
A Scalable Content-Addressable Network

Sylvia Ratnasamy1;2 Paul Francis2 Mark Handley2 Richard Karp1;2

Scott Shenker2

1Dept. of Electrical Eng. & Comp. Sci. 2ACIRI
University of California, Berkeley AT&T Center for Internet Research at ICSI
Berkeley, CA, USA Berkeley, CA, USA

ABSTRACT
Hash tables – which map “keys” onto “values” – are an essential building
block in modern software systems. We believe a similar functionality would
be equally valuable to large distributed systems. In this paper, we intro-
duce the concept of a Content-Addressable Network (CAN) as a distributed
infrastructure that provides hash table-like functionality on Internet-like
scales. The CAN is scalable, fault-tolerant and completely self-organizing,
and we demonstrate its scalability, robustness and low-latency properties
through simulation.

1. INTRODUCTION
A hash table is a data structure that efficiently maps “keys” onto

“values” and serves as a core building block in the implementa-
tion of software systems. We conjecture that many large-scale dis-
tributed systems could likewise benefit from hash table functional-
ity. We use the term Content-Addressable Network (CAN) to de-
scribe such a distributed, Internet-scale, hash table.

Perhaps the best example of current Internet systems that could
potentially be improved by a CAN are the recently introduced peer-
to-peer file sharing systems such as Napster [14] and Gnutella [6].
In these systems, files are stored at the end user machines (peers)
rather than at a central server and, as opposed to the traditional
client-server model, files are transferred directly between peers.
These peer-to-peer systems have become quite popular. Napster
was introduced in mid-1999 and, as of December 2000, the soft-
ware has been down-loaded by 50 million users, making it the
fastest growing application on the Web. New file sharing systems
such as Scour, FreeNet, Ohaha, Jungle Monkey, and MojoNation
have all been introduced within the last year.

While there remains some (quite justified) skepticism about the
business potential of these file sharing systems, we believe their
rapid and wide-spread deployment suggests that there are impor-
tant advantages to peer-to-peer systems. Peer-to-peer designs har-
ness huge amounts of resources - the content advertised through
Napster has been observed to exceed 7 TB of storage on a single
day,1 without requiring centralized planning or huge investments in

1Private communication with Yin Zhang and Vern Paxson

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA..
Copyright 2001 ACM 1-58113-411-8/01/0008 ...$5.00.

hardware, bandwidth, or rack space. As such, peer-to-peer file shar-
ing may lead to new content distribution models for applications
such as software distribution, file sharing, and static web content
delivery.

Unfortunately, most of the current peer-to-peer designs are not
scalable. For example, in Napster a central server stores the in-
dex of all the files available within the Napster user community.
To retrieve a file, a user queries this central server using the de-
sired file’s well known name and obtains the IP address of a user
machine storing the requested file. The file is then down-loaded di-
rectly from this user machine. Thus, although Napster uses a peer-
to-peer communication model for the actual file transfer, the pro-
cess of locating a file is still very much centralized. This makes it
both expensive (to scale the central directory) and vulnerable (since
there is a single point of failure). Gnutella goes a step further and
de-centralizes the file location process as well. Users in a Gnutella
network self-organize into an application-level mesh on which re-
quests for a file are flooded with a certain scope. Flooding on every
request is clearly not scalable [7] and, because the flooding has to
be curtailed at some point, may fail to find content that is actu-
ally in the system. We started our investigation with the question:
could one make a scalable peer-to-peer file distribution system? We
soon recognized that central to any peer-to-peer system is the in-
dexing scheme used to map file names (whether well known or dis-
covered through some external mechanism) to their location in the
system. That is, the peer-to-peer file transfer process is inherently
scalable, but the hard part is finding the peer from whom to retrieve
the file. Thus, a scalable peer-to-peer system requires, at the very
least, a scalable indexing mechanism. We call such indexing sys-
tems Content-Addressable Networks and, in this paper, propose a
particular CAN design.

