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experiments measured more variance in ICMP round trip
times than in path length. Figure 8 shows these results. In
this figure the lower point on a vertical line represents the
mean ICMP round trip time for a single client; the upper
point on the vertical line denotes the mean plus a standard
deviation. The clients are evenly distributed across the
horizontal axes, sorted by increasing mean latency. The
round trip variation results show a three tiered connectivity
demographic. The first tier, less than 10ms, corresponds to
the clients at Michigan; the second tier, roughly between
60ms and 200ms, represents the clients well-connected to
the UARC server through service providers located in the
continental United States; the third tier, greater than 200ms,
contains the remainder of the participants.

6.  Conclusions and Future Work
This paper presented the architecture and implementation of
Windmill, a passive network protocol performance tool.
Windmill enables experimenters to measure a broad range
of protocol performance metrics by both reconstructing
application-level network protocols and exposing the
underlying protocol layers’ events. This range encompasses
low-level IP, UDP and TCP events such as packet corruption
and length errors, duplications, drops, and reorderings as
well as application-level performance characteristics. By
correlating these inter-protocol metrics, the normally hidden
interactions between the layers are exposed for examination.

Windmill was specifically designed as the passive
component of a larger Internet measurement apparatus. This
work complements the efforts of several research groups
that are deploying active measurement probe infrastructures
within the Internet [25, 1, 12]. Unlike most tools that focus
on capturing data for post analysis, Windmill was designed
to support 24x7 passive measurements at key network
vantage points. The architecture allows application-level
protocol data to be distilled at the measurement point for
either on-line analysis or further post analysis. The
extensible architecture enables experiment managers to vary
the number and scope of Windmill’s experiments.

The key contributions of our architecture are its fast
Windmill Protocol Filter (WPF), and the support for both
experiment extensibility and high performance protocol
reconstruction. Through the combination of dynamic
compilation and a fast matching algorithm, Windmill’s
WPF can match an incoming packet with five components
in less than 350ns on a 200MHz Pentium-Pro. Additionally,
WPF addresses limitations in past packet filtering
technology by correctly handling overlapping filters.
Windmill enables both the dynamic placement,
management, and removal of long-running experiments;
while accommodating the significant demands for protocol
reconstruction performance.

In order for the rational growth of the Internet to continue, a
deeper understanding of the interactions between its
protocols is needed. As an implementation of a passive
application-level protocol performance measurement
device, Windmill can be used to explore these interactions

in real-world settings. As an example of this use, the paper
presented results from a BGP experiment that identified a
possible cause for the correlation between routing instability
in the Internet [14] and high levels of network congestion.
Specifically, the use of TCP as the underlying transport
mechanism for BGP peering session keepalive messages
was shown to collapse under high levels of congestion. The
experiment suggests that BGP be modified with a UDP
keepalive protocol. These experiments illustrate the ability
of Windmill to correlate lower-layer protocol events,
namely dropped TCP segments, with the high-level BGP
protocol transmission of keepalive messages.

This paper also presented a set of experiments that
measured a broad range of statistics of an Internet
Collaboratory. These experiments highlighted the ability of
Windmill to perform on-line data reduction by extracting
application-level performance statistics, such as measuring
users’ access patterns, and demonstrated the use of the
passive probe to drive a complementary active measurement
apparatus. These experiments highlight the ability of
Windmill to measure Internet infrastructure, such as servers,
without modifying end-host application or operating system
code.

There are two main directions this work will be taken in the
future. The first is the extension of Windmill. Specifically, it
will be extended to passively measure fast serial links
utilizing custom hardware splitting techniques similar to the
OC3MON tool [3]. Second, Windmill will be targeted at
measuring several different types of network applications
including: Web servers, multiplayer games, and application-
level multicast protocols.

We believe that passive measurement techniques will
become increasingly important as the commercial shift in
the Internet continues. The ability to measure shrink-
wrapped protocol implementations is critical due to the
overwhelming deployment of commercially-based protocol
implementations in both the Internet’s end-host and
infrastructure nodes. Together, the inability to take the
system off-line or modify for study implies the need for
increased passive measurement of Internet performance.
Windmill was developed for precisely this purpose1.
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community?

• Access patterns to archived data. How does the ability to
access over a year’s worth of archived scientific data
impact their real-time campaign? The experiment mea-
sured the access patterns to the archived data as well as
the real-time supplies.

Windmill’s passive measurement and analysis of underlying
data streams is extremely powerful when coupled with
active measurements. Windmill allows experimenters to
define trigger events that can be used to initiate active
measurements in an external tool. For example, when a
flow’s bandwidth drops below a threshold an experiment
could generate a trigger event that instructs an external tool
to obtain a path snapshot through a mechanism such as
traceroute . Typically, if data is passively collected for
off-line analysis, it is not possible at analysis time to gather
additional data about the state of the network due to the
transient characteristics of Internet paths[22]. However, by
pairing passive with active measurements, a broader range
of statistics can be obtained. To illustrate this feature, in
conjunction with the UARC data reduction experiment,
Windmill ran an experiment that classified the different
types of client-server connections. Specifically, when the
experiment recognized a connection from a previously
unconnected host, it sent a message to an active
measurement probe running on the same machine that
performed path and ICMP round trip time measurements (in
a manner similar to thetraceroute  andping  tools) on the
client. Figure 7 shows the results from this initial active
measurement of newly connected client hosts. Both lines
represent a proportion. Note that for ease of comparison, the
normally independent horizontal axis has been made
dependent. For the server to client hop-count, the horizontal
length of the stair-step represents the following data point’s
proportion. For example, 17% of the client hosts were five
hops away from the UARC server. The distributions reflect
the different types of users. Specifically, the clients one and

two hops away from the server belonged to support
machines located at the School of Information (where a
large bank of machines for converting the real-time
scientific data were located as well as the UARC system
administrators); clients three hops away were located in the
Psychology department (curious behavioral scientists);
clients four hops away correspond to both the Michigan
Space Physics and Computer Science departments’ clients;
clients five hops and beyond represent external space
scientists.

