way when you go to your cor-
porate Web site to enter monthly sales �gures, even though
the two sites might be hosted by the same facility at the
same location: : : An order entry form may get very low la-
tency, while other sections get normal service. And then
there are Web sites comprised of di�erent servers in di�er-
ent locations. Future routers and switches will have to use
class of service and QoS to determine the paths to particular
Web pages for particular end-users. All this requires the use
of layers 4, 5, and above.

This new vision of forwarding is called Layer 4 Forward-
ing because routing decisions can be based on headers avail-
able at Layer 4 or higher in the OSI architecture. Layer 4
Switching o�ers increased 
exibility: it gives a router the
capability to block tra�c from a dangerous external site,
to reserve bandwidth for tra�c between two company sites,
and to give preferential treatment to one kind of tra�c (e.g.,
online database transactions) over other kinds (e.g., Web
browsing). Layer 4 switching is sometimes referred to in the
vendor literature [28] by the phrase \service di�erentiation".
Traditional routers do not provide service di�erentiation be-
cause they treat all tra�c going to a particular Internet ad-
dress in the same way. Layer 4 Switching allows service dif-
ferentiation because the router can distinguish tra�c based
on origin (source address) and application type (e.g., web



tra�c vs. �le transfer).
Layer 4 Switching, however, does not come without some

di�culties. First, a change in higher layer headers will re-
quire reengineering the routers, which is why routers have
traditionally used only Layer 3 headers. Second, when data
is encrypted for security, it is not clear how routers can get
access to higher layer headers.

Despite these di�culties, several variants of the Layer 4
switching have already evolved in the industry. First, many
routers implement �rewalls [6] at trust boundaries, such as
the entry and exit points of a corporate network. A �rewall
database consists of a series of packet �lters that implement
security policies. A typical policy may be to allow remote
login from within the corporation, but to disallow it from
outside the corporation. Second, the need for predictable
and guaranteed service has lead to proposals for reservation
protocols like RSVP [32] that reserve bandwidth between a
source and a destination. Third, the cries for routing based
on tra�c type have become more strident recently|for in-
stance, the need to route web tra�c between Site 1 and Site
2 on say Route A and other tra�c on say Route B. Figure 1
illustrates some of these examples.
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Figure 1: Example of �lters that provide tra�c sensitive routing, a �rewall
rule, and resource reservation. The �rst �lter routes video tra�c from S1 to
D via L1; not shown is the default routing to D which is via L2. The second
�lter blocks tra�c from an experimental site S2 from accidentally leaving the
site. The third �lter reserves 50 Mbps of tra�c from an internal network X
to an external network Y, implemented perhaps by forwarding such tra�c to
a special outbound queue that receives special scheduling guarantees; here X
and Y are pre�xes.

Once users have gotten used to the 
exibility and fea-
tures provided by �rewalls, tra�c reservations, and QoS
routing, it is hard to believe that future routers can ignore
these issues. The genie appears to be out of the bottle, or
the camel has entered the tent, depending on one's point
of view. On the other hand, it seems clear that the ad
hoc solutions currently being deployed are not the best, and
cleaner and more general techniques are possible. For ex-
ample, a cleaner solution to the tra�c sensitive routing and
reservation problem would be to push some form of \tra�c
classi�er" into the routing header to determine application
requirements without inspecting higher layer headers1. But
whatever the �nal solutions will be, it seems clear that fu-
ture routers will need to forward at least some tra�c based
on a combination of destination address, source address and

1We are grateful to Craig Partridge and John Wrocklawski for
sharing their ideas and opinions with us.

some other classi�er �elds, whether they are in the routing
(Layer 3) or higher layer (Layers 4 and up) headers.

In this paper, we take a neutral stance on the issue of
choosing which combination of �elds should be used for a
particular function, and even on the issue of deciding which
functions are most useful. Instead, we concentrate on a gen-
eral problem where a router forwarding database consists of
a number of �lters, each of which is a conjunction of either
exact, range, or pre�x matches on a set of packet �elds. We
describe a family of e�cient algorithms for �nding the best
matching �lter for a given packet, which then determines
the packet's route, resource allocation and access rights. We
are especially concerned with �nding algorithms that are ef-
�cient (i.e., implementable at Gigabit speeds), but are also
scalable to large numbers of �lters (say, 100K �lters) with
reasonable memory costs.

Firewalls today contribute only a few (10-100 typically)
�lters. However, if we consider that backbone routers [20]
have 40,000 pre�xes, and if we qualify each destination pre-
�x with even a few port numbers (e.g., for QoS routing) or
source pre�xes (e.g., for resource reservation between sites
in a Virtual Private Network), it is not hard to imagine the
need for several hundred thousand �lters. Today, even �re-
wall processing with 10-100 �lters is generally slow because
of linear search through the �lter set, but is considered an
acceptable price to pay for \security". Thus the problem
of �nding the best matching �lter for up to 100K �lters at
Gigabit speeds is an important challenge.

The rest of the paper is organized as follows. We formu-
late the best matching �lter problem precisely in Section 2.
In Section 3, we brie
y discuss related work. In Section 4,
we show how to replace range matches by pre�x matches.
In Section 5, we describe our �rst new scheme, the grid-
of-tries. Our second scheme, cross-producting, is described
in Section 6. We discuss lower bounds that show the di�-
culty of the general �lter problem in Section 7. We present
a scheme that combines the best features of grid-of-tries and
cross-producting in Section 8. Finally, we discuss implemen-
tation results in Section 9, and conclude in Section 10.

2 The Best Matching Filter Problem

Traditionally, the rules for classifying a message are called
�lters, (or rules in �rewall terminology) and the Layer 4
Switching problem is to determine the lowest cost matching
Filter for each incoming message at a router.

We assume that the information relevant to a lookup is
contained in K distinct header �elds in each message. These
header �elds are denoted H[1];H[2]; : : : ;H[K], where each
�eld is a string of bits. For instance, the relevant �elds for an
IPv4 packet could be the Destination Address (32 bits), the
Source Address (32 bits), the Protocol Field (8 bits), the
Destination Port (16 bits), the Source Port (16 bits), and
TCP 
ags (8 bits). The number of relevant TCP 
ags is
limited, and so we prefer to combine the protocol and TCP

ags into one �eld|for example, we can use TCP-ACK to
mean a TCP packet with the ACK bit set.2 Other relevant
TCP 
ags can be represented similarly; UDP packets are
represented by H[3] = UDP .

Thus, the combination (D;S; TCP-ACK ; 63; 125), de-
notes the header of an IP packet with destination D, source

2TCP 
ags are important for packet �ltering because the �rst
packet in a connection does not have the ACK bit set while the oth-
ers do. This allows a simple rule to block TCP connections initi-
ated from the outside while allowing responses to internally initiated
connections.



S, protocol TCP, destination port 63, source port 125, and
the ACK bit set.

