Automatic TCP Buffer Tuning

Jeffrey Semke and Jamshid Mahdavi and Matthew Mathis *

Pittsburgh Supercomputing Center

{semke ,mahdavi,mathis}@psc.edu

Abstract

With the growth of high performance networking, a single
host may have simultaneous connections that vary in band-
width by as many as six orders of magnitude. We identify
requirements for an automatically-tuning TCP to achieve
maximum throughput across all connections simultaneously
within the resource limits of the sender. Our auto-tuning
TCP implementation makes use of several existing tech-
nologies and adds dynamically adjusting socket buffers to
achieve maximum transfer rates on each connection without
manual configuration.

Our implementation involved slight modifications to a
BSD-based socket interface and TCP stack. With these
modifications, we achieved drastic improvements in perfor-
mance over large bandwidth*delay paths compared to the
default system configuration, and significant reductions in
memory usage compared to hand-tuned connections, allow-
ing servers to support at least twice as many simultaneous
connections.

1 Introduction

Paths in the Internet span more than 6 orders of magnitude
in bandwidth. The congestion control algorithms [RFC2001,
Jac88] and large window extensions [RFC1323] in TCP per-
mit a host running a single TCP stack to support concur-
rent connections across the entire range of bandwidth. In
principle, all application programs that use TCP should
be able to enjoy the appropriate share of available band-
width on any path without involving manual configuration
by the application, user, or system administrator. While
most would agree with such a simple statement, in many
circumstances TCP connections require manual tuning to
obtain respectable performance.

For a given path, TCP requires at least one bandwidth-
delay product of buffer space at each end of the connec-
tion. Because bandwidth-delay products in the Internet can
span 4 orders of magnitude, it is impossible to configure

*This work is supported by National Science Foundation Grant
No. NCR-9415552.

default TCP parameters on a host to be optimal for all pos-
sible paths through the network. It is possible for someone
to be connected to an FTP server via a 9600bps modem
while someone else is connected through a 100Mbps bottle-
neck to the same server. An experienced system adminis-
trator can tune a system for a particular type of connec-
tion [Mah96], but then performance suffers for connections
that exceed the expected bandwidth-delay product, while
system resources are wasted for low bandwidth*delay con-
nections. Since there are often many more “small” connec-
tions than “large” ones, system-wide tuning can easily cause
buffer memory to be inefficiently utilized by more than an
order of magnitude.

Tuning knobs are also available to applications for config-
uring individual connection parameters [Wel96]. However,
use of the knobs requires the knowledge of a networking ex-
pert, and often must be completed prior to establishing a
connection. Such expertise is not normally available to end
users, and it is wrong to require it of applications and users.
Further, even an expert cannot predict changes in conditions
of the network path over the lifetime of a connection.

Finally, static tuning configurations do not account for
changes in the number of simultaneous connections. As
more connections are added, more total memory is used un-
til mbuf exhaustion occurs, which can ultimately cause the
operating system to crash.

This paper proposes a system for adaptive tuning of
buffer sizes based upon network conditions and system mem-
ory availability. It is intended to operate transparently
without modifying existing applications. Since it does not
change TCP’s Congestion Avoidance characteristics, it does
not change TCP’s basic interactions with the Internet or
other Internet applications. Test results from a running im-
plementation are presented.

1.1 Prerequisites for Auto-Tuning of TCP

Before adding auto-tuning of buffers, a TCP should make
use of the following features to improve throughput:

1. “TCP Extensions for High Performance” [RFC1323,
Ste94] allows large windows of outstanding packets for
long delay, high-bandwidth paths, by using a window
scaling option and timestamps. All the operating sys-
tems used in tests in this paper support window scal-
ing.

2. “TCP Selective Acknowledgment Options” [RFC2018]
(SACK) is able to treat multiple packet losses as sin-
gle congestion events. SACK allows windows to grow

larger than the ubiquitous Reno TCP, since Reno
will timeout and reduce its congestion window to one
packet if a congested router drops several packets due
to a single congestion event. SACK is able to rec-
ognize burst losses by having the receiver piggyback
lost packet information on acknowledgements. The
authors have added the PSC SACK implementation
to the hosts used in testing [SACO8].

