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Abstract

We evaluate pathchar, a tool that infers the characteristics
of links along an Internet path (latency, bandwidth, queue
delays). Looking at two example paths, we identify circum-
stances where pathchar is likely to succeed, and develop
techniques to improve the accuracy of pathchar's estimates
and reduce the time it takes to generate them. The most
successful of these techniques is a form of adaptive data col-
lection that reduces the number of measurements pathchar
needs by more than 90% for some links.

1 Introduction

pathchar is a new tool, written by Van Jacobson at Lawrence
Berkeley Laboratory (LBL), that tries to infer the character-
istics of individual links along an Internet path by measuring
the round trip time of packets sent from a single host. An
alpha version of pathchar is available for FreeBSD, Linux,
OSF and Solaris from ftp://ftp.ee.lbl.gov/pathchar/.
We explain the basic mechanism and evaluate its accuracy
on two paths whose link characteristics are known.

Based on these observations, we propose techniques to
improve the accuracy of pathchar and to reduce the num-
ber of measurements (and time) it takes to generate its es-
timates. The contributions of this paper are

� An evaluation of pathchar and some insight into when
it can or can not be expected to be useful.

� A technique for generating intervals for the estimates
pathchar generates. Although these intervals do not
always contain the nominal (correct) values, their size
conveys useful information about the accuracy of the
estimates.

� A technique for determining dynamically the number
of measurements needed to achieve a given interval
size.
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Figure 1: Network model.

1.1 Methodology

Using pathchar's verbose option we collected measurements
of two paths, one from rocky.colby.edu (on the campus of
Colby College in Waterville, Maine) to emerald.mint.net
(also in Waterville), the other from rocky to mach5.sdsc.edu
(at the San Diego Supercomputer Center). We refer to these
as the MINT and SDSC datasets.

Based on pathchar's documentation, we wrote a pro-
gram that processes these datasets and generates estimates
of the link characteristics. This software allows us to test
alternatives and extensions to pathchar's techniques using
the same data.

Our example paths, and the 11 links that comprise them,
are not intended to be a statistical sample of the Internet
(cf. Paxson's empirical studies [3, 4]). But the structure of
these paths is probably typical of many|a fast local network
connected through a comparatively slow link to the Internet
proper, connected to the destination site through another
LAN. We expect our experiences to be applicable to a large
class of potential pathchar users.

2 Background

Van Jacobson presented pathchar at the Mathematical Sci-
ences Research Institute (MSRI) in April 1997 [1]. The fol-
lowing description is based on slides he presented there.

Like traceroute1 , pathchar takes advantage of the time-
to-live �eld (ttl) in an IP packet. The ttl determines how
many links a packet can traverse before it expires. If a router
receives a packet that has expired, it drops the packet and
sends an ICMP error packet back to the sender. The source
address of the error packet indicates which router the out-
going packet reached before expiring. By setting the ttl to

1For a survey of network measurement tools including traceroute
see the Cooperative Association for Internet Data Analysis (CAIDA)
web page http://www.caida.org/Tools/
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Figure 2: Scatterplot of round trip times versus packet size,
45 sizes, 64 probes each. The vertical axis is on a log scale,
which is why the lower envelope appears convex, although
it is a nearly straight line.

a value n, it is possible to �nd the address of the nth router
in the path.

pathchar works by sending out a series of probes with
varying values of n and varying packet sizes. For each
probe it measures the time until the error packet is received.
By performing statistical analysis of these measurements,
pathchar infers the latency and bandwidth of each link in
the path, the distribution of queue times, and the probabil-
ity that a packet is dropped.

The analysis is based on the network model in Figure 1.
Before a packet leaves the (n� 1)th node, it waits in queue
to get onto the outgoing link. The time it spends on the
network|transit time|is a linear function of the packet
size, where the two parameters are the latency and band-
width: lat+ size=bw.

At node n, the packet waits in queue again until the
router processes it and generates the error packet. The error
packet waits in queue at node n, then returns to node n� 1
with transit time lat + error size=bw, where error size is
the size of the ICMP error packet (56 bytes [5]).

Finally, it waits in queue at node n� 1. The round trip
time (rtt) from the (n� 1)th to the nth node and back is:

rtt = q1 + (lat+ packet size=bw) + q2 + forward

+ q3 + (lat+ error size=bw) + q4 (1)

where the values qi are random variables representing the
queue times and forward is the time it takes the forwarding
engine to process the packet.

To simplify this expression pathchar makes three as-
sumptions: (1) the size of the error packet is small enough
that error size=bw is negligible, (2) the forward time is neg-
ligible, and (3) if we make a large number of measurements
of a given path, eventually one of the probes will make the
round trip with negligible queue delays. Eliminating the
negligible terms yields:

rtt = (lat+ packet size=bw) + lat (2)
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Figure 3: Shortest observed round trip time (SORTT) ver-
sus packet size. The line shows the linear least squares �t
to the data.