The �lter database of a Layer 4 Router consists of a �-
nite set of �lters, F1;F2 : : :FN . Each �lter is a combination
of K values, one for each header �eld. Each �eld in a �lter is
allowed three kinds of matches:3 exact match, pre�x match,
or range match. In an exact match, the header �eld of the
packet should exactly match the �lter �eld|for instance,
this is useful for protocol and 
ag �elds. In a pre�x match,
the �lter �eld should be a pre�x of the header �eld|this
could be useful for blocking access from a certain subnet-
work. In a range match, the header values should lie in the
range speci�ed by the �lter|this can be useful for specifying
port number ranges.

Each �lter Fi has an associated directive acti, which
speci�es how to forward the packet matching this �lter. The
directive speci�es if the packet should be blocked. If the
packet is to be forwarded, the directive speci�es the out-
going link to which the packet is sent, and perhaps also a
queue within that link if the message belongs to a 
ow with
bandwidth guarantees.

We say that a packet P matches a �lter F if each �eld
of P matches the corresponding �eld of F|the match type
is implicit in the speci�cation of the �eld. For instance, if
the destination �eld is speci�ed as 1010�, then it requires a
pre�x match; if the protocol �eld is UDP , then it requires
an exact match; if the port �eld is a range, such as 1024{
1100, then it requires a range match. For instance, let F =
(1010�; �; TCP; 1024{1080; �) be a �lter, with act = block.
Then, a packet with header (10101 : : : 111, 11110 : : : 000,
TCP , 1050, 3) matches F , and is therefore blocked. The
packet (10110 : : : 000, 11110 : : : 000, TCP , 80, 3), on the
other hand, doesn't match F .

Since a packet may match multiple �lters in the database,
we associate a cost for each �lter to determine an unambigu-
ous match. So each �lter F in the database is associated
with a non-negative number, cost(F ), and our goal is to �nd
the �lter with the least cost matching a packet's header.
Our cost function generalizes the implicit precedence rules
that are often used in practice to choose between multiple
matching �lters. In �rewall applications, for instance, rules
or �lters are placed in the database in a speci�c linear order,
where each �lter takes precedence over a subsequent �lter.
Thus, the goal there is to �nd the �rst matching �lter. Of
course, we can get the same e�ect in our scheme, by making
cost(F ) equal the position number of F in the database.

As an example of a �lter database, consider the �rewall
database [6] shown in Figure 2, where a screened subnet
con�guration is assumed. There is a so-called bastion host
M within the company that mediates all access to and from
the external world. M serves as the mail gateway and also
provides external name server access. TI; TO are Network
Time Protocol (NTP) sources, where TI is internal to the
company and TO is external. S is the address of the sec-
ondary name server which is external to the company. All
addresses of machines within the company's network start
with the CIDR pre�x Net. Thus M and TI both match the
pre�x Net.

As an example, consider a packet sent to M from S with
UDP destination port equal to 53. This packet matches
Filters 2, 3, and 8, but must be allowed through because
the �rst matching �lter is Filter 2.

3It is possible to extend the type of matches for greater 
exibility;
we illustrate our examples using these three most common types.

Port Port
Destination  Source  Destination   Source  flags   comments

M                   *             25              *          *     allow inbound mail

M                   S             53              *          *     

M                   *              23              *          *     

TI                  TO          123           123      UDP

 *                   Net           *                *          *     

Net                  *             *                *       TCP

  *                    *              *               *          *     

ack

secondary access

incoming telnet

NTP time info

outgoing packets

return ACKs OK

block everythingl

M                   *              53              *       UDP       allow DNS access

Figure 2: Sample �rewall database \for a small company" as described in
the book by Cheswick and Bellovin [6]. The block 
ags are not shown in the
�gure; the �rst 7 �lters have block = false (i.e., allow) and the last �lter
has block = true (i.e., block).

3 Related Work

There does not appear to be any work directly related to
fast �lter processing. Packet �lters for demultiplexing have
been used for some time (for instance, see [1, 17, 11]), but
they solve a somewhat di�erent problem. Filters specify dif-
ferent matching rules, allow wildcards and address ranges in
arbitrary �elds, and require that we return the �rst match-
ing �lter. The IP address lookup problem is the one most
closely related to our problem; however, the IP lookup prob-
lem is simpler than and a special case of the �lter problem.
Our cross-producting scheme uses best matching pre�x as a
building block for packet �ltering.

An unpublished paper by Paul Tsuchiya [29] describes
a data structure called Cecilia tries for dealing with non-
contiguous IP net masks. Cecilia tries can be generalized to
what we call set pruning trees, and can be used for Layer
4 switching [7]. Unfortunately, the scheme su�ers from a
memory explosion, which makes it impractical when the �l-
ter database size becomes large. Figure 5 shows an example
for which Tsuchiya's scheme, as well as many other simple
methods, have exponential memory blowup. In Section 5.1
we describe the basic idea behind set pruning trees.

Several existing �rewall implementations do a linear search
of the database, and keep track of the best matching �lter.
Some implementations use caching to improve performance|
they cache full packet headers to speed up the processing of
future lookups. Now the cache hit rate of caching full IP
addresses in routers is at most 80{90% [23, 21]; cache hit
rates are likely to be much worse for caching full headers.
Incurring a linear search cost to search through 100; 000 �l-
ters is a bottleneck even if it occurs on only 10 to 20% of
the packets.

The least cost matching �lter can be thought of as a
special case of a very general multidimensional searching
problem. Several general solutions exist for the problem.
In particular, each K-�eld �lter can be thought of as a K-
dimensional rectangular box, and each packet header can be
thought of as a point in the K-dimensional space. The least
cost �lter matching problem is to �nd the least cost box con-
taining the header point. A general result in Computational
Geometry o�ers a data structure requiring O(N(logN)K�1)
space, and search time O((logN)K�1), where the logarithms
are to the base 2 (for instance, see Section 2.3 in [24]). Un-
fortunately, the worst-case search and memory costs of this
data structure are infeasible, even for modest values of N
and K. For instance, when N = 10; 000 and K = 4, the
worst-case search cost is at least 133 = 2197 and the mem-
ory cost is 2197N .



A recent approach to Layer 4 switching is described in
[15]. We have been unable to determine the details of this
scheme. It appears to implement multi-dimensional range
matching in hardware.

Another possible technique is to generalize binary search
by using quad-tree like construction in higher dimensions.
(See, for instance, [25].) Consider, for instance, destination-
source �lters, which correspond to a two-dimensional search.
A �lter F = (D;S) can be mapped to a quad-tree cell (i; j)
if D is i bits long and S is j bits long. Now, we can try to do
a binary search by �rst matching the packet with the �lters
in the quad-tree cell (W=2;W=2), where W is the maximum
bit length of any destination or source pre�x. The problem
is that the probe outcome (fail or match) only eliminates
one quadrant of the search space, and requires three recur-
sive calls (not one, as in 1 dimension) to �nish the search,
which leads to a large search time. One possible way to
avoid making three recursive calls is to precompute future
matches using markers, but that leads to an infeasible mem-
ory explosion of 2W=2. We have also shown a lower bound
on hashing schemes like [31] to show that they generalize
poorly to multiple dimensions.

In summary, we believe that all existing methods lead
to either a large blowup in memory or lookup time for the
least cost �lter problem.