3. “Path MTU Discovery” [RFC1191, Ste94] allows the
largest possible packet size (Maximum Transmission
Unit) to be sent between two hosts. Without pMTU
discovery, hosts are often restricted to sending pack-
ets of around 576 bytes. Using small packets can lead
to reduced performance [MSMO97]. A sender imple-
ments pMTU discovery by setting the “Don’t Frag-
ment” bit in packets, and reducing the packet size ac-
cording to ICMP Messages received from intermediate
routers. Since not all of the operating systems used
in this paper support pMTU discovery, static routes
specifying the path MTU were established on the test
hosts.

1.2 Receive Socket Buffer Background

Before delving into implementation details for dynamically
adjusting socket buffers, it may be useful to understand con-
ventional tuning of socket buffers. Socket buffers are the
hand-off area between TCP and an application, storing data
that is to be sent or that has been received. Sender-side and
receiver-side buffers behave in very different ways.

The receiver’s socket buffer is used to reassemble the data
in sequential order, queuing it for delivery to the application.
On hosts that are not CPU-limited or application-limited,
the buffer is largely empty except during data recovery, when
it holds an entire window of data minus the dropped packets.

The amount of available space in the receive buffer deter-
mines the receiver’s advertised window (or receive window),
the maximum amount of data the receiver allows the sender
to transmit beyond the highest-numbered acknowledgement
issued by the receiver [RFC793, Ste94].

The intended purpose of the receive window is to im-
plement end-to-end flow control, allowing an application to
limit the amount of data sent to it. It was designed at a
time when RAM was expensive, and the receiver needed a
way to throttle the sender to limit the amount of memory
required.

If the receiver’s advertised window is smaller than cwnd
on the sender, the connection is receive window-limited (con-
trolled by the receiver), rather than congestion window-
limited (controlled by the sender using feedback from the
network).

A small receive window may be configured as an inten-
tional limit by interactive applications, such as telnet, to
prevent large buffering delays (ie. a “C may not take effect
until many pages of queued text have scrolled by). However
most applications, including WWW and FTP, are better
served by the high throughput that large buffers offer.

1.3 Send Socket Buffer Background

In contrast to the receive buffer, the sender’s socket buffer
holds data that the application has passed to TCP until the
receiver has acknowledged receipt of the data. It is nearly
always full for applications with much data to send, and is
nearly always empty for interactive applications.

If the send buffer size is excessively large compared to
the bandwidth-delay product of the path, bulk transfer ap-
plications still keep the buffer full, wasting kernel memory.
As a result, the number of concurrent connections that can
exist is limited. If the send buffer is too small, data is trick-
led into the network and low throughput results, because
TCP must wait until acknowledgements are received before
allowing old data in the buffer to be replaced by new, unsent
data’.

Applications have no information about network conges-
tion or kernel memory availability to make informed calcu-
lations of optimal buffer sizes and should not be burdened
by lower layers.

2 Implementation

Our implementation involved changes to the socket code and
TCP code in the NetBSD 1.2 kernel [Net96]. The standard
NetBSD 1.2 kernel supports RFC 1323 TCP extensions for
high performance. Our kernel also included the PSC SACK
port [SAC98].

Since NetBSD is based on 4.4 BSD Lite [MBKQ96,
WS95], the code changes should be widely applicable to a
large number of operating systems.

2.1 Large Receive Socket Buffer

During a transfer, the receiver has no simple way of deter-
mining the congestion window size, and therefore cannot be
easily tuned dynamically. One idea for dynamic tuning of
the receive socket buffer is to increase the buffer size when
it is mostly empty, since the lack of data queued for deliv-
ery to the application indicates a low data rate that could
be the result of a receive window-limited connection. The
peak usage is reached during recovery (indicated by a lost
packet), so the buffer size can be reduced if it is much larger
than the space required during recovery. If the low data
rate is not caused by a small receive window, but rather by
a slow bottleneck link, the buffer size will still calibrate itself
when it detects a packet loss. This idea was inspired by a
discussion with Greg Minshall [Min97] and requires further
research.

However, the complexity of a receive buffer tuning algo-
rithm may be completely unnecessary for all practical pur-
poses. If a network expert configured the receive buffer size
for an application desiring high throughput, they would set
it to be two times larger than the congestion window for
the connection. The buffer would typically be empty, and
would, during recovery, hold one congestion window’s worth
of data plus a limited amount of new data sent to maintain
the Self-clock.