During a connection’s lifetime, its effective bandwidth was
measured by the experiment. When the bandwidth fell
below a threshold, Windmill sent another message to the
active probe, which then obtained another set of
traceroute  andping  statistics. In this way, a profile of
the client-server connections were collected for correlation
with the higher level behavioral data. There is an inherent
bias in passively estimating a TCP session’s bandwidth that
depends on both the manner in which the estimate is taken,
and the distance of the probe from either of the endpoints.
For this experiment, bandwidth was estimated using the
following formula:

Tack’s represent the measured times the first
acknowledgments were seen for sequence numbersM and
N. The bandwidth was only estimated when there was a
difference of 15 Kbytes betweenN and M. Since this
estimate is made near the server it is similar to the rough
bandwidth estimate made by FTP after performing a PUT
command. Over the course of the campaign, the experiment
only observed four routes that changed. Three of these four
routes were 11 hops or greater in length; one was a 5 hop
dial-in route that had intermittent connectivity. (UARC
provides support for bandwidth-constrained clients through
application-level quality of service policies [16]). The
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We believe that by using a combination of both UDP
heartbeats and TCP routing exchanges, a BGP
implementation would be less affected by network
congestion. Had BGP used a UDP-based heartbeat in these
experiments, the peering session would have been
significantly more robust in the face of congestion. An
alternative solution, is for routers to mark the BGP flows
with an appropriateType of Service, which are then given a
higher priority over normal traffic. Some routing vendors
have begun to implement this. These solutions both increase
the stability of BGP peering sessions and would directly
strengthen the Internet infrastructure.

5.2  Collaboratory Experiments
This set of experiments demonstrates the use of Windmill in
a real-world setting by instrumenting a key server in the
Upper Atmospheric Research Collaboratory (UARC) to
gather a broad range of statistics. The use of Windmill for
on-line data reduction is illustrated by the collection of
application-level statistics. Specifically, statistics from the
application’s data flows are extracted that could not be done
using post analysis due to the volume of data. Moreover, the
experiments show how Windmill can be used in conjunction
with an active measurement apparatus to obtain snapshots of
network metrics that can be temporally correlated with
passive statistics. Finally, all of these statistics were
gathered without modifying the UARC software or host
operation systems; as such it represents an example of
utilizing passive techniques for measuring shrink-wrapped
systems.

UARC is an Internet-based scientific collaboratory [7]. It
provides an environment in which a community of space
scientists geographically dispersed throughout the world
perform real-time experiments at remote facilities.
Essentially, the UARC project enables this group to conduct
team science without ever leaving their home institutions.
This community has extensively used the UARC system for
over four years; during the winter months, a UARC
campaign – the scientists use the term campaign to denote
one of their typically weeklong experiments – occurs
around the clock. The UARC system relies on a custom data
distribution service [16] to provide access to both real-time
and archived scientific data. In these experiments Windmill
was deployed to measure one of the system’s central data
servers during the April 1998 scientific campaign. In order
to provide ubiquitous access to the UARC system, users
access the system through the Web via a Java applet. One
consequence of this decision was the implementation of the
data distribution as multiple TCP streams between UARC
servers and the client browsers. During this experiment,
Windmill observed all of the data communications between
the main UARC server and its clients. Windmill collected
the statistics by reconstructing the TCP and application-
level sessions from these flows.

The UARC system provides access to data from over 40
different instruments from around and above the world
including: the ACE, POLAR, JPL GPS, and WIND
satellites; Incoherent Scatter Radar arrays in Greenland,

Norway, Puerto Rico, Peru, and Massachusetts;
magnetometers; riometers; digisondes; and real-time
supercomputer models. These instruments supply over 170
distinct data streams to the scientists. The goal of our
experiments was to obtain user-level performance statistics
for analysis by behavioral scientists, such as when and to
which instruments the users connected, and what time
ranges of data they requested. These statistics can be
correlated with chat room logs to model collaboration at a
very high level. Similarly, we wanted to determine what the
effect a user’s network connectivity was on their
participation. A full analysis of these experiments is outside
the scope of this paper; this section focuses on how
Windmill made these measurements possible, and only
summarizes the findings.

The passive measurement of any serial connection requires
hardware intervention. The UARC server was originally
connected to the Internet through a 100Mbps switched
Ethernet port on a Cisco 5500 router. For these experiments,
we split the switched Ethernet by inserting an Intel Express
10/100 Stackable Hub between the router and the server.
The perturbation of the system was the addition of an
extremely small amount of latency. Windmill ran on a 300
MHz Pentium-II based PC with 128 Megabytes of RAM.

The use of Windmill for on-line data reduction is illustrated
by the collection of user-level statistics for the UARC
behavioral scientists. These statistics correspond to actions
initiated by the users including: addition and removal of
subscriptions to data suppliers, requests for archived data,
etc. In order to measure these application-level statistics, the
UARC transport protocol was reconstructed. Like BGP, its
frames are built on top of TCP and uses a fixed header size
with variable size data payloads. As such the reconstruction
code used in the experiment is similar to the code shown in
Figure 5. Only a small fraction of the application-level
frames exchanged between the client and server describe
user actions; the majority of the traffic is scientific data.
Three days of continuous campaign throughput was reduced
by over five orders of magnitude to approximately 200
Kbytes of statistics. The following is a subset of the
questions that these measurements answered:

• Determination of the amount and level of synchronous
collaboration. That is, determining the duration and
times when the scientists’ view of the data overlapped
enabling concurrent analysis. This corresponds to deter-
mining when the scientists were in the same virtual
room at the same time.

• Investigation into amount of cross specialization activity.
Do the scientists focus only on the instrument and sup-
ply types that define their specialty, or do they exploit
the wealth of data made available by the system?

• Temporal access patterns of the scientists. An analysis
was done to determine whether the scientists have
changed their access to their data. In the past, when they
were colocated, they would all sit in a Quonset hut and
engage in science. Does this continue with a dispersed



these experiments Peer-B’stcpdump  would occasionally
observe an outbound packet that was not seen by Windmill
or thetcpdump  on Peer-A. To verify that Windmill was not
dropping packets we connected seven additional machines
to the Ethernet all runningtcpdump ; Windmill and all eight
tcpdumps  always agreed on their observations. Our
conclusion is that these packets never made it onto the wire
and were dropped in Peer-B’s kernel due to the congested

Ethernet. One of these packets is shown as the triangle in
Figure 6 – note that Peer-A’s (the sender’s) TCP retransmits
the second keepalive when it fails to receive its
acknowledgment. In addition to this behavior, we have
observed that in many of the experiments the TCP timeout
sequence leading to the keepalive failure is more
complicated than simple exponential backoff.  We hope to
explore the dynamics in more detail in future work.

