graphicHomeAdvance ProgramAward Anniversary EventCall for PapersConference CommitteeLocal InformationPaper SubmissionProgram committeeRegistrationStudent Travel AwardsTutorialgraphic Sigcomm logoSigcomm'99

An Analysis of BGP Convergence Properties

Timothy G. Griffin and Gordon Wilfong
Bell Laboratories, Lucent Technologies

The Border Gateway Protocol (BGP) is the de facto interdomain routing protocol used to exchange reachability information between Autonomous Systems in the global Internet. BGP is a path-vector protocol that allows each Autonomous System to override distance-based metrics with policy-based metrics when choosing best routes. Varadhan et al. [18] have shown that it is possible for a group of Autonomous Systems to independently define BGP policies that together lead to BGP protocol oscillations that never converge on a stable routing. One approach to addressing this problem is based on static analysis of routing policies to determine if they are safe. We explore the worst-case complexity for convergence-oriented static analysis of BGP routing policies. We present an abstract model of BGP and use it to define several global sanity conditions on routing policies that are related to BGP convergence/divergence. For each condition we show that the complexity of statically checking it is either NP-complete or NP-hard.

Papers are provided as a service to all by the members of ACM SIGCOMM. Please check this box if you are a SIGCOMM member so we can get an idea of how the service is used.

This paper is available in and .

For information about joining SIGCOMM, follow this link


The referenced paper appears in Computer Communication Review, a publication of ACM SIGCOMM, volume 29, number 4, October 1999.

ACM Copyright Notice: Copyright (c) 1999 by Association for Computing Machinery, Inc. (ACM) Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage and that the copies bear this notice and full citation on the first page. Copyright for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permission to publish from: Publications Dept. ACM, Inc. Fax +1 212 869 0481 or email at