The same effect can be obtained simply by configuring
the receive buffer size to be the operating system’s maximum
socket buffer size, which our auto-tuning TCP implementa-
tion does by default?. In addition, if an application manu-

! One rule of thumb in hand-tuning send buffer sizes is to choose
a buffer size that is twice the bandwidth-delay product for the path
of that connection. The doubling of the bandwidth-delay product
provides SACK-based TCPs with one window’s worth of data for the
round trip in which the loss was suffered, and another window’s worth
of unsent data to be sent during recovery to keep the Self-clock of
acknowledgements flowing [MM96].

2Using large windows to obtain high performance is only possible
if the Congestion Avoidance algorithm of the TCP is well behaved.
SACK-based TCPs are well behaved because they treat burst losses
as single congestion events, so they are not penalized with a time-
out when the bottleneck queue overflows [FF96, MM96]. Poor per-
formance of congestion window-limited connections was observed by

ally sets the receive buffer or send buffer size with setsock-
opt(), auto-tuning is turned off for that connection, allowing
low-latency applications like telnet to prevent large queues
from forming in the receive buffer. Immediately before con-
nection establishment, auto-tuned connections choose the
smallest window scale that is large enough to support the
maximum receive socket buffer size, since the window scale
can not be changed after the connection has been estab-
lished [RFC1323].

It is important to note that in BSD-based systems, the
buffer size is only a l¢mit on the amount of space that can
be allocated for that connection, not a preallocated block of
space.

2.2 Adjusting the Send Socket Buffer

The send socket buffer is determined by three algorithms.
The first determines a target buffer size based on network
conditions. The second attempts to balance memory us-
age, while the third asserts a hard limit to prevent excessive
memory usage.

Our implementation makes use of some existing kernel
variables and adds some new ones. Information on the vari-
ables used in our implementation appears below.

NMBCLUSTERS An existing kernel constant (with
global scope) that specifies the maximum number of
mbuf clusters in the system.

AUTO_SND_THRESH A new kernel constant (with
global scope) that limits the fraction of NMBCLUS-
TERS that may be dedicated to send socket buffers.
This is NMBCLUSTERS/2 in our implementation.

cwnd An existing TCP variable (for a single connection)
that estimates the available bandwidth-delay product
to determine the appropriate amount of data to keep
in flight.

sb_net_target A new TCP variable (for a single connec-
tion) that suggests a send socket buffer size by consid-
ering only cwnd.

hiwat_fair_share A new kernel variable (with global
scope) that specifies the fair share of memory that an
individual connection can use for its send socket buffer.

sb_mem_target A new TCP variable (for a single connec-
tion) that suggests a send socket buffer size by taking
the minimum of sb_net_target and hiwat_fair_share.

2.2.1 Network-based target

The sender uses the variable cwnd to estimate the ap-
propriate congestion window size. In our implementation,
sb_net_target represents the desired send buffer size when
considering the value of cwnd, but not considering mem-
ory constraints. Following the 2 x bandwidth * delay rule of
thumb described in footnote 1, (and keeping in mind that
cwnd estimates the bandwidth-delay product), auto-tuning
TCP will increase sb_net_target if cwnd grows larger than
sb_net_target /2.

In the Congestion Avoidance phase, cwnd increases
linearly until a loss is detected, then it is cut in half

others [VS94, MTW98] when a bug in TCP caused Congestion Avoid-
ance to open the window too aggressively. TCPs without this bug do
not suffer severe performance degradation when they are congestion
window-limited.

kbytes
cwnd
70000 | e e

650.00

600.00

550.00

500.00 Joo:

450.00

400.00

350.00

300.00

250.00

200.00

150.00

=1

100.00

0.00

0.00 10.00 20.00 30.00 40.00

Figure 1: sb_net_target and cwnd over time

[RFC2001, Jac88]. When equilibrium is reached during Con-
gestion Avoidance, there is a factor of two between the mini-
mum and maximum values of cwnd. Therefore, auto-tuning
TCP doesn’t decrease sb_net_target until cwnd falls below
sb_net_target /4, to reduce the flapping of sb_net_target dur-
ing equilibrium?®.

The operation of sb_net_target is illustrated in Figure 1.
The rough sawtooth pattern at the bottom is cwnd from
an actual connection. Above cwnd is sb_net_target, which
stays between 2 * cwnd and 4 * cwnd.

2.2.2 Fair Share of Memory

Since Congestion Avoidance regulates the sharing of band-
width through a bottleneck, determining the buffer size of
connections from cwnd should also regulate the memory us-
age of all connections through that bottleneck. But basing
the send buffer sizes on cwnd is not sufficient for balanc-
ing memory usage, since concurrent connections may not
share a bottleneck, but do share the same pool of (possibly
limited) memory®.