However, the applicability of CANs is not limited to peer-to-
peer systems. CANs could also be used in large scale storage
management systems such as OceanStore [10], Farsite [1], and
Publius [13]. These systems all require efficient insertion and re-
trieval of content in a large distributed storage infrastructure; a scal-
able indexing mechanism is an essential component of such an in-
frastructure. In fact, as we discuss in Section 5, the OceanStore
system already includes a CAN in its core design (although the
OceanStore CAN, based on Plaxton’s algorithm[15], is somewhat
different from what we propose here).

Another potential application for CANs is in the construction of
wide-area name resolution services that (unlike the DNS) decou-
ple the naming scheme from the name resolution process thereby
enabling arbitrary, location-independent naming schemes.

Our interest in CANs is based on the belief that a hash table-
like abstraction would give Internet system developers a powerful
design tool that could enable new applications and communication

161

models. However, in this paper our focus is not on the use of CANs
but on their design. In [17], we describe, in some detail, one possi-
ble application, which we call a “grass-roots” content distribution
system, that leverages our CAN work.

As we have said, CANs resemble a hash table; the basic oper-
ations performed on a CAN are the insertion, lookup and deletion
of (key,value) pairs. In our design, the CAN is composed of many
individual nodes. Each CAN node stores a chunk (called a zone) of
the entire hash table. In addition, a node holds information about
a small number of “adjacent” zones in the table. Requests (insert,
lookup, or delete) for a particular key are routed by intermediate
CAN nodes towards the CAN node whose zone contains that key.
Our CAN design is completely distributed (it requires no form of
centralized control, coordination or configuration), scalable (nodes
maintain only a small amount of control state that is independent
of the number of nodes in the system), and fault-tolerant (nodes
can route around failures). Unlike systems such as the DNS or IP
routing, our design does not impose any form of rigid hierarchical
naming structure to achieve scalability. Finally, our design can be
implemented entirely at the application level.

In what follows, we describe our basic design for a CAN in Sec-
tion 2, describe and evaluate this design in more detail in Section 3
and discuss our results in Section 4. We discuss related work in
Section 5 and directions for future work in Section 6.

2. DESIGN
First we describe our Content Addressable Network in its most

basic form; in Section 3 we present additional design features that
greatly improve performance and robustness.

Our design centers around a virtual d-dimensional Cartesian co-
ordinate space on a d-torus.2 This coordinate space is completely
logical and bears no relation to any physical coordinate system. At
any point in time, the entire coordinate space is dynamically par-
titioned among all the nodes in the system such that every node
“owns” its individual, distinct zone within the overall space. For
example, Figure 1 shows a 2-dimensional [0; 1]� [0; 1] coordinate
space partitioned between 5 CAN nodes.

This virtual coordinate space is used to store (key,value) pairs
as follows: to store a pair (K1,V1), key K1 is deterministically
mapped onto a point P in the coordinate space using a uniform
hash function. The corresponding (key,value) pair is then stored
at the node that owns the zone within which the point P lies. To
retrieve an entry corresponding to key K1, any node can apply the
same deterministic hash function to map K1 onto point P and then
retrieve the corresponding value from the point P . If the point P
is not owned by the requesting node or its immediate neighbors,
the request must be routed through the CAN infrastructure until it
reaches the node in whose zone P lies. Efficient routing is therefore
a critical aspect of a CAN.

Nodes in the CAN self-organize into an overlay network that rep-
resents this virtual coordinate space. A node learns and maintains
the IP addresses of those nodes that hold coordinate zones adjoin-
ing its own zone. This set of immediate neighbors in the coordinate
space serves as a coordinate routing table that enables routing be-
tween arbitrary points in this space.

We will describe the three most basic pieces of our design: CAN
routing, construction of the CAN coordinate overlay, and mainte-
nance of the CAN overlay.

2.1 Routing in a CAN
2For simplicity, the illustrations in this paper do not show a torus,
so the reader must remember that the coordinate space wraps.

Intuitively, routing in a Content Addressable Network works by
following the straight line path through the Cartesian space from
source to destination coordinates.