This equation is the basis of the analysis pathchar uses to
estimate link characteristics.

2.1 Statistical analysis

This section uses a sample data set to demonstrate the anal-
ysis pathchar performs. We use the following terms to refer
to various data structures.

probe: a single measurement of an rtt for a given packet
size and number of hops.

Sample: a set of probes with a given packet size.

Link: a set of Samples pertaining to a given link, spanning
a range of packet sizes.

Path: a set of Links pertaining to a given path, in order
from origin to destination.

Sample, Link, and Path are written with upper-case let-
ters to indicate that they refer to a data structure, and to
avoid confusion with their common use.

Minimum-�ltering

Figure 2 shows a scatterplot of 2880 probes at 45 di�erent
sizes, from 120 to 1528 bytes, taken from the 6th link of the
SDSC dataset. Each point represents a single probe; each
column represents a Sample; the whole graph represents one
Link.

Within each Sample, pathchar uses the shortest observed
rtt to estimate the minimum possible rtt. Because we use
the phrase \shortest observed rtt" frequently, we abbreviate
it SORTT.

In each column there are many data points near the min-
imum, suggesting that packets have a reasonable chance of
traversing the path without delay. This observation implies
that pathchar can �nd the minimum rtt with a small num-
ber of probes at each packet size.
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Figure 4: Shortest observed round trip times (SORTTs) for
the �rst 8 links of the SDSC dataset.

The SORTTs from each column, plotted in Figure 3,
form a straight line, in accordance with the two-parameter
model of transit times (Equation 2).

Curve-�tting

Because the data fall so close to a line, it is easy to estimate
parameters by a least squares �t. The interpretations of
these cumulative parameters are:

� the latency from the �rst node to the nth node and
back, and

� the marginal cost of sending an additional byte along
the outgoing path.

Figure 4 shows the SORTTs for the �rst 8 links of the SDSC
dataset. The line labeled 6 is the same line shown in Fig-
ure 3. In each case, the data �t a straight line well.

Di�erencing

The nice thing about the cumulative parameters is that they
add: the parameters of a path are the sum of the parameters
of the links. Thus, given estimated cumulative parameters,
pathchar �nds link parameters by subtraction.

For example, to �nd the latency of the 6th link, we sub-
tract the intercepts of line 6 and line 5 (9.88 ms � 2.22 ms =
7.66 ms). According to Equation 2, this di�erence is equal
to twice the latency, so the estimated link latency is 7.66/2
= 3.83 ms.

To �nd the bandwidth, we subtract the two slopes (9.61
�s/B � 4.02 �s/B = 5.6 �s/B). According to Equation 2,
this di�erence is the inverse of the bandwidth, so the esti-
mated link bandwidth is 1.43 Mb/s.

Deconvolution

If we assume that the SORTT in each column is the mini-
mum possible rtt, then the additional time the other probes
spend must be due to queueing and other nondeterministic
delays.
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Figure 5: Distributions of cumulative queue delays, SDSC
dataset.

Once pathchar �ts a line to the SORTTs, it calculates
the minimum possible rtt for each packet size and sub-
tracts it from each probe. Aggregating these excess times,
pathchar estimates the distribution of the total queue delay
along the path to the nth node and back.

Figure 5 shows these distributions (empirical cumulative
distribution functions) for the SDSC dataset. The vertical
gray line is at 0.5 ms; where the distributions cross this line
indicates the probability of observing an rtt within 0.5 ms
of the minimum. As the length of the path grows, this prob-
ability drops quickly. This probability is relevant because it
indicates how many probes are necessary to see an rtt near
the minimum.

These distributions are cumulative, but unlike the cumu-
lative parameters, they do not add in a simple way. Rather,
each distribution is the convolution of the distributions for
the prior links. In Section 7 we address the problem of de-
convolving them.

2.2 Accuracy

Using pathchar's techniques we estimated characteristics of
the �rst 8 links of the sample path (Table 1). We chose
the �rst 8 links because they provide examples of some of
pathchar's successes and failures while avoiding some com-
plications in the subsequent links. We address the compli-
cations in Section 3.3.

The �rst 5 links are 10Mb/s Ethernets on Colby's cam-
pus. In each case, pathchar's estimate is within 4% of the
nominal value.

The next link is the T1 that connects Colby to the rest
of the world. The estimated bandwidth, 1.43 Mb/s, is rea-
sonably close to the nominal bandwidth, 1.536 Mb/s. It is
surprising that it is not more accurate, though, since it is
generally easy to measure the bandwidth of a slow link.