A mechanism inspired by the Max-Min Fair Share algo-
rithm [MSZ96] was added to more strictly balance the mem-
ory usage of each connection. hiwat_fair_share represents
the amount of memory that each connection is entitled to
use. Small connections (sb_net_target < hiwat_fair_share)
contribute the memory they don’t use to the “shared pool”,
which is divided up equally among all connections that de-
sire more than the fair share. The fair share is calculated in
the tcp_slowtimo() routine twice per second, which should

3It is not known if the flapping of sb_net_target would cause per-
formance problems, but it seems wise to limit small, periodic fluctu-
ations until more is known.

4The problem of balancing memory usage of connections also
presents itself for hosts which are not attempting to auto-tune, but
simply have very large numbers of connections open (e.g. large web
servers). As mentioned earlier, BSD-based systems use the buffer
size as a limit, not as an allocation, so systems that are manually
tuned for performance can become overcommitted if a large number
of connections are in use simultaneously.

be low enough frequency to reduce the overhead caused by
traversal of the connection list, but fast enough to maintain
general fairness. Appendix A contains the detailed calcula-
tion of hiwat_fair_share.

Each time hiwat_fair_share is calculated, and each time
sb_net_target changes, sb-mem_target is updated to indicate
the intended value of the send socket buffer size.

sb_mem_target = min(sb_net_target, hiwat_fair_share)

sb_mem_target holds the intended buffer size, even if the
size cannot be attained immediately. If sb_mem_target in-
dicates an increase in the send buffer size, the buffer is in-
creased immediately. On the other hand, if sb-mem_target
indicates a decrease in the send buffer size, the buffer is re-
duced in size as data is removed from the buffer (i.e. as the
data is acknowledged by the receiver) until the target is met.

2.2.3 Memory Threshold

Even though memory usage is regulated by the algorithm
above, it seems important to include a mechanism to limit
the amount of system memory used by TCP since the au-
thors are not aware of any operating system that is reliably
well-behaved under mbuf exhaustion. Exhaustion could oc-
cur if a large number of mbuf clusters are in use by other
protocols, or in the case of unexpected conditions. There-
fore, a threshold has been added so that buffer sizes are
further restricted when memory is severely limited.

On the sender side a single thresh-
old, AUTO_SND_THRESH, affects the send buffer size®.
If the number of mbuf clusters in use system-wide exceeds
AUTO_SND_THRESH, then auto-tuned send buffers are
reduced as acknowledged data is removed from them, re-
gardless of the value of sb_mem_target.

Choosing the optimal value for AUTO_SND_ THRESH
requires additional research.

3 Test Environment

The test environment involved a FDDI-attached sender PC
in Pittsburgh running NetBSD 1.2 (see Figure 2, top).
While it had 64MB of RAM to allow many concurrent pro-
cesses to run, the amount of memory available for network
buffers was intentionally limited in some tests. The NetBSD
sender kernels for the tests in Sections 4.1 and 4.3 were
compiled with NMBCLUSTERS of 4MB, allowing a total
of 4MB of mbuf clusters to be used for all network connec-
tions, and 2MB to be used for send socket buffers. The test
in Section 4.2 used a kernel compiled with NMBCLUSTERS
of 2MB, allowing 2MB of mbuf clusters for all connections,
and limiting the total memory used by send socket buffers
to only 1MB.

The kernel was modified to include PSC SACK and the
auto-tuning implementation described in Section 2. In ad-
dition to the auto-tuning code, kernel monitoring was added
to be able to examine the internal effects of auto-tuning.

The kernel monitor logged TCP connection variables to
a global table upon encountering events in the TCP stack®.

5We make a slight approximation here. The thresholds are based
on NMBCLUSTERS, a rigid upper bound on the number of 2048
byte mbuf clusters. Additional network memory is available from
128-byte mbufs, which do not have a rigid upper bound. Future work
may refine how upper bounds on memory are determined.

5Tt was decided to log variables upon events rather than periodi-
cally in order to pinpoint important events, and to reduce the size of
the data files.

NetBSD
Auto-tuned
Sender

100Mbps FDDI ring

Workstation
Router

ATM MAN link
40Mbps rate-shaped
1ms delay

10Mbps ethernet

local
DEC Alpha
Receiver

ATM WAN cloud
155Mbps
~66 ms delay

100Mbps FDDI ring

remote
DEC Alpha
Receiver

Figure 2: Test Topology

Events included entering or exiting recovery, triggering a
retransmit timeout, or changing sb_net_target. The kernel
log file was read periodically by a user-level process using
NetBSD’s kvm kernel memory interface.