A CAN node maintains a coordinate routing table that holds the
IP address and virtual coordinate zone of each of its immediate
neighbors in the coordinate space. In a d-dimensional coordinate
space, two nodes are neighbors if their coordinate spans overlap
along d�1 dimensions and abut along one dimension. For example,
in Figure 2, node 5 is a neighbor of node 1 because its coordinate
zone overlaps with 1’s along the Y axis and abuts along the X-axis.
On the other hand, node 6 is not a neighbor of 1 because their co-
ordinate zones abut along both the X and Y axes. This purely local
neighbor state is sufficient to route between two arbitrary points in
the space: A CAN message includes the destination coordinates.
Using its neighbor coordinate set, a node routes a message towards
its destination by simple greedy forwarding to the neighbor with
coordinates closest to the destination coordinates. Figure 2 shows
a sample routing path.

For a d dimensional space partitioned into n equal zones, the av-
erage routing path length is (d=4)(n1=d) hops and individual nodes
maintain 2d neighbors3. These scaling results mean that for a d-
dimensional space, we can grow the number of nodes (and hence
zones) without increasing per node state while the average path
length grows as O(n1=d).

Note that many different paths exist between two points in the
space and so, even if one or more of a node’s neighbors were to
crash, a node can automatically route along the next best available
path.

If however, a node loses all its neighbors in a certain direction,
and the repair mechanisms described in Section 2.3 have not yet
rebuilt the void in the coordinate space, then greedy forwarding
may temporarily fail. In this case, a node may use an expanding
ring search (using stateless, controlled flooding over the unicast
CAN overlay mesh) to locate a node that is closer to the destination
than itself. The message is then forwarded to this closer node, from
which greedy forwarding is resumed.

2.2 CAN construction
As described above, the entire CAN space is divided amongst

the nodes currently in the system. To allow the CAN to grow in-
crementally, a new node that joins the system must be allocated its
own portion of the coordinate space. This is done by an existing
node splitting its allocated zone in half, retaining half and handing
the other half to the new node.

The process takes three steps:

1. First the new node must find a node already in the CAN.

2. Next, using the CAN routing mechanisms, it must find a node
whose zone will be split.

3. Finally, the neighbors of the split zone must be notified so
that routing can include the new node.

Bootstrap
A new CAN node first discovers the IP address of any node cur-
rently in the system. The functioning of a CAN does not depend
3Recently proposed routing algorithms for location services [15,
20] route in O(log n) hops with each node maintaining O(log n)
neighbors. Notice that were we to select the number of dimensions
d=(log

2
n)=2, we could achieve the same scaling properties.We

choose to hold d fixed independent of n, since we envision apply-
ing CANs to very large systems with frequent topology changes.
In such systems, it is important to keep the number of neighbors
independent of the system size

162

node B’s virtual coordinate zone

(0.5-1.0,0.0-0.5)(0-0.5,0-0.5)

(0-0.5,0.5-1.0)
(0.75-1.0,0.5-1.0)

1.0

0.0 1.0
0.0

A B

D E
C

(0.5-0.75,0.5-1.0)

Figure 1: Example 2-d space with 5 nodes

7’s coordinate neighbor set = { }

1 5

2

3

6

4

(x,y)

sample routing
path from node 1
to point (x,y)

1’s coordinate neighbor set = {2,3,4,5}

Figure 2: Example 2-d space before node
7 joins

7 5

2

3

4

6

1’s coordinate neighbor set = {2,3,4,7}
7’s coordinate neighbor set = {1,2,4,5}

1

Figure 3: Example 2-d space after node
7 joins

on the details of how this is done, but we use the same bootstrap
mechanism as YOID [4].

As in [4] we assume that a CAN has an associated DNS domain
name, and that this resolves to the IP address of one or more CAN
bootstrap nodes. A bootstrap node maintains a partial list of CAN
nodes it believes are currently in the system. Simple techniques to
keep this list reasonably current are described in [4].

To join a CAN, a new node looks up the CAN domain name in
DNS to retrieve a bootstrap node’s IP address. The bootstrap node
then supplies the IP addresses of several randomly chosen nodes
currently in the system.

Finding a Zone
The new node then randomly chooses a point P in the space and
sends a JOIN request destined for point P . This message is sent
into the CAN via any existing CAN node. Each CAN node then
uses the CAN routing mechanism to forward the message, until it
reaches the node in whose zone P lies.