The link from bordercore2 to core4, according to an
MCI representative, is an OC-3 with nominal bandwidth 155
Mb/s. Actually, OC-3 links are implemented as 3 distinct
OC-1 bitstreams at 51.8 Mb/s. Each packet is sent down
one of the three pipes in round robin fashion. Thus, from



link host address latency bandwidth nominal
est. (�s) est. (Mb/s) bandwidth

1 hub.colby.edu 137.146.194.17 328 9.74 10
2 routing.colby.edu 137.146.238.194 222 9.93 10
3 network.colby.edu 137.146.238.209 116 10.1 10
4 general.colby.edu 137.146.112.132 220 9.65 10
5 routing.colby.edu 137.146.238.146 223 10.4 10
6 bordercore2.cht.mci.net 166.48.64.25 3.83 ms 1.43 1.536
7 core4.WestOrange.mci.net 204.70.4.77 2.41 ms 71.3 3 � 51.8
8 sprint3-nap.WestOrange.mci.net 204.70.10.226 1.45 ms 24.1 44.7

Table 1: Estimated latencies and bandwidths of the �rst 8 links of the SDSC path, with nominal bandwidths reported by the
network service provider.

pathchar's point of view it is impossible to distinguish an
OC-3 from and OC-1 or an OC-12. Nevertheless, pathchar
can estimate the bandwidth of the OC-1, although in this
case it is not very accurate (38% too high).

The next link is a DS3, which is also made up of a number
of parallel pipes (28 DS1s, which are themselves made up of
24 DS0s). In this case, though, the packet is broken into
parallel bitstreams, so that the bandwidth experienced by
a single packet should be the nominal bandwith of the link,
44.7 Mb/s. Again, the estimate is not very accurate (46%
too low).

2.3 Noise

These examples demonstrate the fundamental di�culty of
pathchar|the higher the bandwidth, the harder it is to
measure. The estimated bandwidth is based on the slope of
the rtt curve, which captures the di�erence between the rtt
of the largest and smallest packets. The higher the band-
width, the smaller this di�erence.

Looking at the 6th and 7th hops, we see that the dif-
ference between the rtt for the largest and smallest packets
is small compared to the noise in the data. The estimated
slopes of the lines are 9.614 and 9.726 �s/B, so the di�erence
between them is only 0.112 �s/B, meaning that the di�er-
ence between the rtt of the smallest and largest packets is
only about 150 �s. By comparison, the largest outlier in
Figure 3 is 175 �s from the �tted line.

This problem is compounded by the need to subtract
adjacent estimates. In general, the calculated di�erence be-
tween estimated values is less accurate than the values them-
selves. As a result, the accuracy of the estimated slopes
needs to be considerably better than the accuracy required
for the estimated bandwidths.

To make matters worse, minimum�ltering ampli�es mea-
surement error by selecting extreme values. We tried several
techniques to mitigate this e�ect:

� Instead of using the minimum from each Sample, we
tried other summary statistics, including the 2nd per-
centile.

� For the curve-�t, we used iteratively-weighted least
squares (IWLS) to dilute the e�ect of outliers.

� We tried to model the distribution of queue times and
estimate the minimum round trip time as a parameter
of the distribution model.

None of these techniques reliably improved pathchar's band-
width estimates. This problem is the focus of our ongoing
work.

3 Modeling errors

Like all models, pathchar's network model omits many de-
tails of the real world. This section discusses some of them
and their e�ect on the estimates.

3.1 Omissions that a�ect latency

One omission we have already mentioned is the assumption
that the size of the error packet is negligible. As a result
the latency estimates are a little too high. Given the actual
size of the error packet, it is easy to adjust the estimated
latency by subtracting error size=estimated bandwidth. In
most cases this adjustment is insigni�cant.

A second omission is the assumption that forwarding
time is negligible. Actually, since pathchar's estimates are
based on the di�erence between measurements, forwarding
time drops out as long as it is the same for all routers. Only
the variation in forwarding time from router-to-router will
a�ect the estimated latency.

A related issue is the possibility that forwarding time
varies over time. Possible causes of variation include MAC
delays and time the router spends processing updates. These
transient delays will be eliminated by minimum �ltering as
long as they occur infrequently.

A more serious problem is the possibility that the return
path is not the same as the outgoing path. In this case, it
is no longer true that the two latencies in Equation 1 are
the same. As a result, the estimated latencies can be wildly
wrong. Unfortunately, pathchar can neither detect nor deal
with this possibility.

Most of these factors do not a�ect pathchar's bandwidth
estimates because they do not discriminate between large
and small packets.

3.2 Omissions that a�ect bandwidth

One problem that we have already mentioned is the exis-
tence of links that are made up of parallel pipes. If these
links put a whole packet into one pipe, rather than dividing
it up, they will appear to have the bandwidth of a single
pipe.

Another problem is caused by probes that exceed the
MTU of a link. The MTU is the Maximum Transfer Unit,
the largest packet that can be sent without being fragmented.
A probe that exceeds the MTU will be fragmented into some
number of smaller packets, and an error packet will be sent
as soon as the �rst packet arrives at the nth router. The re-
sulting rtt curve levels o� at the MTU, distorting the curve-
�t and tending to make the bandwidth estimate too high.



Setting the don't fragment ag of the outgoing packets
does not help, since it does not cause the packet to exceed
the MTU of a link; rather, it causes an ICMP Unreachable
Error (Fragmentation Required) at the �rst link whose MTU
is exceeded [5].