4 Converting address ranges to pre�xes

A �lter �eld is sometimes speci�ed as a range. A common
example is a range of port numbers; for instance, a �rewall
�lter may require that the source port be greater than 1023.
An arbitrary range can be converted into a union of pre�x
ranges, where a pre�x range is one that can be expressed
by a pre�x. For instance, in a 4-bit �eld, the pre�x 10�
expresses the range [1000; 1011] = [8; 11].

Suppose we want to convert an arbitrary range X that
lies within an enclosing binary range [0; 2k]. De�ne an an-
chored range as one that has at least one endpoint at the
end of the enclosing range. Then, the arbitrary range X
can be split into at most two anchored ranges that lie within
[0; 2k�1�1] and [2k�1; 2k]. Each anchored range can be split
into a logarithmic number of pre�x ranges by constantly
halving the range|at each stage, the halving contributes at
most one pre�x range. The net result is that we can repre-
sent an arbitrary subrange of [0; 2k] with at most 2k pre�x
ranges. As an example, with 16-bit port numbers the range
� 1023 can be expressed using the pre�x range 000000�. On
the other hand, the range > 1023 can be expressed with 6
pre�x ranges 000001�, 00001� 0001�, 001�, 01�, and 1�.

Thus, for the rest of the paper, we assume that each �lter
�eld is a pre�x.

5 Grid-of-tries

Our �rst scheme is based on tries. In its simplest form, a
trie is a binary branching tree, with each branch labeled 0
or 1. The pre�x associated with a node u is the concatena-
tion of all the bits from the root to the node u. In Figure 4,
for instance, the leftmost node in the Dest-Trie has pre�x
value 00; the node on the right has value 10. Our basic
data structure, called a grid-of-tries, is designed to handle
two-dimensional �lters, such as destination-source pairs. We
believe this is a signi�cant algorithm in its own right be-
cause large backbone routers may have a large number of
destination-source �lters to handle virtual private networks
and multicast forwarding.

The grid-of-tries can be extended, albeit with some loss
of e�ciency, to handle �lters on other �elds such as port
numbers. This is described in Section 5.5. We start by
explaining the basic two dimensional data structure using
an example database of 7 destination-source �lters, shown
in Figure 3. Though our examples use destination-source
tries, we note that the idea can be abstracted to handle
�lters with any two pre�x �elds (and the remaining �elds
completely wildcarded).

Filter Destination Source
F1 0� 10�
F2 0� 01�
F3 0� 1�
F4 00� 1�
F5 00� 11�
F6 10� 1�
F7 � 00�

Figure 3: An example with 7 dest-source �lters.

5.1 Set Pruning Trees

To motivate our grid-of-tries scheme, we begin by describing
two dimensional set pruning trees. We build a trie on the
destination pre�xes in the database. Figure 4 illustrates the
construction for the example database in Figure 3. Each
valid pre�x in the Destination Trie (Dest-Trie) points to a
trie containing some source pre�xes. The question is: which
source pre�xes should we store?

For instance, consider D = 00. Both �lters F4 and F5
have this destination pre�x, and so we need to store the
corresponding source pre�xes 1� and 11� at D. But stor-
ing only these �lters is not su�cient, since �lters F1; F2; F3
also match whatever destination D matches. In fact, the
wildcard destination pre�x � of F7 also matches whatever D
matches. Suppose we get a packet whose destination header
starts with 00 and whose source address starts with 101.
Then, the least cost �lter matching this header is the low-
est cost �lter among fF1; F3; F4g. This suggests we need
to store at D = 00 a source trie containing the source pre-
�xes for fF1; F2; F3; F4; F5; F7g, because these are the �lters
whose destination is a pre�x of D. Figure 4 shows the com-
plete data structure for the database in Figure 3.

In this trie of tries, we �rst match the destination of the
header in Dest-Trie. This yields the longest match on the
destination pre�x. We then traverse the associated source
trie to �nd the longest source match. As we search the
source trie, we keep track of the lowest cost matching �lter.
Since all �lters that have a matching destination pre�x are
stored in the source trie being searched, we �nd the correct
least cost �lter. This is the basic idea behind set pruning
trees [29, 7].

Unfortunately, this simple extension of tries from one to
two dimensions has a memory blowup problem. The prob-
lem arises because a source pre�x can occur in multiple tries.
In Figure 4, for instance, the source pre�xes S1; S2; S3 ap-
pear in trie associated with D = 00� as well as D = 0�. A
worst-case example forcing �(N2) memory is created using
the set of �lters shown in Figure 5. The problem is that
since destination pre�x � matches any destination header,
each of the N=2 source pre�xes are copied N=2 times, one
for each destination pre�x.
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Figure 4: The �rst idea for grid-of-tries. It may require�(N2) memory for
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destination �eld is a pre�x of D.

Filter Destination Source
F1 D1 �

F2 D2 �

..

.
FN=2 DN=2 �

FN=2+1 � S1
FN=2+2 � S2

...
FN � SN

Figure 5: An example forcing N2 memory for two dimensional set pruning
trees. Similar examples, that apply to a number of other simple schemes, can
be used to show NK storage for K dimensional �lters.

5.2 Avoiding the Memory Blowup

In order to avoid the memory blowup of the simple trie
scheme, we observe that �lters associated with a destination
pre�x D are copied into the source trie of D0 whenever D is
a pre�x of D0. For instance, in Figure 4, the pre�x D = 00
has two �lters associated with it: F4 and F5. The others
F1; F2; F3 are copied because their destination �eld 0 is a
pre�x of D; similarly, F7 is copied because its destination
�eld � is also a pre�x of 00.

We can avoid the copying by having each destination
pre�x D point to a source trie that stores the �lters whose
destination �eld is exactly D. This requires us to also mod-
ify the search strategy as follows: instead of just searching
the source trie for the best matching destination pre�x D,
we must now search the source tries associated with all the
ancestors of D.

In order to search for the least cost �lter, we �rst traverse
the Dest-Trie, and �nd the longest destination pre�x D0

matching the header. We search the source trie of D0, and
update the least cost matching �lter. We then work our way
back up the Dest-Trie, and search the source trie associated
with every pre�x of D0 that points to a nonempty source
trie.4

Since each �lter now is stored exactly once, the mem-

4In this scheme, we could search each of the source tries corre-
sponding to pre�xes of the destination in any order without changing
the search time; we used this particular order in order to motivate
our �nal scheme.
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Source Tries

Figure 6: Avoiding the memory blowup, by storing each �lter in exactly one

trie.

ory requirement for the new structure is O(NW ), which is
a signi�cantly improvement over the the previous scheme.
Unfortunately, the lookup cost in the new scheme is worse
than the �rst scheme: in the worst-case, the lookup costs
�(W 2), where W is the maximum number of bits speci�ed
in the destination or source �elds. The �(W 2) bound on the
search cost follows from the observation that, in the worst-
case, we may end up searching W source tries, each at the
cost of O(W ), for a total of O(W 2).