The receivers were DEC Alphas running Digital Unix
4.0 with PSC SACK modifications. The remote receiver,
which was used in all the tests, was a DEC 3000 Model 900
AXP workstation with 64MB of RAM located on the vBNS
Test Net at San Diego (see Figure 2, bottom left). Between
the sender and the remote receiver there was a site-internal
40Mbps bottleneck link and a minimum round-trip delay of
68ms, resulting in a bandwidth-delay product of 340kB.

The local receiver was a DEC Alphastation 200 4/166
with 96MB of RAM located in Pittsburgh (see Figure 2, bot-
tom right). It was connected to the same FDDI ring as the
sender via a 10Mbps private ethernet through a workstation
router. The path delay was approximately 1ms, resulting in
a bandwidth-delay product of 1.25kB.

Since pMTU discovery was not available for NetBSD 1.2,
the MTUs were configured by hand with static routes on the
end hosts to be 4352 bytes for the remote connection, and
1480 bytes for the local connection.

Since the receivers were not modified for auto-tuning,
their receive socket buffers were set to 1MB by the re-
ceiving application. The connections were, therefore, not
receive window-limited, and simulated the behavior of an
auto-tuning receiver.

4 Auto-tuning Tests

For all of the tests below, a modified version of
nettest [Cra92] was used to perform data transfers. The
modifications involved stripping out all but basic functional-
ity for unidirectional transfers, and customizing the output.
Concurrent transfers were coordinated by a parent process
that managed the data-transfer child processes, the kernel
monitoring process, and the archiving of data to a remote

tape archiver. In order to separate the time required to
fork a process from the transfer time, all the data-transfer
processes were started in a sleep-state ahead of time, await-
ing a “START” signal from the parent. The parent would
then send a “START” signal to the appropriate number of
processes, which would open the data transfer TCP connec-
tions immediately. When all running children signaled to
the parent that they were finished, the kernel monitor data
from the run was archived, then the next set of concurrent
transfers was set in motion with a “START” signal from the
parent.

Performance was recorded on the receiver-side, since the
sender processes believed they were finished as soon as the
last data was placed in the (potentially large) send socket
buffer.

The transfer size was 100MB per connection to the re-
mote receiver, and 25MB per connection to the local re-
ceiver, reflecting the 4:1 ratio of bandwidths of the two
paths.

On the DEC Alpha receivers, the maximum limit of mbuf
clusters is an auto-sizing number. Since the receivers had
sufficient RAM, the operating system allowed the maximum
mbuf cluster limit to be large enough that it did not impose
a limit on the transfer speeds.

Each TCP connection was one of three types:

default The default connection type used the NetBSD 1.2
static default socket buffer size of 16kB.

hiperf The hiperf connection type was hand-tuned for per-
formance to have a static socket buffer size of 400kB,
which was adequate for connections to the remote re-
ceiver. It is overbuffered for local connections.

auto Auto-tuned connections used dynamically adjusted
socket buffer sizes according to the implementation de-
scribed in Section 2.

Concurrent connections were all of the same type. Auto-
tuned buffers were limited from growing larger than the ker-
nel’s maximum socket buffer size, which was set to 1MB on
the sender.

4.1 Basic Functionality

The Basic Functionality test involved concurrent data trans-
fers between the sender and the remote receiver.

In Figure 3, the aggregate bandwidth obtained by each
set of connections is graphed. Only one type of connec-
tion was run at a time to more easily examine the perfor-
mance and memory usage for each connection type. For in-
stance, first a single auto-tuning connection was run, and its
bandwidth was recorded. Next two auto-tuning connections
were run simultaneously, and their aggregate bandwidth was
recorded.

From the figure, it can be seen that the default tuning
underutilizes the link when less than 22 concurrent connec-
tions are running. The send socket buffers of the connections
were too small, limiting the rate of the transfers.

On the other hand, the hiperf hand-tuned connections
get full performance because their socket buffers were con-
figured to be large enough not to limit the transfer rate.
As more connections were added, less send buffer space per
connection was actually required due to the sharing of the
link bandwidth, but since the sending application processes
still had data to send, they filled the 400kB send buffers
needlessly. Figure 4 illustrates memory usage for each type
of connection.