3.3 Route alternation

A �nal factor that is omitted from pathchar's model, and
that causes signi�cant problems, is route alternation. Route
alternation is the tendency for the path between two hosts
to change over time, typically oscillating over a small set
of possibilities. Paxson has shown that route alternation
is common on the Internet [4]. Rapidly-oscillating routing
can make it impossible for pathchar to generate useful esti-
mates, not only for the oscillating link but also for the links
beyond it. The reason is that once pathchar has character-
ized the (n � 1)th link of a path, it assumes that all mea-
surements of the nth link follow the same �rst n � 1 links.
If that is not the case then subtracting the characteristics of
the two links becomes meaningless.

Fortunately, Paxson found that the majority (91%) of
Internet routes persist for hours, long enough for pathchar
to make its measurements. Unfortunately, there are a sig-
ni�cant number of routes that alternate more quickly, and
these routes do create problems. For example, the 9th link
of the path from Colby to SDSC alternates among at least
three routes. The current version of pathchar tries to char-
acterize the �rst route it �nds, and rejects probes that follow
another route. If it happens to encounter a low-probability
route �rst, it can waste a lot of probes. Also, if the route it
characterizes is not the shortest route, estimates for subse-
quent links might be inaccurate. This problem a�ected the
SDSC dataset, and is the reason we restricted the discussion
to the �rst 8 links.

4 Interval estimates

It is always dangerous to generate estimates without con�-
dence intervals, and especially so for pathchar, since some
estimates are much more accurate than others.

Although the linear least squares �t described in Sec-
tion 2.1 produces error estimates for the parameters, these
estimates have no statistical meaning in the context of the
estimated network characteristics. The least-squares �t only
\knows" about the SORTT for each packet size; it doesn't
take into account how many probes were sent or what the
probability was of traversing the path without incurring any
queue delays. Developing a statistical model that uses this
information to generate an error bound would be formidable.

An alternative is to use a technique from non-parametric
statistics: divide a large sample into smaller samples, and
look at the variation in the estimated parameters among the
subsamples.

Using the same data from the previous section, we di-
vided each Sample into two, containing the even- and odd-
numbered probes. Each subsample contains 32 probes at
each of 45 sizes for each link. When we calculate the di�er-
ence between adjacent Links, we get four estimates for each
parameter by taking

� the di�erence between the even samples,

� the di�erence between the odd samples,

� the di�erence between the evens from one and the odds
from the other, and vice versa.

link low bw high bw nominal bw
(Mb/s) (Mb/s) (Mb/s)

1 9.68 9.78 10
2 9.85 10.1 10
3 10.0 10.2 10
4 9.65 9.86 10
5 9.96 10.4 10
6 1.42 1.43 1.536
7 56.5 72.4 3 � 51.8
8 23.5 36.6 44.7

Table 2: Intervals for the estimated bandwidth of the �rst
8 links of the SDSC dataset.

Taking the largest and smallest estimatess of the four, we
form an interval for the estimated characteristics.

Table 2 shows the intervals for the bandwidth of the �rst
8 links of the path. The intervals for the �rst 5 links are
narrow (less than 4% of the estimated value), indicating that
the estimated value is consistent, if not perfectly accurate.
In some cases, but not all, the interval contains the nominal
bandwidth of the link. The estimated bandwidth of the T1
(link 6) is very consistent, although somewhat lower than
the nominal bandwidth (1.536 Mb/s).

The di�cult links, as before, are the OC-3 and the DS3.
The good news is that the intervals correctly indicate that
these estimates are not accurate. The width of the interval is
31% of the nominal value in one case and 29% in the other.
The bad news is that in both cases the interval does not
contain the nominal bandwidth. Thus, while these intervals
give some measure of the uncertainty of the estimates, they
are still somewhat optimistic.

In Section 6 we use these intervals as a criterion for con-
vergence, in order to choose the number of probes at each
link adaptively.

5 More sizes vs. bigger samples

With a given number of probes, it is not obvious whether it
is better to make measurements of a wide variety of packet
sizes or to make a large number of measurements at each
size. The advantage of a large number of measurements is
that there is a better chance of observing the minimum pos-
sible rtt. The advantage of making measurements over many
packet sizes is that more data points are used for curve-
�tting (and fewer are discarded by minimum-�ltering).

To evaluate this tradeo�, we collected a large dataset and
divided it into subsamples in various ways, using di�erent
packet sizes and di�erent numbers of measurements. The
MINT dataset contains 512 probes at each of 64 sizes, from
88 to 1348 bytes. The measurements were made between
Tuesday 7 July, 1998 at 10:39 EDT and Wednesday 8 July,
1998 at 03:59 EDT. Table 3 shows the links along this path
and the estimated bandwidth for each.