5.3 Improving Search Time: Basic Grid-of-Tries

We now describe our key ideas for improving the search
cost in two-dimensional tries from O(W 2) to O(W ), while
keeping the memory requirement linear. The key idea is to
use precomputation and switch pointers to speed up search
in a later source trie based on the search in an earlier source
trie. Figure 7 shows the construction with switch pointers.
The switch pointers are shown using dashed lines between
source tries. This is to distinguish the switch pointers from
the dotted lines that connect the Dest-Trie nodes to the
corresponding source tries.

F5 F7

F6

F2 F1

0

0 1

0

10

0

1 0 1

011
F4 F3

Dest-Trie

y

x

0

0

0

0
Source Tries

Figure 7: Improving the search cost with the use of switch pointers.

In order to understand the role of switch pointers, con-
sider matching a packet with destination address 001 and
source address 001. The search in the Dest-Trie gives D =
00 as the best match. So we start our search for the matching
source pre�x in the associated source trie, which contains �l-
ters F4 and F5. However, the search immediately fails, since
the �rst bit of the source is 0. In the previous scheme, we
would back up along the Dest-Trie and restart the search in
the source trie of D = 0�, the parent of 00�.

In the new scheme, however, we use the switch pointer
to directly jump to the node x in source trie containing



fF1; F2; F3g. Similarly, when the search on the next bit of
the source fails again, we jump to the node y of the third
source trie (associated with the destination pre�x �). In-
tuitively, the switch pointers allow us to jump directly to
the lowest point in the ancestor source trie which has at
least as good a source match as the current node. This al-
low us to skip over all �lters in the next ancestor source
trie whose source �elds are shorter than the current source
match. This in turn improves the search complexity from
O(W 2) to O(W ).

We now de�ne the switch pointers more precisely. We
say that destination string D0 is an ancestor of D if D0 is
a pre�x of D. We say that D0 is the lowest ancestor of
D if D0 is the longest pre�x of D in the Destination Trie.
Let T (D) denote the source trie pointed to by D. (Recall
that T (D) contains the source �elds of exactly those �lters
whose destination �eld is D.) Let u be a node in T (D) that
fails on bit 0; that is, if u corresponds to the source pre�x
s, then the trie T (D) has no string starting with s0. Let
D00 be the lowest ancestor of D whose source trie contains a
source string starting with pre�x s0, say, at node v. Then,
we place a switch pointer at node u pointing to node v. If
no such node v exists, the switch pointer is nil. The switch
pointer for failure on bit 1 is de�ned similarly. For instance,
in Figure 7, the node labeled x fails on bit 0, and it has a
switch pointer to the node labeled y.

The switch pointers allow us to increase the length of the
matching source pre�x, without having to restart at the root
of the next ancestor source trie. In particular, they allow us
to skip over all �lters in the next source trie whose source
�elds are shorter than the current source match.

For instance, consider the packet header (00�; 10�). We
start with the �rst source trie, pointed to by the destination
trie node 00�. We match the �rst source bit 1, which gives
us �lter F4. But then we fail on the second bit, and there-
fore follow the switch pointer, which leads to the node in
the second trie labeled with the �lter F1. The switch point-
ers at the node containing F1 are both nil, and the search
terminates. Note, however, that we have missed the �lter
F3 = (0�; 1�), which also matches the packet. While in this
case F3 has higher cost than F1, in general the overlooked
�lter could have lower cost.

We solve this problem by having each node in a source
trie maintain a variable storedFilter. Speci�cally, a node
v with destination pre�x D and source pre�x S stores in
storedFilter(v) the least cost �lter whose destination �eld is
a pre�x of D and whose source �eld is a pre�x of S. With
this precomputation, the node labeled with F1 in Figure 7
would store information about F3 if F3 had lower cost than
F1.

Finally, we argue that the search cost in the �nal scheme
is at most 2W . The time to �nd the best destination pre�x
is at most W . After that all the time is spent traversing the
source tries. However, in each step, the length of the match
on the source �eld increases by one|either by traversing
further down in the same trie, or following a switch pointer
to an ancestral trie. Since the maximum length of the source
pre�xes is W , the total time spent in searching the source
tries is also W . The memory requirement is O(NW ), since
each of N �lters is stored only once, and each �lter requires
O(W ) space.

5.4 Further Improvements

Several improvements to the previous scheme are possible.
First notice that the only role played by the Dest-Trie is in

determining the longest matching destination pre�x. The
longest matching destination pre�x tells us in which source
trie to start searching. From that point on, the Dest-Trie
plays no role, and we move among source tries using switch
pointers. Thus, the �rst improvement is to replace the Dest-
Trie with a fast scheme for determining the best match-
ing pre�x [9, 31] of the destination address. The scheme
proposed in [31] requires O(logW ) time in the worst-case
for �nding the longest matching pre�x. Combining this
scheme with the grid-of-tries leads to a total lookup time
of (logW +W ) for destination-source �lters.

Second, instead of using 1-bit source tries, we can use
multi-bit tries [27]. In multi-bit tries, we �rst expand each
destination or source pre�x to the next multiple of k. For
instance, suppose we use k = 2. Then, in the example of
Figure 7, the destination pre�x 0� of �lters F1; F2; F3 is ex-
panded to 00 and 01. The source pre�xes of F3; F4; F6 are
expanded to 10 and 11. If we use k-bit expansion, a sin-
gle pre�x might expand to 2k�1 pre�xes. The total memory
requirement grows from 2NW to NW2k=k, and so the mem-
ory blows up by the factor 2k�1=k. On the other hand, the
depth of the trie reduces to W=k, and so the total lookup
time becomes O(logW +W=k). Depending on the memory
available, one can optimize the time-space tradeo� as in [27].

5.5 Extending Grid-of-tries to Handle Protocol and Ports

We now describe how to handle more general �lters (with
the protocol type and port number �elds speci�ed) using the
grid-of-tries. We will assume that the port number �eld in
each �lter is either a single port number or a wild card.5

We partition the �lters into a small number of classes,
each of which only requires a lookup using the destination-
source combination. First, we eliminate the Protocol �eld
at the cost of increasing the memory by a factor of 3, as
follows. There are two main protocols, TCP and UDP; all
other protocols are grouped under the class \Other" for the
purpose of packet forwarding. Note that port numbers are
only de�ned for TCP and UDP, and not for the other pro-
tocols. Thus, we replicate three times any �lter with a �
in the protocol �eld, using 3 values of the protocol, TCP,
UDP, and Other. So we now have only two remaining port
�elds. We build 4 hash tables, one for each possible com-
bination of port �elds (both unspeci�ed, destination only,
source only, and both speci�ed). The hash tables are in-
dexed by the combination of port �elds and the protocol
�eld (TCP, UDP, or Other). See Figure 8.

Given a �lter of the form (D;S; TCP;P1; �), we �rst
place an entry, if it does not already exist, in the (DstPort;�)
hash table with a key of (TCP;P1). This points to a grid-of-
tries structure representing the destination and source pre-
�xes of all the �lters that have Prot = TCP , DstPort = P1
and SrcPort = �. This is shown in Figure 8. Each �lter is
placed in exactly one grid-of-tries structure, which keeps the
memory linear in the number of �lters.