Mbps

Mbytes

4.00
3.80
3.60
340
320
3.00
2.80
2.60
2.40
2.20
2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

0.00

5.00 10.00 15.00 20.00 25.00 30.00

Figure 3: Aggregate Bandwidth comparison

0.00

5.00 10.00 15.00 20.00 25.00 30.00

Figure 4: Peak usage of network memory

conns

conns

Mbytes

4.00
3.80
3.60
340

2.80 — 1

260
240
220 —
200 T
180 ‘ -
160
140
120
1.00
080
0.60
0.40
020
0.00

0.00 100.00 200.00 300.00 400.00 500.00

Figure 5: Network memory usage vs. time for 12 concurrent
hiperf connections

Mbytes
100.00
95.00
90.00
85.00
80.00
75.00
70.00
65.00

10.00)
5.00 ’
0.00 ,

0.00 100.00 200.00 300.00 400.00 500.00

Figure 6: Relative sequence number vs. time for 12 concur-
rent hiperf connections

As the number of connections was increased, the hiperf
sender began to run out of network memory, causing its be-
havior to degrade until the system finally crashed. Figure 5
shows the system memory being exhausted during the hiperf
test with 12 concurrent connections. In Figure 6, it can be
seen that around 220 seconds into the test all 12 connections
stop sending data until two of the connections abort, freeing
memory for the other connections to complete.

As the behavior of the system degraded in progressive
hiperf tests, data became unavailable and is not shown in
the graphs. The same degradation occurred with default-
tuned connections when more than 26 of them were running
concurrently.

The auto-tuned connections were able to achieve the per-
formance of the hand-tuned hiperf connections by increasing
the size of the send socket buffers when there were few con-
nections, but decreased the send buffer sizes as connections
were added. Therefore maximum bandwidth was able to be
achieved across a much broader number of connections than
either statically-tuned type’. In fact, the auto-tuned sender
was able to support twice as many connections as the sender
that was hand-tuned for high performance.

4.2 Overall Fairness of Multiple Connections under
Memory-Limited Conditions

The authors hypothesized that auto-tuning would exhibit
more fairness than hiperf tuning, because some small num-
ber of hiperf connections were expected to seize all of the
available memory, preventing other connections from using
any. In order to test the fairness hypothesis, we ran several
sets of experiments where the amount of available system
memory was quite low in comparison to the hiperf buffer
tuning. (Specifically, the total network memory available
was 1MB, allowing only two of the 400kB hiperf tuned con-
nections to exist without exhausting memory).

In the course of running the experiments, we searched
for evidence of unfairness in the hiperf connections, but only
saw fair sharing of bandwidth among parallel connections.
Thus, we conclude that although there is no explicit mech-
anism for enforcing fairness among hiperf connections, par-
allel hiperf connections appear to achieve fairness.

While the authors were not able to find proof that auto-
tuning enhances fairness among concurrent connections, it
is worth pointing out that auto-tuning still exhibits a major
advantage over hiperf tuning. The hiperf tuned connections
caused the system to become unstable and crash with a small
number of connections. The auto-tuned connections, on the
other hand, were able to run fairly and stably up to large
numbers of connections.

4.3 Diverse Concurrent Connections

In the Diverse Concurrent Connections test, concurrent data
transfers were run from the sender to both the remote re-
ceiver and the local receiver. The bandwidth-delay product
of the two paths was vastly different: 340kB to the remote
receiver, and 1.25kB locally.

Figure 7 shows the aggregate bandwidth on each path.
The x axis represents the number of connections concur-
rently transferring data to each receiver. For each type of

" It is believed that an underbuffered bottleneck router is responsi-
ble for the reduced performance seen at the left of Figure 3. As more
connections are added, each requires less buffer space in the router’s
queue. Statistically, the connections don’t all require the buffer space
at the exact same time, so less total buffer space is needed at the
router as more connections use the same total bandwidth.

Mbps

32.00

28.00 -+ Hiperf “locdl ~ ~ ~

Default - local

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

———m s = mem = = = — — = — —_

8.00

6.00

4.00

200

conns
5.00 10.00 15.00

Figure 7: Aggregate Bandwidth over each path
The z axis represents the number of connections to each receiver.
The three lines around 9.3 Mbps represent connections to the local
receiver. The remaining three lines that achieve more than 10 Mbps
represent connections to the remote receiver.

tuning, the same number of connections were opened simul-
taneously to the local receiver and to the remote receiver.
The aggregate bandwidth of the connections on each path
are graphed individually.