We divided the data into 16 subsets along several dif-
ferent axes. In one case we use all 64 packets sizes, but
divide the probes into 16 sets (by taking every 16th probe).
In another case we use only 4 di�erent sizes, but keep all
512 probes at each size. The headings in Table 4 show the
various ways to partition the dataset; for example, 4�512
means 4 sizes and 512 probes per size.

For each data subset, we estimated the bandwidth for
each link, and then calculated the relative error for the 16



link host address latency bandwidth nominal
est. (�s) est. (Mb/s) bandwidth

1 hub.colby.edu 137.146.194.17 323 9.68 10
2 network.colby.edu 137.146.238.194 219 10.1 10
3 router5.colby.edu 137.146.238.210 195 10.0 10
4 router1.colby.edu 137.146.112.209 115 9.9 10
5 general.colby.edu 137.146.112.132 209 9.8 10
6 network.colby.edu 137.146.238.146 218 10.1 10
7 bordercore2.cht.mci.net 166.48.64.25 3.68 ms 1.43 1.536
8 bordercore1.Boston.mci.net 166.48.60.1 108 56.7 3 � 51.8
9 mint.Boston.mci.net 166.48.60.18 3.37 ms 1.43 1.536
10 emerald.mint.net 204.254.98.9 78 8.8 10

Table 3: Estimated characteristics of the MINT path.

subsets, where the relative error is the absolute di�erence
between the estimated and nominal bandwidth, divided by
the nominal bandwidth. Each entry in the table is the aver-
age of the 16 errors. For the �rst link in the path, the 4�512
dataset yields estimates that are o� by 3.1% on average; the
64�32 dataset is o� by 2.8% on average.

The remaining links are similar|the datasets that use
more packet sizes consistently yield better estimates than
the ones that have more probes at each size. The discrep-
ancy is particularly signi�cant for the 8th link, which is an
OC-3. The errors for this link are bigger across the board
than for the other links, but the best estimates come from
using many packet sizes.

The last link is omitted from this table because of what
seems to be a bug in the alpha version of pathchar. For this
link, pathchar used a di�erent set of packet sizes than it
used for the other links. This discrepancy does not a�ect the
other calculations, but it does break our system for splitting
the data into subsets.

We performed a similar experiment with the SDSC path
and found similar results|more sizes is better than more
probes per size.

5.1 Consistency

This experiment also gives us an opportunity to evaluate the
consistency of pathchar's measurements. Using the 32�64

link 4�512 8�256 16�128 32�64 64�32
1 3.1% 3.0% 2.9% 2.9% 2.8%
2 1.8 2.1 1.1 0.83 0.85
3 2.9 1.7 1.8 1.6 1.4
4 4.6 3.7 2.5 2.0 1.3
5 4.5 3.2 3.0 2.4 1.9
6 4.9 3.8 3.7 2.4 2.9
7� 1.2 1.0 0.88 0.47 0.49
8 252 69 564 60 42
9� 2.7 1.5 1.8 0.77 1.1

Table 4: Mean relative error of the bandwidth estimated
for the MINT dataset. Each column represents a di�erent
way of partitioning the data. The heading 4�512 indicates
a dataset with 4 packet sizes and 512 probes at each size.
The lowest value in each row appears in bold. The asterisks
indicate that these errors are based on the median estimate
rather than the nominal bandwidth (see Section 5.1).

dataset, we examined the 16 estimates for each link. In
general, estimates for low bandwidth links are more accurate
and more consistent. For example, the 16 estimates for the
second Ethernet are:

9.82 9.93 9.94 9.95 9.98 9.99 10.0 10.0
10.1 10.1 10.1 10.1 10.1 10.1 10.2 10.2

The largest and smallest values di�er by less than 4%.
For the OC-3 (link 8) the estimates are:

31.4 33.8 38.9 39.2 43.1 44.0 46.6 51.9
65.1 83.5 86.6 99.8 111 115 117 148

The median of these values, 58.5 Mb/s is close to the nomi-
nal value of the OC-1 pipes that make up the OC-3, which is
51.8 Mb/s. Nevertheless, the range is large, indicating that
a single estimate with this sample size is unreliable.

The measurements of the T1s (links 7 and 9) are inter-
esting because they are very consistent, within 4% of 1.43
Mb/s, but not accurate. The nominal bandwidth is 1.536
Mb/s.

Our conclusion is that these links are not providing the
nominal bandwidth, but we have no explanation for this
behavior. Framing bits were a likely suspect, but they are
already accounted for in the nominal bandwidth (the line
rate is 1.544 Mb/s). In Table 4, where we compare the
accuracy of di�erent sample sizes, we use 1.43 Mb/s as the
nominal value for the two T1 links.

5.2 Latency

So far we have said little about the accuracy of the latency
estimates, since end-to-end latency is the sum of several fac-
tors and we do not have nominal values for the links we
measured.

On the other hand, there are a number of links that ap-
pear in both sample paths. We can use these measurements
to assess the consistency of the estimates, if not their accu-
racy. In each case, the two measurements di�er by less than
5%.