Finally, to search for a header, we search each of the four
hash tables in turn. When searching a hash table, we use the
actual port numbers and the protocol �eld to follow a pointer
to a grid-of-tries, where we perform the search we described.
For each of the four grid-of-tries we search, we keep track
of the lowest matching �lter. A simple optimization is to
combine the hash of the port number �elds with the lookup

5While grid-of-tries can be extended to handle port number ranges
by creating further two dimensional \planes", this causes further loss
of e�ciency. A better scheme for �rewall �lters that use port number
ranges is cross-producting, described later.



in the �rst trie node of the grid-of-tries (see Figure 8). This
saves 4 hashes.

Hash Table
for (* *)

Hash Table Hash Table Hash Table
for (DstPort *) for (* SrcPort) for (DstPort SrcPort)

TCP, P1 

Grid of tries corresponding to  
Destination and Source Fields in Filters whose
Protocol = TCP, DestPort = P1 and SrcPort is *

Figure 8: Extending basic grid-of-tries to deal with port number �elds.

6 Cross-Producting

The grid-of-tries scheme has excellent performance for two
dimensional pre�xes matches such as Destination-Source �l-
ters. It requires only linear memory and takes time equiva-
lent to doing IP lookups on both the source and destination
address. While this is extremely useful in many important
cases such as Virtual Private Networks, we need to consider
more general �lters for applications like �rewalls. The grid-
of-tries can be extended to handle other �elds by replicating
the grid-of-tries structure. In the last section, we showed
that if the port number �elds were either wildcarded or fully
speci�ed (no ranges), then we could do so using four grid-of-
trie structures. While this is itself expensive, it gets worse
if we have to handle �lters with port number ranges.

We now describe our second algorithm, cross-producting,
for the �lter matching problem. Unlike the grid-of-tries,
cross-producting can easily handle arbitrary �lters (includ-
ing �lters with range speci�cations) at high speeds. How-
ever, either its memory needs or search times are less pre-
dictable than grid-of-tries. Thus our �nal scheme will com-
bine the best features of grid-of-tries and cross-producting.
We proceed to describe cross-producting.

The main idea behind cross-producting is the following:
we start by slicing the �lter database into columns, with
the ith column storing all distinct pre�xes in �eld i. Then,
given a packet P , we determine the best matching pre�x
for each of its �elds separately, and combine the results of
the best matching pre�x lookups on individual �elds. The
main problem, of course, lies in �nding an e�cient method
for combining the lookup of individual �elds into a single
compound lookup.

To this end, we start by slicing the database of Figure 2
into individual pre�x �elds. In the sliced columns, from now
on we will refer to the wildcard character � by the string
default. Recall that the mail gateway M and internal NTP
agent TI are full IP addresses that lie within the pre�x range
of Net. The sliced database is shown in Figure 9.

At the top of each column, we have indicated the num-
ber of elements in the column. Consider a 5-tuple, formed
by taking one value from each column. We call this a cross-
product. Altogether, we have 4 � 4 � 5 � 2 � 3 = 480 possi-
ble cross-products. Some sample cross-products are shown
in Figure 10. If we consider the destination �eld to be most
signi�cant and the 
ags �eld to be least signi�cant, and if
we pretend that values increase down a column, we can or-
der the cross-products from the smallest to the largest, as
in any number system.

Our key insight is as follows: given a packet P , if we do
a best matching pre�x operation for each �eld P [i] in the
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Figure 9: The database of Figure 2 \sliced" into columns where each col-
umn contains the set of pre�xes corresponding to a particular �eld.
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Figure 10: A sample of the cross-products obtained by cross-producting
the individual pre�x tables of Figure 9

corresponding sliced pre�x database, and concatenate the
results to form a cross-product C, then the least cost �lter
matching P is the same as the least cost �lter matching C.
This can be formalized by the following simple theorem:

Theorem 6.1 For any packet P and its associated cross-
product C = M1 : : :MK, the best matching �lter of C is the

best matching �lter of P

Proof: Suppose not. Since each �eld in C is a pre�x of the
corresponding �eld in P , every �lter that matches C also
matches P . Thus the only case in which P has a di�erent
matching �lter is if there is some �lter F that matches P but
not C. This implies that there is some �eld i such that F[i]
is a pre�x of P [i] but not of Mi. But since Mi is a pre�x
of P [i], this can only happen if F[i] is longer than Mi. But
that contradicts our assumption that Mi was the longest
matching pre�x in column i.

Thus, the basic cross-producting algorithm is to build a
table of all possible cross-products and precompute the least
cost �lter matching each cross-product. This is shown in
Figure 10. Then, given a packet header, we can determine
the least cost matching �lter for the packet with K best
matching pre�x operations plus a single hash table lookup of
the cross-product table. For small databases, the individual
pre�x lookups may reside in cache and result in K cache
accesses together with a single memory lookup. In hardware,
each of the K pre�x lookups can be done in parallel.

As an example, consider matching a packet with header
(M;S;UDP; 53; 57) in the database of Figure 2. The cross-
product obtained by performing best matching pre�xes on
individual �elds is (M;S;UDP; 53; default). One can eas-
ily check that the precomputed �lter for this cross-product
is Filter 2|although Filters 3 and 8 also match the cross-
product, Filter 2 has the least cost.

This simple cross-producting algorithm su�ers from a
memory explosion problem: in the worst case, the cross-
product table can have NK entries where N is the number



of �lters and K is the number of �elds. Thus, even for mod-
erate values, say, N = 100 and K = 5, the table size can
reach 1010, which is prohibitively large. In the following, we
describe a simple optimization that can reduce the memory
requirement considerably.

6.1 On Demand Cross-Producting

The major idea to reduce memory is to build the cross-
products on demand: instead of building the complete cross-
product table at the start, we incrementally add entries to
the table. The pre�x tables for each �eld are built as before.
When a packet P arrives, we perform best matching pre�xes
on the individual �elds to compute a cross-product term C.
If the cross-product table has an entry for C, then of course
the associated �lter is returned. However, if there is no entry
for C in the cross-product table, we �nd the best matching
�lter for C (possibly using a linear search of the database),
and insert that entry into the cross-product table. Of course,
any subsequent packets with cross-product C will yield fast
lookups. Figure 11 shows pseudo-code for build and search
for on-demand cross-producting.

Build DataStucture: (* called whenever a �lter changes *)
for i = 1 to K (* K is number of packet �elds *)

Let Si be the set of distinct pre�xes in �eld i of any Filter
Pre�xTable [i] := BuildTable(Si) (* pre�x table for �eld i*)

CrossSearch(P) (* called on arrival of packet P *)
for i = 1 to K
Mi := Pre�xLookup(P [i];Pre�xTable[i]);

C := M1M2 : : :MK; (* cross-product for P *)
R := (HashLookup(C;CrossProductTable))
if R = nil then (*not in table*)

Find the �rst �lter R0 matching C
HashInsert(C;R0;CrossProductTable) (* insert �lter for C *)
Return (R0)

else Return (R);

Figure 11: Pseudo Code for On Demand Cross Producting

On-demand cross-producting can greatly improve both
the building time of the data structure as well its storage
cost. In fact, we can treat the cross-product table as a cache
and remove all cross-products that have not been recently
used. We have discovered a number of optimizations to al-
low incremental computation of the cross-product database
when �lters are added, but we defer these results to another
paper.