We observe that a BSD kernel routes packets with a fastpath
similar to that used by hardware forwarding cards. Peer-A’s
kernel will forward the overloading incoming datagrams
directly into the transmission buffer of the outgoing port’s
device driver without user-level intervention. This simulates
the direct transfer that occurs with the hardware forwarding
cards. Peer-A’s outgoing TCP session’s datagrams are
dropped when the kernel attempts to add them to an already
overfull transmission buffer. We are negotiating with an
Internet Service Provider to place one of our probe
machines at a congested peering point to further validate
this occurrence. With Windmill in place, the peering session
could be monitored for sustained periods.

While this result applies to BGP peering sessions at
exchange points, it is perhaps more significant when applied
to IBGP speakers – the Internal BGP peering sessions
within an AS. IBGP peering sessions traverse interior
routers in an autonomous system to fully connect all of the
system’s border routers. Through these connections, the
border routers agree on the routes exported and policies
applied to their neighboring ASes. The probability that an
IBGP session’s datagrams are lost at one of these congested
interior routers is increased during high network utilization,
making this result broader.

1 void
bgpHandlePacket(pmfPacket *pkt, u_int handle)
{
 BGPExpState_t es;

5  tcpSessDrn *sDrn;

 tcpProcessPacket(pkt);
 if (tcpValidPacket(pkt)) {

sDrn = tcpGetSessDrn(pkt, SEND, thisExp);
10 es = tcpGetExpState(sDrn);

if (!es) {
/* This is a new BGP session */
bgpInitExpState(sDrn);

}
15 if (tcpGetFlag(pkt, FIN)) {

/* Peering session severed, do Post mortum */

/* Calculate estimated BGP hold time */
pktGetTimeStamp(pkt, &finTime);

20 sDrn = tcpGetSessDir(pkt, RECV, thisExp);
es = tcpGetExpState(sDrn);
holdTime = timeDiff(es->lastKeepAliveAck,

 finTime);

25 /* Determine if there are any Data gaps */
n = tcpNumDataSegments(sDrn);

/* ... Calls to enumerate the Data window’s
 *  segments, and check for keepalives... */

30
/* Cleanup. */
bgpFreeExpState(es);
tcpFreeSessionDirState(sDrn);

35 } else {
/* Peers still healty, check for keepalive */

sDrn = tcpGetSessDrn(pkt, RECV, thisExp);
es = tcpGetExpState(sDrn);

40 while (tcpAvailBytes(sDrn) >= es->toRead) {
switch (bgpState) {

case HEADER:
if (!tcpncmp(sDrn, tcpGetCurPos(sDrn),

BGP_MARKER, BGP_MARKER_SIZE)) {
45 tcpSkip(sDrn, BGP_MARKER_SIZE);

es->toRead = tcpReadShort(sDrn);
es->bgpMsgType = tcpReadByte(sDrn);
/* ... Process Header BGP data ... */

50 case DATA:
tcpSkip(sDrn, thisExp, es->toRead);
if ((es->bgpMsgType == KEEPALIVE ||

(es->bgpMsgType == UPDATE)) {
tcpGetAckTimeStamp(sDrn, seqNo,

55 es->lastKeepAliveAck);
}
/* ... reset scanning vars ... */

}

Figure 5.  Abridged version of code written for the BGP exper-
iments.
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using thetcpEnableStats  call. One of the basic TCP
statistics to be kept is the bytestream service and its
accompanying Data Window. We use the termdata window
to denote any unacknowledged data that has been observed
by Windmill.

The abridged code shown in Figure 5 represents the
incoming packet event handling routine for the BGP
experiment. In addition to thebgpHandlePacket  routine,
the experiment contains two smaller procedures which are
elided due to their simplicity:bgpStart , which subscribes
to TCP flows on the well-known BGP port; and
bgpDumpOutput , which writes statistics to a file.

Upon receipt, the BGP experiment passes an incoming
packet to the TCP abstract protocol module by using the
tcpProcessPacket  routine shown on line 7 in Figure 5.
This call causes the TCP module to execute the IP and TCP
protocol as if the packet were received on the destination
host. After the packet’s effect on the TCP session’s state has
been determined, the experiment checks to see if the packet
was valid on line 8. A packet is a valid TCP packet if the IP
and TCP headers are valid, there are no length errors, and
the checksums are correct. Lines 9-14 determine if the
packet belongs to a new BGP peering session; the code that
initializes the data structures has been omitted.

If the incoming packet is valid, the experiment next checks
to see if it signals the termination of a BGP peering session.
The experiment does this by checking whether the packet
has its FIN bit set in its TCP header’s flags on line 15.
Currently, tcpGetFlag  is implemented as a macro; the
TCP module does not attempt to infer the current state of the
end hosts’ TCP state machines. Upon a TCP close, the
experiment calculates an estimate of the BGP hold time (the
time between the last acknowledged keepalive or update
BGP message and the termination of the connection) on
lines 18-23. The call totcpNumDataSegments  on line 26
determines how many segments of contiguous sequence
numbers have been observed by Windmill, but have yet to
be acknowledged by the receiver (the peer that just closed
the connection). This corresponds to the data contained in
the session direction’s data window. The code that loops
through these sequences searching for BGP keepalive
messages has been elided. An experiment can get a handle
on these segments through thetcpGetDataSegInfo
command. Finally, after termination, the BGP experiment
state is explicitly released in lines 32-33

When the incoming packet does not have its FIN flag set,
the experiment then checks to see if the receiver’s session
state has acknowledged enough data to read a useful amount
from the byte-stream. This is because the experiment is only
reading data from the stream after it has seen an
acknowledgment, therefore a packet generally triggers just
one side of the session for byte-extraction. A handle to the
receiver’s BGP state is acquired in lines 38-39. The
tcpAvailBytes  call in line 40 returns the number of bytes
in the first segment of the data window (the number of
acknowledged bytes in the stream that are unread by an
implicit experiment). If this is enough to parse the next
portion of the current BGP message, the experiment
proceeds. Depending on the portion of the message under
reconstruction, the experiment will either evaluate the
header or skip the data. The TCP module exports a set of
procedures that are similar to the string routines defined in
<string.h> . One of these, thetcpncmp  command is
shown on lines 43-44, is used to match the BGP header
marker. These commands have been supplemented with a
new class of error return values that propagate incorrect
access to the data stream back to the experiment (not
shown). If a match is found, the bytes are skipped (there is a
similar call used to seek into the byte-stream). The TCP
module provides calls that return various values from the
byte-stream, examples of which are shown on lines 46-47.
Additionally, the TCP module exports a peek interface to
the byte stream for use when the number or type of data on
the stream is uncertain. When a keepalive or update
message is acknowledged by a peer, the observed time is
recorded in the per-direction BGP state on lines 54-55.