This current occupant node then splits its zone in half and assigns
one half to the new node. The split is done by assuming a certain
ordering of the dimensions in deciding along which dimension a
zone is to be split, so that zones can be re-merged when nodes leave.
For a 2-d space a zone would first be split along the X dimension,
then the Y and so on. The (key, value) pairs from the half zone to
be handed over are also transfered to the new node.

Joining the Routing
Having obtained its zone, the new node learns the IP addresses of
its coordinate neighbor set from the previous occupant. This set is
a subset of the previous occupant’s neighbors, plus that occupant
itself. Similarly, the previous occupant updates its neighbor set to
eliminate those nodes that are no longer neighbors. Finally, both
the new and old nodes’ neighbors must be informed of this realloca-
tion of space. Every node in the system sends an immediate update
message, followed by periodic refreshes, with its currently assigned
zone to all its neighbors. These soft-state style updates ensure that
all of their neighbors will quickly learn about the change and will
update their own neighbor sets accordingly. Figures 2 and 3 show
an example of a new node (node 7) joining a 2-dimensional CAN.

The addition of a new node affects only a small number of ex-
isting nodes in a very small locality of the coordinate space. The
number of neighbors a node maintains depends only on the dimen-
sionality of the coordinate space and is independent of the total

number of nodes in the system. Thus, node insertion affects only
O(number of dimensions) existing nodes, which is important for
CANs with huge numbers of nodes.

2.3 Node departure, recovery and CAN main-
tenance

When nodes leave a CAN, we need to ensure that the zones they
occupied are taken over by the remaining nodes. The normal pro-
cedure for doing this is for a node to explicitly hand over its zone
and the associated (key,value) database to one of its neighbors. If
the zone of one of the neighbors can be merged with the departing
node’s zone to produce a valid single zone, then this is done. If
not, then the zone is handed to the neighbor whose current zone is
smallest, and that node will then temporarily handle both zones.

The CAN also needs to be robust to node or network failures,
where one or more nodes simply become unreachable. This is han-
dled through an immediate takeover algorithm that ensures one of
the failed node’s neighbors takes over the zone. However in this
case the (key,value) pairs held by the departing node are lost until
the state is refreshed by the holders of the data4.

Under normal conditions a node sends periodic update messages
to each of its neighbors giving its zone coordinates and a list of its
neighbors and their zone coordinates. The prolonged absence of an
update message from a neighbor signals its failure.

Once a node has decided that its neighbor has died it initiates
the takeover mechanism and starts a takeover timer running. Each
neighbor of the failed node will do this independently, with the
timer initialized in proportion to the volume of the node’s own
zone. When the timer expires, a node sends a TAKEOVER message
conveying its own zone volume to all of the failed node’s neighbors.

On receipt of a TAKEOVER message, a node cancels its own
timer if the zone volume in the message is smaller that its own zone
volume, or it replies with its own TAKEOVER message. In this way,
a neighboring node is efficiently chosen that is still alive and has a
small zone volume5.

Under certain failure scenarios involving the simultaneous fail-
ure of multiple adjacent nodes, it is possible that a node detects

4To prevent stale entries as well as to refresh lost entries, nodes
that insert (key,value) pairs into the CAN periodically refresh these
entries
5Additional metrics such as load or the quality of connectivity can
also be taken into account, but in the interests of simplicity we
won’t discuss these further here.

163

a failure, but less than half of the failed node’s neighbors are still
reachable. If the node takes over another zone under these circum-
stances, it is possible for the CAN state to become inconsistent. In
such cases, prior to triggering the repair mechanism, the node per-
forms an expanding ring search for any nodes residing beyond the
failure region and hence it eventually rebuilds sufficient neighbor
state to initiate a takeover safely.

Finally, both the normal leaving procedure and the immediate
takeover algorithm can result in a node holding more than one
zone. To prevent repeated further fragmentation of the space, a
background zone-reassignment algorithm, which we describe in
Appendix A, runs to ensure that the CAN tends back towards one
zone per node.