We said earlier that caching was not every e�ective, so
why should caching based on cross-producting be more ef-
fective? Consider the database of Figure 2, and imagine
a series of web accesses from an internal site to the exter-
nal network. Suppose the external destinations accessed are
D1; : : : ;DM . All these addresses correspond to two cross-
product terms (�;Net; �; �;TCP-ACK) and (�; Net;�; �; �).
While full-header caching will result in 2M distinct entries
in the cache, cross-producting cache will need only two en-
tries. Examples like these lead us to believe that the hit
rates for the cross-product cache should be much better than
standard header caches. Clearly the bene�ts of on-demand
cross-producting need to be validated with actual packet
traces. We plan to do so in future work.

7 Lower Bounds

We have seen that the grid-of-tries scheme works well for
two-dimensional pre�x matches (such as destination-source
pairs), but it requires multiple planes (grid-of-tries) to solve
the problem for general �lters. On the other hand, pure
cross-producting is very fast but can require a prohibitive
amount of memory. On-demand cross-producting appears
to o�er a good caching solution but does not guarantee
worst case performance. Set pruning trees are also very
fast but require a prohibitive amount of memory in the
general case. These observations raise a natural question:
are there schemes that can handle hundreds of thousands of
arbitrary �lters with bounded memory and fast worst-case
search times?

It seems unlikely that a fast and scalable scheme ex-
ists for completely arbitrary multi-dimensional �lters. It is
known that general multidimensional range searching over
N ranges in d dimensions requires 
((logN)K�1) worst-case
time if the memory is limited to about linear size [4, 5]. No-
tice that this lower bound allows the two dimensional case to
be as fast as O(logN). Once again, the two dimensional case
seems to be special, and allows a fast and scalable solution.

The lower bounds of [4, 5] hold in an arithmetic model of
computation, and do not apply to schemes based on hashing
and tries. The repeated hashing scheme of [31], for instance,
o�ers an O(logW ) solution for the one-dimensional pre�x
matching problem, where W is the maximum pre�x length.
Thus it seems plausible to look for general solutions based
on the techniques of [31]. We did pursue such an approach
based on repeated hashing for generalized �lter matching.
We defer the detailed description of those results to another
paper [26], but summarize our main results in the following
paragraph.

First, we were able to devise a hashing scheme that takes
2W � 1 hashes in the worst-case for the two-dimensional
pre�x matching problem (e.g., source-destination pre�xes).
We called this scheme rectangle search. More importantly,
we were able to show a matching lower bound of 2W � 1
hashes. The lower bound was then extended to show that
for any dimension k > 1, schemes based on the techniques
in [31] would require W k�1 hashes. This �ts in nicely with
the lower bound for multidimensional range matching. The
bottom line is that the one and two dimensional cases appear
to be special, and extensions to higher dimensions appear
to be slow.

Our lower bound does not apply to schemes based on
tries, and thus to grid-of-tries. However, it seems plausible
that schemes based on tries can be emulated by schemes
based on hashing. Suppose the trie scheme is at a node N
(that was reached using some string P from the root of trie
search) and follows a pointer at location I. A hash based
scheme can determine the same pointer by looking up a hash
table indexed by the complete path PI. While this is only a
very rough plausibility argument and applies only to certain
types of trie search schemes, it does make us suspect that
it is infeasible to �nd a more e�cient generalization of grid-
of-tries to higher dimensions.

Do these theoretical arguments imply that Layer 4 switch-
ing cannot be implemented in real routers at high speeds
without requiring infeasible amounts of memory? We do
not think so. This is because we believe that in practice
�lter databases will only have a small number of completely
general �lters (e.g., �rewall �lters); the vast majority of the
�lters will be restricted to destination pre�xes, destination-
source pre�xes, and �lters with all 5 �elds completely spec-



i�ed. If this assumption is true, we can leverage o� the
assumed distribution of �lters to construct an e�cient com-
bined scheme that we describe next.

8 A Combined Scheme

We envisage �lter databases of the future to consist of a
large number (say 80K) of pure destination pre�x �lters
(standard IP forwarding), a fairly large number (say 20K)
of fully speci�ed �lters (destination, source and both port
�elds fully speci�ed for say bandwidth reservations), a fairly
large number (say 20K) of destination-source pre�x �lters
(e.g., for multicast forwarding and virtual private networks),
and a smaller number (say 1K) of completely arbitrary �l-
ters with port ranges (e.g., for �rewalls). Thus rather than
have a 
at worst case �gure for all types of �lters, it makes
sense to have a scheme that can optimize the important
special cases (e.g., pure destination pre�x �lters). We have
seen in the previous sections that the grid-of-tries works op-
timally for destination and destination-source pre�x �lters.
On the other hand, on-demand cross-producting can handle
arbitrary �lters but with less predictable speed (because of
possible cache misses). Thus it makes sense to combine the
two schemes.

The simplest combination is to divide the �lters into
two sets. The �rst set of �lters with pure destination and
destination-source pre�xes is handled by a single grid-of-
tries. The second set containing the remaining �lters is
handled by cross-producting. This simple scheme has two
disadvantages. First, the common case of destination only
and destination-source pre�xes requires a cross-producting
search on the remaining �lters to ensure that there is no
lower cost �lter in the second set. Second, cross-producting
search requires a destination and source pre�x lookup which
is also done in the grid-of-tries search; this is wasteful. In-
stead, our combined scheme will attempt to terminate the
grid-of tries search in the common cases; it will also avoid
redundant destination and source lookups if we have to fall
back on cross-producting.

A key idea required for early termination is the concept
of �lter overlap. We say that two �lters F and F 0 over-
lap if there is some packet header that matches both F and
F 0. Suppose, during our search, we �nd a �lter F that
matches packet P . If we can ensure that no other �lter in
the database overlaps with F , then we can terminate the
search and output F as the least cost �lter. Our search
will match against progressively more complex �lters. Ini-
tially, we will try to see if the packet matches a destination-
only �lter (D;�; �; �; �), which does not overlap any other
�lter. Failing this, we will look for a destination-source �l-
ter (D;S; �; �; �). If that also fails, we will do a cross-product
search, but will only need to do the best matching pre�x on
the remaining K � 2 �elds.

We need to modify slightly both the grid-of-tries as well
as the cross-producting algorithm for our combined scheme.
We divide the set of �lters into two sets. We allocate �lters
that have (�; �) in the port �elds to the �rst set, which we
call the port-free �lter set G0. All other �lters are allocated
to what we call the port-full �lter set G1.