Upon the collapse of a peering session, Windmill’s BGP
experiment dumped various statistics to disk, including a
bounded window of packet contents. One such collapse is
graphically represented by Figure 6. This figure shows that
the IP datagrams containing the TCP segments transporting
the BGP keepalive messages sent from Peer-A to Peer-B are
dropped at Peer-A’s Port-2 device driver due to a full
transmission buffer. The congested TCP connection induces
Peer-B’s Hold Timer to expire, causing the BGP peering
session to collapse. The circles denote TCP packets sent by
Peer-A that are observed by the experiment; whereas the
crosses represent those sent by Peer-B. The short vertical
lines mark Peer-A’s TCP packets that fully contained a BGP
keepalive message (19 bytes in length) – the only data
exchanged over the TCP connection. Both the first five
keepalives and their acknowledgments are measured by the
experiment, however the datagram that contained the sixth
keepalive is dropped. At time 390 the datagram containing
the seventh keepalive is observed, which leaves a gap in the
sender’s TCP byte-stream that causes the receiver to
reacknowledge the receipt of the fifth keepalive’s sequence
number. However, the TCP protocol never recovers; after
180 seconds (the value of the BGP hold-timer) the
experiment observes a datagram with the FIN bit set from
Peer-B, resulting in the termination of the peering session.
During this experimenttcpdump  was running on both the
sender and receiver to verify Windmill’s behavior. During

typedef struct BGPExpState {
  int toRead;
  seqNo curPos;
  timeStamp lastKeepAliveAck;
  enum {HEADER, DATA} bgpState;
  enum {OPEN = 1, UPDATE,
        NOTIFICATION, KEEPALIVE} bgpMsgType;
} * BGPExpState_t;

Figure 4.  BGP Analysis Module state associated with a TCP
session’s directional data structures.



TCP packets could be lost due to network congestion at an
autonomous system (AS) boundary. To achieve high
throughput, most production routers do next-hop IP
forwarding directly in the networking hardware. Therefore
the Forwarding Cards (FC), which handle the network
devices, bypass the router’s CPU for all traffic except that
relating to Internet control. The router’s BGP sessions fall in
the latter category and are handled by its BGP process. This
process runs on the router’s operating system which is also
managed by the CPU. In Figure 3, the overloaded route is IP
data coming into Peer-A through the forwarding card
handling Port-1. This data is directly placed in the
transmission buffer of the Port-2 forwarding card for
transmission to Peer-B through Port-3. There are three
places outlined in the figure where an IP datagram from
Peer-A’s BGP TCP session could get lost. First, if Port-2 is
forwarding data from Port-1 (or the sum of any input ports
directing data towards this destination) at its capacity, it is
clear that the IP datagram could be lost when Peer-A’s
operating system attempts to add the packet to the
overflowing transmission buffer on Port-2’s forwarding
card. In the second case, it is possible that Port-3’s incoming
buffer is filled to capacity which causes the datagram to be
dropped upon reception. Third and finally, it is possible that
Peer-B’s operating system buffers are full due to some
external factor (possibly handling the millions of duplicate
withdrawals seen from a different BGP peer [14]).

To test this hypothesis, we performed an experiment that
mimics the setup described in Figure 3 on a testbed
consisting of five 200 MHz Pentium-Pro Intel machines. All
five were running FreeBSD 2.2.5 with 32 Megabytes of
RAM, and each had three 100 Mbps Ethernet adapters (Intel
Ether Express PRO/100B PCI). Two of the machines,
corresponding to Peer-A and Peer-B, were configured as
routers running the Multithreaded Routing Toolkit’s [21]
implementation of BGP. The peering sessions’ Hold Timers
were set to the default 180 seconds, resulting in the
generation of periodic keepalives messages at 30 second
intervals – the only BGP messages exchanged on the
otherwise idle peering session. Two machines were used as
input drivers to Peer-A that blasted IP datagrams through
two point-to-point Ethernet connections. These datagrams
were routed in Peer-A’s kernel to the Ethernet connecting
Peer-A and Peer-B. The fifth machine, running the

Windmill BGP experiment, was positioned “between the
peers” by subscribing to the connecting Ethernet’s BGP
traffic (TCP source or destination ports 179) where it
reconstructed the peering sessions through the use the TCP
abstract protocol module. We were able to cause the BGP
peering session to fail every time we ran the experiment.

The hypothesis that the BGP experiment validates, is that
network congestion at the router causes the peering
session’s TCP to back off, and prematurely severs the
connection. Windmill provided several mechanisms that
allowed the construction of a simple experiment module to
validate this conjecture. These include support for
answering the following questions:

• Was a peering session closed prematurely? Were there
any unacknowledged data observed in the connection’s
pipe?

• Is there evidence of congestion along the path? Are there
any missing sequences of data in the data window?

• Are the gaps due to an observed error in the datapath?
Did Windmill observe an erroneous packet?

• Is the peering termination consistent with the advertised
BGP hold timer? What is the difference between the
time of the last acknowledged keepalive and the FIN
packet?

Figures 4 and 5 contain an abridged listing of the BGP
experiment’s code that reconstructs the BGP session and
upon peering collapse, correlates TCP events with the
termination to answer these questions. Although the figure
only represents a subset of the TCP abstract protocol
module’s programming interface (API), it provides an
illustration of Windmill’s utility.

Windmill’s control flow is handled using events. The most
common events are incoming packets that match an
experiment’s flow subscriptions. These events are presented
to an experiment through a callback routine provided by the
experiment. The experiment passes the packets to the
appropriate abstract protocol modules, which reconstruct
protocol state and manage the statistics for their respective
layers. Upon return, various statistics that are triggered by
the packet – aggregate events – can be identified by the
experiment and handled. In addition to packet events,
Windmill provides support for time-based events.

Windmill’s TCP abstract protocol module reconstructs the
byte-stream service and maintains statistics for both
directions of a TCP session. There are experiment-specific
data structures that are associated with each direction of a
TCP data stream. An example is the BGP experiment’s per-
direction data structure shown in Figure 4. References to
this data are managed by the TCP module. There are many
actions the TCP module can take on behalf of an experiment
when processing an incoming packet. For some applications
it may be unnecessary for the TCP module to reconstruct the
byte-stream service, where only a verification of TCP
header and length fields are necessary. An experiment
explicitly directs the TCP module to keep desired statistics

BGP
Routing Process

CPU

Port 2
FC

Port 1
FC

BGP
Routing Process

CPU

1
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3

Peer A Peer B

FC FC
Port 3 Port 4

Figure 3.  BGP experimental apparatus.



initializes a reference count on the incoming packets, which
is explicitly decremented by the experiments when their
data is no longer needed. Each packet object has references
to protocol-specific data objects that are managed by their
respective protocol modules. In addition to per-packet
memory state, each module that supports a stateful protocol
layer (such as TCP or HTTP) manages the memory required
to keep their subscribed endpoints’ state. Section 5.1
provides a detailed example of a probe experiment’s use of
the TCP module.