In the default case, the 16kB send buffers were large
enough to saturate the ethernet of the local path, while at
the same time, they caused the link to the remote receiver
to be underutilized because of the longer round trip time. In
Figure 8, it can be seen that the maximum amount of net-
work memory used in the default tests increased gradually
as more connections were active.

Consider now the hiperf case. The 400kB send buffers are
overkill for the local ethernet, which can easily be saturated
(see Figure 7). However, the local connections waste mem-
ory that could be used for the remote connections, which
get only about 27Mbps. But, as can be seen from Figure 8,
memory is quickly used up needlessly until the operating
system crashed.

Auto-tuning, on the other hand, gets improved perfor-
mance to the remote receiver, while still saturating the local
ethernet, because memory not needed by local connections
is dedicated to the high bandwidth*delay connections. As
can be seen from Figure 8, not enough memory is available
to achieve the full 40Mbps, since AUTO_SND_THRESH
is only 2MB, but the available memory is better utilized to
obtain over 30Mbps, while allowing many more concurrent
connections to be used.

As mentioned in footnote 7, the bottleneck router is un-
derbuffered, causing reduced performance at small numbers
of connections.

5 Open Issues

Several minor problems still remain to be examined. The
first is that many TCPs allow cwnd to grow, even when the

Mbytes

3.60

340 Defaiiit

320

3.00

2.80

2.60

240

2.20

200
180

1.40 / y
1.20

1.00

0.80
0.60

0.40 - —

0.20

0.00 conns

5.00 10.00 15.00 20.00 25.00 30.00

Figure 8: Peak usage of network memory for connections

over two paths
The 2 axis represents the total number of connections to both
receivers

connection is not controlled by the congestion window. For
connections that are receive window-limited, send window-
limited, or application-limited, cwnd may grow without
bound, needlessly expanding the automatically-sizing send
buffers, wasting memory.

A specific example is an interactive application such as
telnet. If a large file is displayed over an auto-tuned telnet
connection, and the user types ~C to interrupt the connec-
tion, it may take a while to empty the large buffers. The
same behavior also exists without auto-tuning if a system
administrator manually configures the system to use large
buffers. In both cases, the application can resolve the situ-
ation by setting the socket buffer sizes to a small size with
setsockopt().

Another concern that requires further study is that al-
lowing very large windows might cause unexpected behav-
iors. One example might be slow control-system response
due to long queues of packets in network drivers or interface
cards.

A final point that should be made is that all the
tests were performed with an auto-tuning NetBSD 1.2
sender. Some aspects of auto-tuning are socket layer
implementation-dependent and may behave differently when
ported to other operating systems.

6 Conclusion

As network users require TCP to operate across an increas-
ingly wide range of network types, practicality demands that
TCP itself must be able to adapt the resource utilization of
individual connections to the conditions of the network path
and should be able to prevent some connections from being
starved for memory by other connections. We proposed a
method for the automatic tuning of socket buffers to pro-
vide adaptability that is missing in current TCP implemen-
tations.

We presented an implementation of auto-tuning socket
buffers that is straightforward, requiring only about 140
lines of code. The improved performance obtained by auto-
tuning is coupled with more intelligent use of networking
memory. Finally, we described tests demonstrating that
our implementation is robust when memory is limited, and
provides high performance without manual configuration.
Clearly visible in the tests is one key benefit of auto-tuning
over hand-tuning: resource exhaustion is avoided.

It is important to note that none of the elements of auto-
tuning allows a user to “steal” more than their fair share of
bandwidth. As described by Mathis [MSMO97], TCP tends
to equalize the window (in packets) of all connections that
share a bottleneck, and the addition of auto-tuning to TCP
doesn’t change that behavior.

7 Acknowledgements

The authors would like to thank Greg Miller, of the vBNS
division of MCI, for coordinating our use of their resources
for the tests in this paper. The authors would also like
to thank Kevin Lahey, of NASA Ames, and kc claffy and
Jambi Ganbar, of SDSC for setting up hosts to allow testing
during development of auto-tuning. And finally, the authors
would like to thank the National Science Foundation for the
continued funding of our network research.