For the combined scheme, we need to project port-full
�lters into G0. That is, for each port-full �lter F 2 G1,
we create a projection �lter F 0 obtained by wild-carding the
port entries of F . In order to distinguish the original port-
free �lters from the projected �lters, we add a bit port to
each �lter, which is set to 0 for the port-free �lters, and
to 1 for the projection of port-full �lters. The reason for

adding the projections of port-full �lters is that now �lters
in the enhanced group G0 contain all destination and source
pre�xes in the database. This allows cross-producting to
avoid a redundant computation of destination and source
pre�x matches.

We now build a single grid-of-tries structure for this en-
hanced group G0. For each port-free �lter F 2 G0 (that
is, port(F ) = 0), we associate an additional bit, called the
overlap bit, which is set if F overlaps with some other �lter
in the �lter database; otherwise the bit is false. For each
port-free �lter F , we compute F 0 = storedFilter(F ), where
F 0 is the least cost port-free �lter whose destination and
source �elds are pre�xes of the corresponding �elds of F .

Given a packet P , we start with the grid-of-tries search.
As usual, we begin by �nding the best matching pre�x Dbmp

for the destination �eld P [1]. If the source trie associated
with Dbmp has a �lter F = (Dbmp; �; �; �; �), with port(F ) =
0 and overlap(F ) = 0, then we output F as the least cost
�lter for P and stop.

Otherwise, we perform the normal grid-of-tries search,
starting at Dbmp. We initialize an overlap bit overlap = 0.
Whenever we arrive at a new node that has a port-free �lter
F stored with it, we update the least cost �lter, and set
overlap = maxfoverlap(F );overlapg. When the search for
the group G0 ends, if overlap = 0 and if the temporary
variable containing the least cost �lter is non-nil, we output
that �lter and terminate the search. If either overlap = 1
or the least cost �lter variable is nil, we initiate the cross-
producting search.

We need to modify the normal cross-producting search
as follows. Instead of using the best matching pre�x for the
source address P [2], we use the best matching pre�x of P [2]
among the �lters whose destination �eld is a pre�x of the

packet's destination P [1]. It is not hard to show that this
modi�cation preserves correctness.

We already know the best matching pre�x Dbmp for the
destination �eld. Let Sbmp be the source pre�x at the node
where the grid-of-tries search terminated. We claim that
Sbmp is the best matching pre�x of the source �eld among
all �lters whose destination �eld is compatible with P [1].
Therefore, we do not repeat the best matching pre�x compu-
tation for destination and source addresses. We perform the
pre�x computation for the remaining �elds, protocol type
and port numbers, and concatenate the best matching pre-
�x into a cross-product term C. Next, we hash into the
cross-product table to see if C exists. If it does, we output
the �lter stored there. Otherwise, we do some other search
algorithm (e.g., linear search) among the port-full �lters.
When the search �nishes, we add the corresponding entry
to the cross-product table.

Recall that we said that fully speci�ed �lters (where
all four �elds are full speci�ed) may be commonly used
for reserving voice and video bandwidth. The combina-
tion scheme described so far would allocate such �lters to
the port-full set, and thus would require a cross-producting
search for such �lters. This can greatly increase the number
of possible cross-products and so reduce the e�ectiveness of
the cross-product cache. If we assume that the destination
and source �elds of such �lters are not pre�xes, and the port
numbers have no wild cards or ranges, a simple trick is to
place such �lters in a third set that can be handled by a sin-
gle hash on all four �elds. We can do this search before we
fall back on the cross-producting search. If we get a match,
we can terminate. This is because with every match in this
fully speci�ed set we can precompute the associated best
matching �lter.



The net result is that the combined scheme will process
packets that map to destination �lters that have no overlap
with other �lters in time equal to one IP lookup (3-4 mem-
ory accesses using multibit tries [27, 9]), process packets that
map to destination-source �lters (that have no further over-
lap) in time equal to two IP lookups using the grid-of-tries
(6-8 memory accesses), process packets that map to fully
speci�ed �lters in one more hash (a total of 7-9 memory ac-
cesses), and �nish all other �lters using two more port num-
ber �eld lookups followed by a hash into the cross-product
table (a total of 10-12 memory accesses) if the cross-product
is cached. Since the cross-product table only corresponds to
�lters that are not either in the port-full or fully speci�ed
sets (corresponding to what we hope is a small number of
�rewall �lters), this should allow good caching performance
for these remaining �lters.

We note that that several other combination schemes are
possible. For instance, a hardware scheme might implement
each of the four planes of the extended grid-of-trie search
in parallel. Since the extended grid-of-tries does not handle
port number ranges, �lters with port number ranges could
be handled by (say) a small additional content addressable
memory (CAM).

9 Implementation and Measurements

For our implementation platform, we chose a 300 Mhz Pen-
tium II (system cost under 5000 dollars) running Windows
NT that had a 512 KBytes L2 cache and a cache line size
of 32 bytes. We believe the results would be similar if run
on other comparable platforms such as the Alpha. We use
a tool called Vtune [13] that gives us access to dynamic in-
struction counts, cache performance, and clock cycles for
short program segments. We did evaluations for the grid-
of-tries scheme as well as for cross-producting. We did not
�nish an implementation of the combined scheme; thus we
can only provide estimates of the performance of the com-
bined scheme.

9.1 Grid-of-Tries Implementation Measurements

First, we report on the worst case time for a simple grid-
of-tries implementation that can process destination-source
�lters. Our implementation used multibit tries [27] sampling
8 bits at a time for the Destination trie; each of the source
tries started with a 12 bit trie node, followed by 5 bit trie
nodes. This yields a worst case of 9 memory accesses (we
could easily have done the source tries 8 bits at a time to
yield a worst case of 8 memory accesses but that increases
storage.)

Destination-Source Filters: Using VTune on the 300 Mhz
Pentium II, we measured the worst case path as taking 870
nsec using a memory access time of 60 nsec and a clock
tick interval of 3.333 nsec. The numbers for a single IP
lookup reported in, for example, [9] are around 400 nsec,
and so this roughly corresponds to two IP lookups. For
destination-source �lters this appears to be optimal as it
is hard to �nd the lowest cost matching �lter any faster
than doing an individual best matching pre�x on both source
and destination addresses. The memory required for 20,000
�lters was around 2 Mbytes and the time taken to construct
the entire data structure was 8 seconds.

General Filters: We built a 4 plane grid-of-tries that can
handle more general �lters (Section 5.5) with fully speci�ed

port numbers. Since there are no layer 4 databases available,
we started with a publically available database of pure des-
tination pre�xes (D, *, * , *, *) entries, and added further
entries which specialize some of these entries. For our exper-
iment, we took the publicly available MaeEast database [20]
(around 40000 pre�xes). We randomly chose 5000 destina-
tion pre�xes to create further �lters. For each (D, *, *, *, *)
pre�x chosen, several �lters were added which were of the
form (D, *, TCP, P1, *), (D, S, *, *, *), (D, S, TCP, P1, *)
and (D, S, TCP, P1 P2). The source pre�xes were chosen
randomly from the set of 40000 pre�xes. From each des-
tination pre�x in MaeEast, 20 �lters were generated. The
number of �lters of each form was varied, but together 20 �l-
ters were generated for each chosen destination pre�x. Port
numbers were generated randomly.