3. DESIGN IMPROVEMENTS
Our basic CAN algorithm as described in the previous section

provides a balance between low per-node state (O(d) for a
d-dimensional space) and short path lengths with O(dn1=d) hops
for d dimensions and n nodes. This bound applies to the number
of hops in the CAN path. These are application level hops, not IP-
level hops, and the latency of each hop might be substantial; recall
that nodes that are adjacent in the CAN might be many miles and
many IP hops away from each other. The average total latency of
a lookup is the average number of CAN hops times the average la-
tency of each CAN hop. We would like to achieve a lookup latency
that is comparable within a small factor to the underlying IP path
latencies between the requester and the CAN node holding the key.

In this section, we describe a number of design techniques whose
primary goal is to reduce the latency of CAN routing. Not unin-
tentionally, many of these techniques offer the additional advan-
tage of improved CAN robustness both in terms of routing and data
availability. In a nutshell, our strategy in attempting to reduce path
latency is to reduce either the path length or the per-CAN-hop la-
tency. A final improvement we make to our basic design is to add
simple load balancing mechanisms (described in Sections 3.7 and
3.8).

First, we describe and evaluate each design feature individually
and then, in Section 4, discuss how together they affect the overall
performance. These added features yield significant improvements
but come at the cost of increased per-node state (although per-node
state still remains independent of the number of nodes in the sys-
tem) and somewhat increased complexity. The extent to which the
following techniques are applied (if at all) involves a trade-off be-
tween improved routing performance and system robustness on the
one hand and increased per-node state and system complexity on
the other. Until we have greater deployment experience, and know
the application requirements better, we are not prepared to decide
on these tradeoffs.

We simulated our CAN design on Transit-Stub (TS) topologies
using the GT-ITM topology generator [22]. TS topologies model
networks using a 2-level hierarchy of routing domains with transit
domains that interconnect lower level stub domains.

3.1 Multi-dimensioned coordinate spaces
The first observation is that our design does not restrict the di-

mensionality of the coordinate space. Increasing the dimensions
of the CAN coordinate space reduces the routing path length, and
hence the path latency, for a small increase in the size of the coor-
dinate routing table.

Figure 4 measures this effect of increasing dimensions on rout-
ing path length. We plot the path length for increasing numbers of
CAN nodes for coordinate spaces with different dimensions. For a
system with n nodes and d dimensions, we see that the path length

scales as O(d(n1=d)) in keeping with the analytical results for per-
fectly partitioned coordinate spaces.

Because increasing the number of dimensions implies that a node
has more neighbors, the routing fault tolerance also improves as a
node now has more potential next hop nodes along which messages
can be routed in the event that one or more neighboring nodes crash.

3.2 Realities: multiple coordinate spaces
The second observation is that we can maintain multiple, inde-

pendent coordinate spaces with each node in the system being as-
signed a different zone in each coordinate space. We call each such
coordinate space a “reality”. Hence, for a CAN with r realities, a
single node is assigned r coordinate zones, one on every reality and
holds r independent neighbor sets.

The contents of the hash table are replicated on every reality.
This replication improves data availability. For example, say a
pointer to a particular file is to be stored at the coordinate loca-
tion (x,y,z). With four independent realities, this pointer would
be stored at four different nodes corresponding to the coordinates
(x,y,z) on each reality and hence it is unavailable only when all
four nodes are unavailable. Multiple realities also improve rout-
ing fault tolerance, because in the case of a routing breakdown on
one reality, messages can continue to be routed using the remaining
realities.

Further, because the contents of the hash table are replicated on
every reality, routing to location (x,y,z) translates to reaching (x,y,z)
on any reality. A given node owns one zone per reality each of
which is at a distinct, and possibly distant, location in the coordi-
nate space. Thus, an individual node has the ability to reach distant
portions of the coordinate space in a single hop, thereby greatly re-
ducing the average path length. To forward a message, a node now
checks all its neighbors on each reality and forwards the message to
that neighbor with coordinates closest to the destination. Figure 5
plots the path length for increasing numbers of nodes for different
numbers of realities. From the graph, we see that realities greatly
reduce path length. Thus, using multiple realities reduces the path
length and hence the overall CAN path latency.