The protocol modules also provide a namespace for packet
subscription. Experiments indirectly subscribe to WPF
packet streams by using the protocol modules to construct
field comparison elements from layer-specific names. For
example, an experiment could ask to subscribe to HTTP
traffic by only giving the server’s IP address to the HTTP
module. This would generate several bit comparison
elements with IP source and destination addresses, IP
protocol set to TCP, and the TCP ports set to the default
HTTP port.

4.3  Extensible Experiment Engine
As the passive component of an Internet measurement
infrastructure, Windmill requires the ability to dynamically
load experiments, modify them during execution, and
remove them when no longer needed. These features enable
experiments to adapt to the needs of a larger measurement
infrastructure. Our current solution is to employ a custom
runtime loader that can dynamically link experiments as
they are downloaded into the tool. We had been pursuing a
parallel line of development using a Java Virtual Machine
with Just-In-Time (JIT) compilation, but performance
considerations in moving to very high-speed monitoring
have made it impractical.

The experiment engine exports an administration interface
that allows for the remote management of the passive
experiments. Currently, experimental results are either:
stored locally on disk for later retrieval through the interface
(measure-and-fetch), or sent to a remote destination in real-
time using a custom data dissemination service [16]. Using
the data retrieval and dissemination service, the
experimental results from many probes can be correlated to
provide an aggregate performance profile of a target
protocol over a given network topology. There are several
projects investigating the aggregation of Internet
performance data [25, 1, 12]. This difficult problem is
outside the scope of this paper.

5.  Example Applications
This section provides the results from two sets of
experiments obtained using the current implementation of
Windmill. The first experiment reconstructs the BGP
interdomain routing protocol [15] to demonstrate a possible
correlation between Internet routing instability and network
utilization. The second set of experiments demonstrates the
tool’s ability to measure a large distributed system. They
also show how the probe can be used to reduce application
dataflows to a manageable size through on-line data

reduction; and the integration of an active measurement
apparatus into the Windmill infrastructure.

5.1  BGP Experiments
In these experiments, a module was created to monitor and
measure the BGP [15] routing traffic exchanged between
two peer border routers in order to validate one of the key
observations presented in [14]. Specifically, the authors
found a strong correlation between Internet routing
instability and network utilization [18]. One possible reason
presented for such a correlation was the use of TCP as the
underlying transmission mechanism in BGP. This
experiment evaluates the effects of network congestion on a
router’s stream of BGP messages exchanged between peers
and presents evidence that suggests that BGP be modified
with a UDP keepalive protocol.

BGP is an incremental routing protocol, in that upon
connection establishment, two routers (peers) that have
agreed to exchange reachability information, share their full
routing tables with one another. Unlike many other routing
protocols, this full exchange happens exactly once. After the
initial exchange, a peer only shares routing information that
varies – when routes to a destination prefix change. If there
is no fluctuation in routes for some period of time, a
keepalive message is sent to the peer. If a keepalive message
or routing update is not received within a bounded time
period (the router’s Hold Timer), the peering connection is
severed causing the withdrawal of all the peer’s routes –
making them unreachable throughout the autonomous
system and its downstream networks. Subsequently, the
connection is reestablished resulting in a full exchange of
the routing tables. This is seen by Internet endpoints as
routing instability – the fluctuation of routing state affecting
packet forwarding.

There are both positive and negative consequences of using
TCP as BGP’s underlying transport protocol [11]. The
benefit of using TCP is the support for incremental routing
through TCP’s reliable byte-stream service. No routing data
is lost between peers, obviating the need for full routing
table refresh messages. The problem with using TCP is its
adaptation to network congestion. When network
congestion is at its worst, the peering session over which
routing information is shared receives its least bandwidth.
One would like the Internet infrastructure to stand rigid
under maximal stress; however routing information
(infrastructure stability) is hampered at the times of high
network loads. The hypothesis presented in [14] is that
during peak network usage, the TCP session supporting a
peer’s stream of BGP keepalive messages is backed off due
to congestive loss such that a message exchange between
peering sessions does not complete before one of the peers’
Hold Timers expires. The loss of a keepalive message
prevents the delivery of subsequent keepalives until TCP
can reliably deliver the lost message. This would cause
peering sessions to fail at precisely those times when the
network load was greatest.

Figure 3 shows three possible places where a BGP session’s



As in DPF and PathFinder, a hash table is used at points
where there are more than one value for a comparison field.
However, this improvement in time complexity does not
come for free: we have effectively traded time complexity
for space complexity since there are potentially an
exponential number of paths in a WPF DAG. However, if
the set of filters is sparse, then the maximum branching
factor for each vertex is effectively a very small constant.
This property significantly reduces the number of paths in a
DAG.

Alternative 2 – Set Intersection for Dense Filters: This
alternative does not require enumeration of all possible
paths in WPF DAG. It exploits a subtle property of dense
filters to obtain a running time complexity ofnlog(m) for
matching a packet to a set of filters without additional space
overhead. If the set of filters is dense, then there is a
comparison field such that the total number of distinct
values for that field is roughlym. By switching this field to
the front of the WPF DAG, one can determine the
intersection of a pair of labels inlog(m) time as a path is
traversed in a WPF DAG. (Note that one label has a constant
number of items whereas the other is an ordered set of at
mostm items.)

Alternative 3 – Bit Mask Representation: Finally, we
observe that a common case may involve the deployment of
probe machines running no more than several hundred
concurrent experiments. In such scenarios, one can
represent the label associated with each vertex as a bit mask.
The cost of obtaining the intersection of the labels as a path
is traversed is reduced to the cost of performing anAND
operation on the labels. The cost of matching an input
packet grows slightly as the number of concurrent filters
increases.

To give a concrete idea of WPF’s performance, to match an

unwound five element DAG – including IP source and
destination, IP protocol, and TCP source and destination
ports – takes less than 320ns on a 200Mhz Pentium-Pro
(measured with the Pentium cycle counter).