In both paths the latency of the �rst link is higher than
the latency of the other Ethernets. The excess, about 100
�s, might be the time it take the router to generate the
ICMP error packet. For the subsequent links, this time is
eliminated by subtraction of adjacent latencies.



link number estimated converge
of probes and (nominal) criterion

bandwidth
1 296 9.6 (10) 0.5 %
2 296 10.1 (10) 1.7 %
3 296 9.6 (10) 2.3 %
4 296 10.5 (10) 3.5 %
5 888 9.8 (10) 4.1 %
6 888 9.7 (10) 2.2 %
7 888 1.43 (1.54) 1.6 %
8 37835 63.3 (51.8) 100 %
9 4440 1.44 (1.54) 6.5 %
10 37839 8.7 (10) 40 %

Table 5: Adaptive data collection, MINT dataset.

6 Adaptive data collection

One thing that is clear from the example paths is that some
links require more measurements than others to generate an
accurate characterization. For the �rst link in the MINT
dataset (a 10 Mb/s Ethernet), an 8�16 sample is su�cient
to estimate bandwidth within 3%. Even across several hops,
an 8�16 sample is enough to characterize the T1 link to
within 2%. But for fast links with many intervening hops,
like the OC-3, even the 64�512 dataset (32,768 probes) is
o� by 9%.

The current release of pathchar uses the same number
of probes for each link of the path. In practice, this means
that if the sample size is large enough to characterize the
most di�cult link, many probes are being wasted on the
easy links. We set out to design an adaptive data collection
system that uses only as many probes as necessary.

In the following experiments, we simulated adaptive data
collection by collecting a large dataset (74�512) in the usual
way (the same number of probes for all links), and then using
an adaptively-selected subset of the data. We start out with
a small number of samples for each link, and then make
\new" measurements by incrementally including additional
data. If the estimated characteristics of a link seem to have
converged, we move on to the next link and discard the
remaining measurements. We hope that this process will
discover the minimum number of samples required to reach
a given accuracy.

This simulation distorts the time interval between probes
somewhat, but we do not expect that to a�ect the results,
because on the time scale of minutes queue delays are noisy
and uncorrelated (Section 7). It should not matter whether
there is a delay between the measurement of one link and
the next.

6.1 Detecting convergence

In Section 4 we described a simple way to calculate an in-
terval for the estimated characteristics. We divide the sam-
ple into two halves and estimate the parameters for each
subsample. Since each estimate is based on the di�erence
between adjacent links, we can use the two subsamples to
generate four estimates for each link. The convergence
criterion is the range of the four estimates divided by the
smallest estimate; in other words, the di�erence between the
smallest and largest, expressed as a percentage of the small-
est. We consider a link converged if this criterion is below
10%.

link number estimated converge
of probes and (nominal) criterion

bandwidth
1 540 9.82 (10) 1.6 %
2 180 9.07 (10) 1.6 %
3 180 10.76 (10) 3.4 %
4 180 10.10 (10) 6.1 %
5 180 10.73 (10) 6.7 %
6 180 1.24 (1.54) 5.2 %
7 2809 -11.13 (51.8) 46.1 %
8 2829 24.15 (44.7) 55.4 %

Table 6: Adaptive data collection, SDSC dataset.

link number estimated converge
of probes and (nominal) criterion

bandwidth
1 540 9.8 (10) 1.6 %
2 180 9.1 (10) 1.6 %
3 180 10.8 (10) 3.4 %
4 180 10.1 (10) 6.1 %
5 180 10.7 (10) 6.7 %
6 2871 1.42 (1.54) 0.67 %
7 2809 71.3 (51.8) 28.3 %
8 2829 24.2 (44.7) 55.4 %

Table 7: Retroactive data collection, SDSC dataset.

Based on the result from Section 5, we collected mea-
surements at a large number of packet sizes (74 sizes rang-
ing from from 88 to 1548). We started with 2 probes at
each packet size and added new measurements at each size
until the estimates converged or we exhausted the supply of
previously-collected data (256 evens and 256 odds). Each
time we added new measurements, we doubled their num-
ber, starting with 2, 4, 8, etc.

Table 5 shows the number of data points used to char-
acterize the links in the MINT dataset. For each link, the
table shows the estimated bandwidth and the width of the
interval.

In many cases, two probes per packet size is su�cient
for the link to converge. Thus, the total number of samples
for many links is 296 (2 subsets, 2 probes per size, 74 sizes)
or 888 (6 probes per size). The 8th and 10th links fail to
converge even using all the available data.

6.2 Retroactive data collection

Although adaptive data collection works well on the MINT
dataset, it fails for the SDSC dataset (Table 6). The es-
timated bandwidth of the 7th link fails to converge even
using all the available data, and the best estimate is neg-
ative, which is a pretty good indication that something is
wrong.

The problem is that the estimate for the 7th link depends
on the data for the 6th link, and in this case the 6th link has
converged on a value that is close to the nominal value, but
not close enough to yield an accurate di�erence between the
6th and 7th links (see Section 2.1).