A Detail of Memory-Balancing Algorithm

hiwat_fair_share is determined twice per second as fol-
lows. The size of the “shared pool” is controlled by the
kernel constant AUTO_SND_THRESH, which is set to
NMBCLUSTERS/? in our implementation. Let s be the
set of small connections (i.e. those connections for which
sb_net_target < hiwat_fair_share) that are currently in ES-
TABLISHED or CLOSE_WAIT states [REC793, Ste94]. Let
M be the sum of sb_net_target for all connections in s. We
denote the number of connections in set s as |s|. Let s be the
set of ESTABLISHED or CLOSE_WAIT connections not in
s.

If M > AUTO.SND_THRESH, then too many small
connections exist, and the memory must be divided equally
among all connections.

AUTO_.SND_THRESH
[5U s|

hiwat_fair_share =

Note that on the next iteration, hiwat_fair_share is
much smaller, causing some connections to move from s to
5.

If M < AUTO.SND_THRESH, the portion of the
pool that is left unused by the small connections is divided

equally by the large connections.

AUTO.SND. THRESH — M

hiwat_fair_share = B
5

References

[Cra92]

[FF96]

[Jac88]

[Mah96]

[MBKQ96]

[Min97]

[MMO6]

[MSMO97]

[MSZ96]

[MTW98]

[Net96]

[RFC793]

[RFC1191]

[RFC1323]

[RFC2001]

Nettest, 1992. Network performance analysis
tool, Cray Research Inc.

Kevin Fall and Sally Floyd. Simulations-based
comparisons of tahoe, reno and SACK TCP.
Computer Communications Review, 26(3), July
1996.

Van Jacobson. Congestion avoidance and con-
trol. Proceedings of ACM SIGCOMM ’88, Au-
gust 1988.

Jamshid Mahdavi. Enabling high perfor-
mance data transfers on hosts: (notes for
users and system administrators), November
1996. Obtain via: http://www.psc.edu/net-
working/perf_tune.html.

Marshall Kirk McKusick, Keith
Bostic, Michael J. Karels, and John S. Quarter-
man. The Design and Implementation of the 4.4
BSD Operating System. Addison-Wesley, Read-
ing MA, 1996.

March 1997. Private conversation between Greg
Minshall and the authors.

Matthew Mathis and Jamshid Mahdavi. For-
ward Acknowledgment: Refining TCP conges-
tion control. Proceedings of ACM SIGCOMM
’96, August 1996.

Matthew Mathis, Jeffrey Semke, Jamshid Mah-
davi, and Teunis Ott. The macroscopic behav-
ior of the TCP Congestion Avoidance algorithm.
Computer Communications Review, 27(3), July
1997.

Qingming Ma, Peter Steenkiste, and Hui Zhang.
Routing high-bandwidth traffic in max-min fair
share networks. Proceedings of ACM SIG-
COMM 96, August 1996.

Gregory J. Miller, Kevin Thompson, and Rick
Wilder. Performance measurement on the
vBNS. In Interop’98 Engineering Conference,
1998.

NetBSD 1.2 operating system, 1996. Based
upon 4.4BSD Lite, it is the result of a collective
volunteer effort. See http://www.netbsd.org.

J. Postel. Transmission control protocol, Re-
quest for Comments 793, September 1981.

Jeffrey Mogul and Steve Deering. Path MTU
discovery, Request for Comments 1191, October
1991.

Van Jacobson, Robert Braden, and Dave Bor-
man. TCP extensions for high performance, Re-
quest for Comments 1323, May 1992.

W. Richard Stevens. TCP slow start, congestion
avoidance, fast retransmit, and fast recovery al-
gorithms, Request for Comments 2001, March
1996.

[RFC2018] Matthew Mathis,

[SACOS]

[Ste94]

[VS94]

[Wel96]

[WS95]

Jamshid Mahdavi, Sally
Floyd, and Allyn Romanow. TCP Selective Ac-
knowledgement options, Request for Comments
2018, October 1996.

Experimental TCP selective acknow-
ledgment implementations, 1998. Obtain via:
http://www.psc.edu/networking/tcp.html.

W. Richard Stevens. TCP/IP Illustrated, vol-
ume 1. Addison-Wesley, Reading MA, 1994.

Curtis Villamizar and Cheng Song. High perfor-
mance TCP in the ANSNET. ACM SIGCOMM
Computer Communication Review, 24(5), Octo-
ber 1994.

Von Welch. A user’s guide to TCP windows,
1996.

Obtain via: http://www.ncsa.uiuc.edu/Peo-
ple/vwelch/net_perf/tcp_windows.html.

Gary R. Wright and W. Richard Stevens.
TCP/IP Illustrated, volume 2. Addison-Wesley,
Reading MA, 1995.