4.2  Abstract Protocol Modules
The abstract protocol modules export interfaces to probe
experiments for both protocol reconstruction and the direct
access to any protocol layer’s events and data structures.
Through these interfaces, the abstract protocol modules
provide for the breadth and depth of protocol analysis as
well as inter-protocol event correlation. Typically, network
protocol layers are designed to hide the details of their
underlying layers, and provide some type of data frame or
byte stream service to the layers above them. The abstract
protocol modules are similar, in that they can be chained
together to build the service of higher layer protocols from
the bare stream of data packets arriving from the WPF. For
example, an experiment can read a TCP session’s byte
stream in either direction by only supplying the TCP
module with captured packets. However, the abstract
protocol modules intentionally violate the encapsulation and
abstraction of the lower protocol layers by exporting the
details of these layers – including protocol events and data
structures. The probe experiments can then correlate this
normally hidden data with the performance of higher layer
protocols.

Each module exports its protocol abstraction through its
interface. By chaining invocations to the modules, an
experiment can infer the target protocol’s behavior and
performance at an end-host. For example, an experiment
could monitor and measure the sequence of HTTP 1.1
requests over a persistent connection by supplying the
HTTP module with the incoming data packets and making
non-blocking getNextRequest  calls to the module.
Moreover, the performance of the lower layer protocols are
also accessible to the experiment through the module’s
interfaces. Extending the previous example, an experiment
could measure the number of duplicate TCP
acknowledgments in the underlying stream to infer the
congestion along the HTTP connection’s path. The current
implementation of the Internet base protocol modules (IP,
UDP, and TCP) borrows heavily from the 4.4BSD-Lite
distribution’s networking code [27] to determine protocol
error conditions and functionality.

The abstract protocol modules are designed to minimize the
amount of duplicated effort by a set of concurrently
executing experiments. Just as the WPF makes one
comparison for each field regardless of the number of
experiments, the abstract protocol modules only recursively
execute a protocol stack on an incoming packet once. This is
achieved by explicitly managing and coordinating the
packet processing in each protocol module. For example,
the TCP module keeps track of a stream’s state so that
reassembly only happens once, regardless of the number of
subscribed experiments. Packets are treated as objects
which are managed by the abstract protocol modules’
memory management library. The packet dispatch routine
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filters shown in Table 1. Part (b) shows an example of a packet

matching filters 1 and 2. Part (c) follows a path through the
DAG of a packet that only matches filter 2.



recursively executes the lower layers of the protocol stack
against the incoming packet. Afterwards, the experiment
can extract the results of the packet’s processing from any of
the protocol layers. These results include the protocol frame
or byte-stream service exported by the lower layers, or
protocol events and error conditions triggered by the packet.

The current implementation of Windmill is based on a
custom version of the FreeBSD 2.2.5 kernel and runs on an
Intel-based PC hardware platform. Currently, Windmill is
being used with broadcast and ring-based datalink layers,
specifically Ethernet and FDDI.

4.1  Windmill Protocol Filter
The Windmill Protocol Filter (WPF) passively examines all
the underlying network traffic and performsone-to-many
packet demultiplexing to the probe experiments. It does this
by constructing an intermediate representation of the
outstanding subscriptions in the form of a directed-acyclic
graph (DAG); dynamically compiling this graph to a native
machine language module; and finally installing this module
in the probe machine’s kernel. WPF differs from past packet
filters [10, 4, 28, 17, 19], where network packets are
passively matched to a specification and demultiplexed to a
single endpoint, in that it identifies a set of destinations for a
packet. By determining a set of end-points, WPF avoids the
subtle problem inherent in one-to-one matching algorithms
of client starvation from overlapping filters.

One-to-many matching is motivated by the fact that a probe
machine may be executing numerous concurrent
experiments that are interested in some of the same packet
streams. In this model, an experimenter can add or remove
small experiments to Windmill as needed. As the streams of
packets arrive, the filter for each experiment must be used to
determine which packets are sent to which experiments.
This can be done either at reception time, where each packet
is compared to different experiments’ filters (this would be
similar to using multiple BPF devices to do the
determination, one for each experiment); or by determining
a packet’s destinations before its reception. WPF adopts the
latter approach, in that it precomputes all possible
combinations of overlapping filters when the subscriptions
are made; and generates a DAG to reflect these
comparisons. Once the DAG is constructed, it is compiled to
native machine language on-the-fly and installed in the
kernel for matching against incoming packets.

Logically, a message header consists of a set ofcomparison
fields. A filter is composed of a sequence of predicates
merged by conjunctions. Each predicate specifies a boolean
comparison for a particular field. An experiment registers a
filter by supplying a set of values for one or more of these
comparison fields. These fields correspond to Internet
protocol specific values (e.g., IP source address, TCP
destination port, etc.). In the current implementation, WPF
is specifically targeted at Internet protocols, and has
knowledge of UDP and TCP header lengths; as such is it not
meant to be used as a generic packet filter.

To illustrate the subtle problem associated with packet

filters that utilize most specific matching, consider the
example in Table 1. The table shows five comparison fields
as the basis for three experiments (with one filter per
experiment). Note that none of the three filters is more
specific than the others. For example, the sample input
packet above matches both filters 1 and 2. In both
PathFinder and DPF, the packet filter will supply the packet
to the experiment that matches first in the corresponding trie
data structure [10, 4]. This can lead to starvation of packet
destinations whose filter is not the first to match an
incoming element. To correctly accommodate one-to-many
matching using DPF or PathFinder, one would need to use
as many trie structures as experiments, resulting inO(mn)
time complexity (wherem is the number of experiments,
andn is the number of comparison fields).

To illustrate how WPF works, consider the intermediate
representation of the filters in this example as a DAG shown
in Figure 2(a). The vertices represent boolean operations on
the comparison fields; a match results in a transition to the
right. Furthermore, each vertex is also labeled with the set
of corresponding filters when the boolean operation
associated with the vertex is true. For example, consider the
vertex AS=X, which is labeled with the set {1,2,3}. It
indicates that if the IP source address (AS) in the input
packet isX, then the input packet matches all three filters for
the field in question. Consequently, each path through the
DAG corresponds to matching the input packet with a
unique subset of the filters. For example, an input packet
that matches the path in Figure 2(b) satisfies both filters 1
and 2, but not filter 3. Similarly, an input packet that
matches the path in Figure 2(c) also matches filter 2, but not
filters 1 and 3. Observe that the intersection of the set of
labels associated with the vertices on a path identifies the
unique subset of filters that match input packets.