Multiple dimensions versus multiple realities
Increasing either the number of dimensions or realities results in
shorter path lengths, but higher per-node neighbor state and main-
tenance traffic. Here we compare the relative improvements caused
by each of these features.

Figure 6 plots the path length versus the average number of neigh-
bors maintained per node for increasing dimensions and realities.
We see that for the same number of neighbors, increasing the di-
mensions of the space yields shorter path lengths than increasing
the number of realities. One should not, however, conclude from
these tests that multiple dimensions are more valuable than multi-
ple realities because multiple realities offer other benefits such as
improved data availability and fault-tolerance. Rather, the point to
take away is that if one were willing to incur an increase in the av-
erage per-node neighbor state for the primary purpose of improving
routing efficiency, then the right way to do so would be to increase
the dimensionality d of the coordinate space rather than the number
of realities r.

3.3 Better CAN routing metrics
The routing metric, as described in Section 2.1, is the progress

in terms of Cartesian distance made towards the destination. One
can improve this metric to better reflect the underlying IP topology
by having each node measure the network-level round-trip-time
RTT to each of its neighbors. For a given destination, a message

164

4

8

16

32

64

128

256

256 1024 4096 16K 64K 256K 1M

N
um

be
r

of
 h

op
s

Number of nodes

#realities=1

2 dimensions
3 dimensions
4 dimensions
5 dimensions

Figure 4: Effect of dimensions on path
length

2

4

8

16

32

64

128

256

256 1024 4096 16K 64K 256K 1M

N
um

be
r

of
 h

op
s

Number of nodes

#dimensions=2

1 reality
2 realities
3 realities
4 realities

Figure 5: Effect of multiple realities on
path length

10

15

20

25

10 15 20 25 30

N
um

be
r o

f h
op

s

Number of neighbors

Number of nodes = 131,072

d=2,r=2

d=3

d=4

d=5 d=6 d=7

r=3

r=4

r=5
r=6

r=7

increasing dimensions, #realities=2
increasing realities, #dimensions=2

Figure 6: Path length with increasing
neighbor state

is forwarded to the neighbor with the maximum ratio of progress
to RTT. This favors lower latency paths, and helps the application
level CAN routing avoid unnecessarily long hops.

Unlike increasing the number of dimensions or realities, RTT-
weighted routing aims at reducing the latency of individual hops
along the path and not at reducing the path length. Thus, our metric
for evaluating the efficacy of RTT-weighted routing is the per-hop
latency, obtained by dividing the overall path latency by the path
length.

To quantify the effect of this routing metric, we used Transit-
Stub topologies with link latencies of 100ms for intra-transit do-
main links, 10ms for stub-transit links and 1ms for intra-stub do-
main links. With our simulated topology, the average end-to-end la-
tency of the underlying IP network path between randomly selected
source-destination nodes is approximately 115ms. Table 1 com-
pares the average per-hop latency with and without RTT weighting.
These latencies were averaged over test runs with n, the number of
nodes in the CAN, ranging from 28 to 218.

As can be seen, while the per-hop latency without RTT-weighted
routing matches the underlying average IP network latency, RTT-
weighted routing lowers the per-hop latency by between 24% and
40% depending on the number of dimensions. Higher dimensions
give more next-hop forwarding choices and hence even greater im-
provements.

3.4 Overloading coordinate zones
So far, our design assumes that a zone is, at any point in time,

assigned to a single node in the system. We now modify this to
allow multiple nodes to share the same zone. Nodes that share
the same zone are termed peers. We define a system parameter
MAXPEERS, which is the maximum number of allowable peers per
zone (we imagine that this value would typically be rather low, 3 or
4 for example).

With zone overloading, a node maintains a list of its peers in ad-
dition to its neighbor list. While a node must know all the peers in
its own zone, it need not track all the peers in its neighboring zones.
Rather, a node selects one neighbor from amongst the peers in each
of its neighboring zones. Thus, zone overloading does not increase
the amount of neighbor information an individual node must hold,
but does require it to hold additional state for up to MAXPEERS
peer nodes.