The following table was obtained using the following dis-
tribution of �lters. For each of the 5000 pure destination
pre�x (D, *, *, *, *) �lters that we specialized, we made up
�ve (D, S, *, *, *) �lters, four (D, S, TCP, P1, *) �lters,
�ve (D, S, TCP, P1 P2) �lters, and �ve (D, *, TCP, P1,
*) �lters. Together with the original destination pre�x, the
total adds up to twenty �lters.

Filters Memory (KB) Build Time Worst case search
sec per plane in �sec

1000 240 0.4 0.9
2000 836 0.7 0.9
5000 2033 1.5 0.9
10000 3951 3.5 0.9
20000 7489 32 0.9

Table 1: 4 planes grid-of-tries implementation measure-
ments on a 300 Mhz Pentium

The worst case time for the 4 plane grid-of-tries search
was measured using VTune to be 0.9 usec per plane, or a
total of 3.6 usec. The number per plane (0.9) is slightly
more than the measured number for a single grid-of-tries
search because of the need for the additional hash of the
port number �elds (see Section 5.5).

9.2 Cross-producting Implementation Measurements

Since we expect cross-producting to be used with small �l-
ter databases (with arbitrary port number ranges), we used
a �rewall database to test cross-producting. The �rewall
�lters we used are generated based on a 20 �lter database
in [6], which is described as a sample �rewall database for
a university. To create larger databases, we added similar
�lters to the base 20 �lter database, while maintaining the
ratio of the number of distinct longest matching pre�xes in
a �eld with the total number of pre�xes in the �eld.

Note that the longest matching pre�x in the source and
destination �elds can be found by any technique. We used
a multibit trie [27] approach. The port lookups are imple-
mented as full arrays. Note that only the �nal cross-product
table is in main memory; the structures for the individual
�elds for such a small database can be in the L2 cache. The
�nal cross-product table can be implemented either as an
array or as a hash table. We used simple cross-producting
for small �lter sets; in that case the �nal table can be imple-
mented as an array which can be looked up by an index that
is the concatenation of indexes returned by the individual
column lookups. For databases with more than 50 �lters, on-
demand cross-producting is essential. For on-demand cross-
producting to reduce memory, the �nal cross-product table



must be a hash table.

Number of Memory for Average Worst case time
cross-product Search

Filters (KBytes) (nsec) (nsec)
20 40 360 475
50 1525 405 475
256 on-demand 480 540
1024 on-demand 480 540

Table 2: Cross-producting implementation measurements
on a 300 Mhz Pentium

For worst case time measurement, we use Vtune based
clock cycle counts. If L2 is the access delay from the L2 cache
(=15 nsec), then the worst case �lter lookup time when using
an array for the cross-product table was 475 nsec. When we
use hashing and on-demand cross-producting the worst case
is harder to evaluate. Since we used a hash function that
gave almost no collisions and we expect the on-demand cache
hit rate to be high, the \worst case" �gure shown when using
hashing and on-demand assumes no hash collisions and a
cache hit in the cross-product table.

For many �rewall databases, the destination and source
addresses are often full addresses instead of pre�xes. In
this case the destination and source column lookups would
take a single hash each (instead of several memory accesses
needed to do a longest matching pre�x). Assuming a 10
clock cycle hash function, �lter resolution in this special
case (no pre�xes) can be done in a worst case of 200 nsec
which is twice as fast as the general case (400-500 nsec)

10 Conclusions

We have described two algorithms for packet �ltering at Gi-
gabit speeds. The grid-of-tries solution provides a scalable
(linear storage) and fast (worst case time equal to two IP
lookups, 870 nsec on a Pentium II) for destination-source �l-
ters. Such �lters can be used to implement Virtual Private
networks and multicast forwarding e�ciently. The grid-of-
tries solution can be extended to handle more general �lters
but at a high lookup cost (3.6 �sec for �lters without even
allowing port number ranges). On the other hand, the cross-
producting solution provides fast lookup times (around 500
nsec) for small (up to 1000 �lters) but has less predictable
lookup times because of the need for caching cross-products
to make the storage needs manageable.

We then described a simple combined scheme that uses
grid-of-tries to handle all destination-source and pure desti-
nation or source �lters. We anticipate that this will handle a
large majority of the �lters, and that packets matching such
�lters will terminate after a grid-of-tries search. Packets
whose best matching �lter is a pure destination pre�x �lter
can be further optimized to terminate after a search in the
destination trie (one IP address lookup). Fully speci�ed �l-
ters, used for say IP telephony, can be handled with a single
extra hash on all �ve �elds. Finally, the remaining �lters
(e.g., �rewall �lters) can be handled by on-demand cross-
producting. Information from the initial grid-of-tries search
can be used to prevent the cross-producting step from re-
computing longest matching pre�xes for the destination and
source addresses.

Based on the measurements for the individual compo-
nents on the Pentium II, we estimate 450 nsec lookup times
for packets that map to pure destination pre�xes, 900 nsec
for packets that map to destination-source �lters, 1000 nsec

for packets that map on to fully speci�ed �lters, and 1500
nsec (assuming a hit in the cross-product cache) for pack-
ets that map on to more general �lters. Hardware engines
can do better because of increased opportunities for paral-
lelism and pipelining, Given that the average packet size is
around 2000 bits [2], a worst case lookup time of 1500 nsec
allows 0.75 million packets per second, which allows a Layer
4 router to keep up with a Gigabit link.

As best matching pre�x is a special case of lowest cost
matching �lter, it is not surprising that �lter search schemes
are generalizations of pre�x search schemes. Thus, the grid-
of-tries and set pruning trees [29, 7] generalize trie schemes
for pre�x matching [9, 27, 22]. Multidimensional range match-
ing schemes [15] generalize pre�x matching schemes based on
range matching [16]. Rectangle search and Tuple Search [26]
generalize binary search on hash tables [31]. While cross-
producting is not a generalization of an existing pre�x match-
ing scheme, it can be specialized for pre�x lookups as well.

For future work, we would like to create other �lter
lookup algorithms that are specialized for certain important
�lter types (e.g., the way grid-of-tries is specialized for two
dimensional �lters). It would be useful to have benchmark
�lter databases to compare lookup schemes. We also hope
to be able to do trace-driven evaluation of the e�ectiveness
of on-demand cross-producting. Finally, we have made no
e�ort to have fast �lter insertion. Because of issues like BGP
implementation instabilities [14] (which can add destination
pre�xes in the order of milliseconds), and RSVP [32] reser-
vations (which can add other �lters in the order of seconds),
it is important to have faster �lter insertion algorithms.

Despite the work that remains to be done, we believe that
Layer 4 Switching is feasible for high performance routers.
We do not know whether routers of the future will forward
based on Layer 4 headers or based only on �elds in the
routing header. In either case, we believe that applications
like QoS Routing, Firewalls, Virtual Private Networks, and
Large Scale Multicast will require a more 
exible form of
forwarding based on multiple �elds, whether they be in the
routing header or elsewhere. We believe the techniques in
this paper indicate that such forwarding 
exibility can go
together with high performance.
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