A simple solution is to collect additional measurements of
the 6th link at the same time we are working on the 7th. For
every 4 samples of the current link, we make one additional



link n �1 (ms) �2
1 37843 0.21 2.9
2 37832 0.29 3.5
3 37850 0.40 4.3
4 37846 0.55 4.7
5 37842 0.79 5.5
6 37838 0.93 6.3
7 37808 11.6 1020
8 37793 8.6 917
9 37346 29.9 1690
10 37777 8.8 374

Table 8: Estimated moments of the queue delays for the
MINT dataset.

measurement of the prior link. Table 7 shows the result of
this technique, which we call retroactive data collection.

In this case we have to use all the available data for the
6th link, which yields an improved bandwidth estimate with
a very narrow interval. Improving the characterization of
the 6th link eliminates the problematic negative bandwidth
of the 7th. The characterizations of the 7th and 8th links
are still inaccurate, but they are no worse than in Table 1.

Retroactive data collection slightly improves the esti-
mates from the MINT dataset. In both cases it requires
more probes than simple adaptive collection, but still far
fewer than would be required if we collected the same num-
ber of probes for each link.

6.3 Directed adaptive collection

We tried an alternate form of adaptive data collection that
reduces the number of probes required to achieve a given
accuracy. The basic idea is to use the residuals of the curve-
�tting step to direct data collection. If the SORTT for a
given packet size is above the �tted curve, we assume that
we have not observed the minimum possible rtt, and collect
more measurements at that size. Conversely, if a SORTT is
below the �tted curve we can avoid wasting measurements
on it.

This technique is e�ective|it reduces the number of
measurements needed without reducing accuracy|but it
might make it more di�cult to make a strong claim about
the statistical validity of the result, since an initial error
might lead to a self-ful�lling prophesy, at least in theory. In
practice, that does not seem to be a problem.

7 Deconvolution

In addition to inferring the physical characteristics of a link,
pathchar tries to characterize the distribution of queue de-
lays, reporting the mean and hinge (ratio of the interquartile
distance to the median).

Predicting the delay su�ered by an individual packet is
di�cult, because conditions change quickly and even recent
measurements seldom predict the future [6]. But knowing
the distribution of queue delays might make it possible to
predict aggregate performance.

Unfortunately, we seldom have the luxury of observing
the queue delays of single link; except for the �rst link, all
our observation are the sum of many queue delays (see Fig-
ure 1 and Equation 1). In order to discern the delays im-
posed by a given link, we have to deconvolve the observed
distributions of adjacent links.

Distribution of queue delays

(fraction of probes with delay < t)

t (ms)
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Figure 6: Distributions of cumulative queue delays from the
MINT dataset, shown on a log scale along with �tted log-
normal distributions.

If x is the total queue delay of the �rst n � 1 links of a
path, and y is the queue delay of the nth link, then clearly
the total delay of the �rst n links is the sum of x and y,
which we call z. If we knew x and z, therefore, it would be
trivial to �nd y. But because of the way pathchar works,
we can only measure x or z, never both for the same packet.

Nevertheless, by making many measurements of x and z,
we can estimate the distribution of each, and by deconvolu-
tion we can infer the distribution of y. The simplest form
of deconvolution is the subtraction of moments. This is the
technique pathchar uses.

If we know FX , the distribution of X, and FY , the dis-
tribution of Y , we can calculate the �rst three moments of
FZ , the distribution of the sum Z = X + Y , just by adding
the moments of FX and FY . This is true for all distribu-
tions and does not depend on the independence of X and
Y . Using this property, pathchar estimates the moments of
FY by subtracting the moments of FX from the moments of
FZ .

Since negative queue delays are impossible, the �rst three
moments must increase monotonically from one link to the
next. For example, the mean queue delay to the nth node
cannot be less than the mean queue delay to the (n � 1)th
node.

Table 8 shows the �rst two moments of the queue delays
from the MINT dataset. For each link, we �t a curve to
the SORTTs and estimate the queue delay by subtracting
the �tted time from each measurement. After discarding a
small number of negative values (about 1%), we have about
38000 measurements per link.

For the �rst 7 links, the moments increase monotonically,
but then things break down. The mean queue delay for the
8th link is less than the mean for the 7th link, and the 10th
is less than the 9th. There are several possible explanations:

� The estimated moments are not the true moments of
the underlying distributions. Estimating the moments
of distributions with long tails is notoriously di�cult;
a few outlying values can have a large inuence on the