Overloading a zone is achieved as follows: When a new node A
joins the system, it discovers, as before, an existent node B whose
zone it is meant to occupy. Rather than directly splitting its zone

as described earlier, node B first checks whether it has fewer than
MAXPEERS peer nodes. If so, the new node A merely joins B’s
zone without any space splitting. Node A obtains both its peer
list and its list of coordinate neighbors from B. Periodic soft-state
updates from A serve to inform A’s peers and neighbors about its
entry into the system.

If the zone is full (already has MAXPEERS nodes), then the zone
is split into half as before. NodeB informs each of the nodes on it’s
peer-list that the space is to be split. Using a deterministic rule (for
example the ordering of IP addresses), the nodes on the peer list
together with the new node A divide themselves equally between
the two halves of the now split zone. As before, A obtains its initial
list of peers and neighbors from B.

Periodically, a node sends its coordinate neighbor a request for
its list of peers, then measures the RTT to all the nodes in that
neighboring zone and retains the node with the lowest RTT as its
neighbor in that zone. Thus a node will, over time, measure the
round-trip-time to all the nodes in each neighboring zone and retain
the closest (i.e. lowest latency) nodes in its coordinate neighbor set.
After its initial bootstrap into the system, a node can perform this
RTT measurement operation at very infrequent intervals so as to
not unnecessarily generate large amounts of control traffic.

The contents of the hash table itself may be either divided or
replicated across the nodes in a zone. Replication provides higher
availability but increases the size of the data stored at every node by
a factor of MAXPEERS (because the overall space is now partitioned
into fewer, and hence larger, zones) and data consistency must be
maintained across peer nodes. On the other hand, partitioning data
among a set of peer nodes does not require consistency mechanisms
or increased data storage but does not improve availability either.

Overloading zones offers many advantages:

� reduced path length (number of hops), and hence reduced
path latency, because placing multiple nodes per zone has the
same effect as reducing the number of nodes in the system.

� reduced per-hop latency because a node now has multiple
choices in its selection of neighboring nodes and can select
neighbors that are closer in terms of latency. Table 2 lists
the average per-hop latency for increasing MAXPEERS for
system sizes ranging from 28 to 218 nodes with the same
Transit-Stub simulation topologies as in Section 3.3. We see
that placing 4 nodes per zone can reduce the per-hop latency
by about 45%.

� improved fault tolerance because a zone is vacant only when

165

Number of Non-RTT-weighted RTT-weighted
dimensions routing (ms) routing (ms)

2 116.8 88.3
3 116.7 76.1
4 115.8 71.2
5 115.4 70.9

Table 1: Per-hop latency using RTT-weighted routing

Number of nodes per zone per-hop latency (ms)

1 116.4
2 92.8
3 72.9
4 64.4

Table 2: Per-hop latencies using multiple nodes per zone

all the nodes in a zone crash simultaneously (in which case
the repair process of Section 2.3 is still required).

On the negative side, overloading zones adds somewhat to sys-
tem complexity because nodes must additionally track a set of peers.

3.5 Multiple hash functions
For improved data availability, one could use k different hash

functions to map a single key onto k points in the coordinate space
and accordingly replicate a single (key,value) pair at k distinct nodes
in the system. A (key,value) pair is then unavailable only when all
k replicas are simultaneously unavailable. In addition, queries for
a particular hash table entry could be sent to all k nodes in paral-
lel thereby reducing the average query latency. Figure 7 plots this
query latency, i.e. the time to fetch a (key,value) pair, for increasing
number of nodes for different numbers of hash functions.

Of course, these advantages come at the cost of increasing the
size of the (key,value) database and query traffic (in the case of
parallel queries) by a factor of k.

Instead of querying all k nodes, a node might instead choose to
retrieve an entry from that node which is closest to it in the coordi-
nate space.