Given the WPF’s intermediate representation of a set of
filters as a DAG, our goal is to reduce the time complexity
of matching an input packet with a set of filters. First, we
need to define a few terminologies. Suppose that we have
specifiedm filters onn comparison fields. A set of filters is
defined to besparse if the number of distinct values for each
(comparison) field is a small constant, i.e. much smaller
thanm, the total number of filters. A set of filters is defined
to bedense if the number of distinct values for at least one
of the (comparison) fields isO(m). We propose three
complementary optimization techniques:

Alternative 1 – Path Enumeration for Sparse Filters: By
enumerating all possible paths in a WPF DAG a priori, one
can perform a match on a given input packet inO(n) time.

Experiment IP Src Addr IP Dst Addr Protocol Src Port Dst Port

Filter 1:

Filter 2:

Filter 3:

Incoming Pkt:

AS=X

AS=X

AD=Y

AD=Z

AD=Y

P=T

P=T

P=T

PS=A

PS=A

PD=B

PD=C

PD=B

*

*

*

*

*

*

P=T

Table 1: Three overlapping packet filters and a sample input
packet.



filtering mechanism as well as the ability to reconstruct the
high-level protocol streams.

The OC3MON tool captures low-level protocol headers
over serial ATM network trunks for post analysis[3].
OC3MON is currently used for capturing IP, UDP, and TCP
headers at points in the vBNS network.

There has been significant work done on packet filters.
Traditionally, they have used interpreted code [19, 17, 28] or
the traversal of high-level data structures [4] for safety and
portability; however Engler’s DPF [10] uses dynamic code
generation techniques for high performance packet
demultiplexing. One of our performance tool’s components,
the Windmill Protocol Filter (WPF), borrows from DPF in
that it utilizes dynamic code generation for fast packet
matching; however it differs from previous work in that it is
designed to demultiplex packets to a set of receivers (one-
to-many). In addition, WPF correctly demultiplexes packets
to overlapping (ambiguous) filters.

Paxson’stcpanaly  [23] is an offline tool for analyzing
TCP traces. It classifies TCP implementations based on the
characteristics seen in their traces. In order to classify a TCP
connectiontcpanaly  must make two passes over the data
stream. This is the only way certain characteristics can be
identified. In contrast, Windmill is targeted at the analysis
and distillation of application-level protocols at the
measurement point in real-time for continuous network
measurement.

There have been several fault-injection studies done on
network protocols [8, 9]. Comer and Lin [8] injected faults
into a TCP session from an end-point to probe for
implementation errors. Similarly, Dawson [9] used an
interposition agent on end-host systems for injecting faults
into a protocol stream to measure protocol correctness.
Through modification of an end host’s protocol stack, both
of these studies actively perturb the network traffic to
validate protocol correctness. In contrast, the primary focus
of our work is on performance measurement of network
protocols through passive means from a neutral host. We
show in Section 5.2 how the addition of an active
measurement apparatus can be used to complement this
passive technique.

Measuring distributed systems and their protocols at the end
host can be done either by instrumenting the code directly,
or indirectly through profiling and simulation. Both
approaches require access to the application’s data
structures and a deep familiarity with the code (regardless of
whether it is source or binary). This is not applicable to two
types of systems:shrink-wrapped software, and production
(real-world continuous-use) systems. A method for
performing continuous system profiling with low overhead
is presented in [2]. While the accounting of time in a system
is useful for the optimization of the end-host’s software, it is
not an effective mechanism for profiling the semantic
performance of an application. An alternative method for
measuring the system is to simulate it entirely [26];
however, this is not practical for measuring production

systems where real-time events drive the protocols of
interest.

4.  Architecture
Windmill’s architecture consists of three functional
components: a dynamically generated protocol filter; a set
of abstract protocol modules; and an extensible experiment
engine. The organization of these components is shown in
Figure 1. The Windmill Protocol Filter (WPF) matches the
underlying network traffic against a dynamically compiled
filter. This filter is constructed from the set of outstanding
packet subscriptions from Windmill’s concurrent
experiments. The abstract protocol modules provide both
efficient implementations of target protocol layers and
interfaces for accessing normally hidden protocol events.
These modules are composed to enable the efficient
execution of the protocol stack on incoming packets. The
extensible experiment engine provides a mechanism for the
loading, modification, and execution of probe experiments.
Additionally, the experiment engine provides interfaces for
the storage and dissemination of experimental results.

Experiments are loaded into the experiment engine through
an interface controlled remotely by the probe’s
administrator. Once installed in the engine, an experiment
subscribes to packet streams using the abstract protocol
modules. These subscriptions are passed to the protocol
filter which dynamically recompiles its set of subscriptions
into a single block of native machine code. This code is
installed in the kernel for fast matching and demultiplexing
of the underlying network traffic. Upon a packet match the
protocol filter sends the packet along with the set of
matching experiments to the packet dispatch routine in the
experiment engine. The packets are then given to each
matching experiment. The abstract protocol modules are
invoked at the target protocol by the experiment which then
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Figure 1.  Organization of Windmill’s architecture.



modifying either the Internet infrastructure (the routers,
nameservers, Web caches, end hosts, etc.) or host
implementation of these protocols.

Windmill’s architecture supports the passive performance
measurement of application-level protocols through the use
of protocol reconstruction and abstraction-breaching
protocol event monitoring. A probe experiment infers the
end-host’s view of a target protocol by recursively executing
the lower protocol layers against the stream of incoming
packets. Effectively, the probe reconstructs the view of the
end hosts by passively monitoring the protocol’s network
frames. The experiments utilize interfaces exported by the
probe to “lift the hood” on the lower-layer protocols,
violating their abstractions to examine events and data
structures that are normally hidden from the higher layers.
Together, these features allow an experiment to correlate
lower-layer protocol events – including checksum and
length errors, packet reorderings or retransmissions, round
trip estimates – with the behavior and performance of the
reconstructed application-level protocol.

To accommodate both performance and extensibility the
probe’s software was split into three functional components:
a dynamically compiled protocol filter; a set of abstract
protocol modules; and an extensible experiment engine.
Packet throughput is maximized through the use of a custom
protocol filter which dynamically compiles and downloads
native code into the kernel for fast multi-destination packet
matching. For performance, the bulk of the user-level code
is contained in a set of abstract protocol modules. These
modules are C implementations of the base Internet
protocols. Those protocol layers that do not change – such
as IP, UDP, TCP, BGP, and HTTP – are implemented as
abstract protocol modules. By calling these modules an
experiment can efficiently execute a target protocol’s stack
on incoming matching packets. The probe’s extensibility
comes from the use of a custom dynamic loader that is used
to load and manage the probe’s experiments.