Mean Lognormal mean Median
link early late (% di�) early late (% di�) early late (% di�)
1 0.196 0.199 (+1.5) 0.107 0.114 (+6.7) 0.083 0.091 (+9.2)
2 0.293 0.275 (-6.2) 0.181 0.175 (-3.7) 0.141 0.141 (-0.5)
3 0.346 0.428 (+23.7) 0.241 0.289 (+19.8) 0.184 0.200 (+8.8)
4 0.566 0.502 (-11.4) 0.433 0.384 (-11.4) 0.278 0.245 (-11.8)
5 0.748 0.799 (+6.8) 0.634 0.668 (+5.3) 0.330 0.326 (-1.1)
6 1.13 0.732 (-35.1) 1.03 0.587 (-42.9) 0.434 0.324 (-25.4)
7 15.8 7.52 (-52.3) 18.1 3.41 (-81.1) 0.890 0.576 (-35.2)
8 7.51 9.85 (+31.1) 3.26 5.24 (+60.8) 0.713 0.759 (+6.4)
9 37.1 23.5 (-36.6) 64.6 35.0 (-45.8) 21.9 8.47 (-61.2)
10 10.7 5.84 (-45.2) 10.5 4.41 (-58.1) 1.52 0.905 (-40.3)

Table 9: Estimated moments of the queue delays for the MINT dataset.

calculated estimates.

� The distributions of queue delays are not stationary.
Tra�c conditions may have changed between the mea-
surement of the (n�1)th and the nth links. pathchar
collects all the measurements from each link before
moving on to the next, which means that there are
signi�cant delays (15{45 minutes for this dataset) be-
tween each set of measurements. It is possible for traf-
�c conditions to change during this interval.

Both of these explanations turn out to be true. The next
two sections discuss them in more detail.

7.1 Moment estimation

The queue delay distributions can be modeled reasonably
well by the lognormal distribution [2]. Figure 6 shows �ve
representative links from the MINT dataset. In each case, it
is clear that the observed distribution is not strictly lognor-
mal; nevertheless, the general shape of these curves indicates
that the lognormal model is a reasonable choice.

In an empirical study of wide-area TCP connections,
Paxson found a variety of other characteristics that �t the
lognormal model [3]. We do not know whether there is an
underlying mechanism that relates these observations, or
whether they only reect the versatility of the lognormal
model.

Using the lognormal model to estimate the moments of
the distributions yields very di�erent results, especially for
the second moment. A likely explanation is that the con-
ventional estimates are more sensitive to outliers; a small
number of large queue delays (� 300 ms) can raise the mean
signi�cantly and have a huge e�ect on the second moment.
Because the lognormal model is less sensitive to outliers, it
does a better job of describing these distributions.

Nevertheless, the alternate moments have the same prob-
lem as the conventional estimates: the moments sometimes
decrease from link to link in a way that is impossible if the
distribution of queue delays is stationary. We conclude that
the distributions are, in fact, changing while pathchar is
running.

7.2 Non-stationarity

To get an idea of how the distribution of queue delays varies,
we divided the MINT dataset into two subsets, containing
the �rst 18000 samples from each link and the second 18000.

The entire dataset took over 5 hours to collect, so the
elapsed time between each early subset and the correspond-
ing late subset is on the order of tens of minutes. Table 9
shows the summary statistics of the two subsets, including
the mean, the �rst moment of the lognormal model, and the
median.

For many of the links, the parameters of the distribution
change by more than 30%, which implies that recent history
is not a very good predictor of even the near future. In
the longer term the predictions are likely to be worse. As a
result, it may not be worthwhile for pathchar to characterize
the distribution of queue times at all.

8 Conclusions

Based on our evaluation of the alpha version of pathchar
we have found:

� Estimating link latencies is relatively easy, since la-
tencies in wide-area networks are large compared to
pathchar's measurement errors.

� Estimating bandwidths is harder, because the di�er-
ence in round-trip time between the largest packet and
the smallest is small compared to the measurement er-
rors. The higher the bandwidth, the more di�cult it
is to estimate.

� The key to getting a good bandwidth estimate is to
send enough probes that one of them traverses the en-
tire path without incurring any queue delays. As the
length of the path increases, the number of probes re-
quired increases quickly.

� A single busy link, by imposing queue delays on the
majority of probes, makes it di�cult to resolve the
characteristics of links on the other side. On the other
hand, slow links are not necessarily a barrier to ac-
curate measurement, as long as their performance is
consistent.

� pathchar's attempt to characterize the distribution of
queue times for individual links may be in vain, since
network tra�c conditions change signi�cantly while
pathchar is running.

Of the new techniques we tested, only adaptive data col-
lection seems to work well: it greatly reduces the amount
of data required, without a�ecting the accuracy of the es-
timated characteristics. None of the techniques we tried
signi�cantly improved pathchar's accuracy.



Our experiments have uncovered a few anomalies.

� The measured bandwidth of T1 links is consistently
within a few percent of 1.43 Mb/s, when the nominal
bandwidth is 1.536 Mb/s.

� The measured bandwidth of the DS3 is consistently too
low, with a median value close to half of the nominal
bandwidth.

It is not easy to explain these results, and we cannot at-
tribute them to noise. In order for a fast link to masquerade
as a slow link, it has to impose delays that are proportional
to the packet size. Random noise would not yield estimates
that are always too low, or as consistent as the T1 measure-
ments.
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