The main contributions of this work are:

• Implementation of our passive probe architecture: Our
current implementation is built on an off-the-shelf hard-
ware and software base. This implementation utilizes
both recursive protocol reconstruction as well as abstrac-
tion violation to measure application-level Internet pro-
tocols, such as BGP, HTTP, and DNS.

• Providing Experiment Extensibility: The intrinsic trade-
off between performance and extensibility was explicitly
addressed in our architecture by splitting the code into
two pieces. The performance critical code – for protocol
reconstruction and memory management – was placed in
the tool’s libraries; whereas the extensibility support was
constrained to a custom run-time library. Together these
pieces enable dynamic experiments to be loaded, man-
aged, and modified over long periods of probe uptime,
while allowing for the high performance protocol pro-
cessing necessary for high bandwidth vantage points.

• Creation of the Windmill Protocol Filter (WPF): Since

the probe is designed to execute multiple experiments
simultaneously, there is the possibility that several
experiments may subscribe to overlapping packet flows.
In order to make multiple experiment matching as fast as
possible, this functionality was pushed into a custom
packet filter. This filter utilizes dynamic compilation in
conjunction with a fast matching algorithm to enable
one-to-many packet demultiplexing in a running time
linear in the number of comparable fields (for common
cases). This is the same time complexity as the best
most-specific one-to-one matching systems; and in prac-
tice WPF can match a five element filter in less than
350ns on a 200MHz Pentium-Pro. Moreover, WPF
addresses a limitation of past packet filtering technology
– filters that demultiplex packets to endpoints by most-
specific matches – by correctly handling ambiguous
(overlapping) filters that do not have any natural or
explicit ordering.

• Investigation of an Internet routing instability conjec-
ture: The probe was used in an experiment designed to
monitor and measure the BGP routing traffic exchanged
between two peer border routers in order to validate one
of the key observations presented in [14]. Specifically,
the experiment provides a possible answer for the corre-
lation between Internet routing instability and network
utilization. The experiment suggests that the BGP proto-
col be modified with a UDP keepalive protocol.

• Study of an Internet Collaboratory: Windmill was used
to measure the Upper Atmospheric Research Collabora-
tory. The experiment demonstrated: the use of the tool
on a real system that could not be modified for direct
measurement; the use of the tool for online data reduc-
tion; and the power of using our passive tool to drive an
active measurement apparatus.

The remainder of the paper is organized as follows. Section
3 places our work within the broader context of related
work. Section 4 describes the probe architecture and current
implementation. Section 5 presents the results from both the
BGP and collaboratory experiments. Finally, Section 6
presents our conclusions and plans for future work.

3.  Related Work
Passive techniques have been used in many low-level
protocol performance evaluation and modeling studies
(examples include [20, 5, 6]). Past work has mainly
addressed aggregate traffic characteristics at or below the
TCP layer, either from an end-host perspective or as an
observer at an intermediate node. Our tool is targeted at the
passive measurement of higher application-level protocol
layers, and the correlation of lower layer protocol events
with their performance.

One of the most widely used tools for Internet protocol
monitoring is tcpdump  [13]. tcpdump  acquires network
frames from an underlying filter and can either store those
frames in binary or output the frame’s IP protocols’ header
contents in ascii. However,tcpdump  lacks the ability to
reconstruct higher layer protocols from the underlying
packet stream. In contrast, our tool provides the underlying



1.   Abstract
This paper describes the architecture and
implementation of Windmill, a passive network
protocol performance measurement tool. Wind-
mill enables experimenters to measure a broad
range of protocol performance metrics by both
reconstructing application-level network proto-
cols and exposing the underlying protocol lay-
ers’ events. Windmill is split into three
functional components: a dynamically com-
piled Windmill Protocol Filter (WPF), a set of
abstract protocol modules, and an extensible
experiment engine. To demonstrate Windmill’s
utility, the results from several experiments are
presented. The first set of experiments suggests
a possible cause for the correlation between
Internet routing instability and network utiliza-
tion. The second set of experiments highlights:
Windmill’s ability to act as a driver for a com-
plementary active Internet measurement appa-
ratus, its ability to perform online data
reduction, and the non-intrusive measurement
of a closed system.

1.1  Keywords
Protocol performance, passive measurement, online analysis,
packet filter

2.  Introduction
The Internet has grown significantly, and shows little sign of
stopping. Understanding the interaction among the many
Internet protocols is a key challenge necessary for its rational
growth. As a real-world system, with economic incentives

for uptime and robustness increasing, it is difficult to take
portions of the network down for measurement and testing.
Moreover, the rate of growth for the Internet has placed a
severe tax on the network infrastructure, leaving many
resources such as routers and highly trafficed Web servers in
a state of constant overload. Compounding the problem, is
that most of the software executing the protocols is shrink-
wrapped and is not amenable to scrutiny or modification for
performance measurement – a backbone router collapses
within seconds with full debugging turned on. It is precisely
at these points where the performance effects of protocol
interaction are the greatest, and most poorly understood.
This paper presents an architecture for an extensible
software probe that can measure precisely these types of
interactions under real-world conditions.

The software probe described in this work utilizes passive
techniques for eavesdropping on target protocols. Groups of
these point probes can be distributed throughout a target
network to measure an aggregate performance profile of
target protocols. Care has been taken during the probe’s
design to enable its placement in high bandwidth monitoring
points. This allows the measurement of Internet protocols
across a spectrum of vantage points, from routing exchange
points and enterprise gateways to local area networks. There
are many research groups involved in the deployment of
Internet probe machines for the measurement of Internet
paths and topologies, including the NIMI [25], Surveyor [1],
and IPMA [12] projects. These projects have approached
Internet measurement by utilizing active performance
metrics [24] – measurements that perturb the network, such
as one-way loss along a datagram stream, or periodic
traceroutes between the probe and specific end-hosts. Our
work complements these efforts, in that we have designed
and implemented the architecture of a passive performance
probe that can be used in conjunction with active probes
(possibly housed on the same host) to measure and infer
performance data from the underlying network flows without
perturbing the network or infrastructure. Unlike most tools
that focus on capturing data for post analysis, Windmill was
designed to support 24x7 – 24 hours, 7 days a week, around
the clock – passive measurements at key network vantage
points. The architecture allows application-level protocol
data (such as BGP, HTTP, DNS, etc.) to be distilled at the
measurement point for either on-line analysis or further post
analysis. Our tool allows for their measurement without
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