3.6 Topologically-sensitive construction of the
CAN overlay network

The CAN construction mechanism described in Section 2.2 allo-
cates nodes to zones at random, and so a node’s neighbors on the
CAN need not be topologically nearby on the underlying IP net-
work. This can lead to seemingly strange routing scenarios where,
for example, a CAN node in Berkeley has its neighbor nodes in Eu-
rope and hence its path to a node in nearby Stanford may traverse
distant nodes in Europe. While the design mechanisms described
in the previous sections try to improve the selection of paths on an
existing overlay network they do not try to improve the overlay net-
work structure itself. In this section, we present some initial results
on our current work on trying to construct CAN topologies that are
congruent with the underlying IP topology.

Our initial scheme assumes the existence of a well known set
of machines (for example, the DNS root name servers) that act as
landmarks on the Internet. We achieve a form of “distributed bin-
ning” of CAN nodes based on their relative distances from this set
of landmarks. Every CAN node measures its round-trip-time to
each of these landmarks and orders the landmarks in order of in-
creasing RTT. Thus, based on its delay measurements to the differ-
ent landmarks, every CAN node has an associated ordering. With
m landmarks, m! such orderings are possible. Accordingly we
partition the coordinate space into m! equal sized portions, each
corresponding to a single ordering. Our current (somewhat naive)
scheme to partition the space intom! portions works as follows: as-
suming a fixed cyclical ordering of the dimensions (e.g. xyzxyzx...),
we first divide the space, along the first dimension, into m portions,
each portion is then sub-divided along the second dimension into
m � 1 portions each of which is further divided into m � 2 por-

tions and so on. Previously, a new node joined the CAN at a ran-
dom point in the entire coordinate space. Now, a new node joins
the CAN at a random point in that portion of the coordinate space
associated with its landmark ordering.

The rationale behind this scheme is that topologically close nodes
are likely to have the same ordering and consequently, will reside
in the same portion of the coordinate space and hence neighbors
in the coordinate space are likely to be topologically close on the
Internet.

The metric we use to evaluate the above binning scheme is the
ratio of the latency on the CAN network to the average latency on
the IP network. We call this the latency stretch. Figure 8 compares
the stretch on CANs constructed with and without the above land-
mark ordering scheme. We use the same Transit-Stub topologies
as before (Section 3.3) and 4 landmarks placed at random with the
only restriction that they must be at least 5 hops away from each
other. As can be seen, landmark ordering greatly improves the path
latency.

A consequence of the above binning strategy is that the coordi-
nate space is no longer uniformly populated. Because some order-
ings (bins) are more likely to occur than others their corresponding
portions of the coordinate space are also more densely occupied
than others leading to a slightly uneven distribution of load amongst
the nodes. The use of background load balancing techniques (as
described in Appendix A) where an overloaded node hands off a
portion of its space to a more lightly loaded one could be used to
alleviate this problem.

These results seem encouraging and we are continuing to study
the effect of topology, link delay distribution, number of landmarks
and other factors on the above scheme. Landmark ordering is work
in progress. We do not discuss or make use of it further in this
paper.

3.7 More Uniform Partitioning
When a new node joins, a JOIN message is sent to the owner of

a random point in the space. This existing node knows not only its
own zone coordinates, but also those of its neighbors. Therefore,
instead of directly splitting its own zone, the existing occupant node
first compares the volume of its zone with those of its immediate
neighbors in the coordinate space. The zone that is split to accom-
modate the new node is then the one with the largest volume.

This volume balancing check thus tries to achieve a more uni-
form partitioning of the space over all the nodes and can be used
with or without the landmark ordering scheme from Section 3.6.
Since (key,value) pairs are spread across the coordinate space using
a uniform hash function, the volume of a node’s zone is indicative
of the size of the (key,value) database the node will have to store,
and hence indicative of the load placed on the node. A uniform par-
titioning of the space is thus desirable to achieve load balancing.

Note that this is not sufficient for true load balancing because
some (key,value) pairs will be more popular than others thus putting
higher load on the nodes hosting those pairs. This is similar to the

166

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

256 1024 4096 16K 64K 256K

U
se

r-
pe

rc
ei

ve
d

Q
ue

ry
 L

at
en

cy
 (

s)

Number of nodes

#dimensions=2, #realities=1

1 hash function
3 hash functions
5 hash functions

Figure 7: Reduction in user-perceived
query latency with the use of multiple
hash functions

0

5

10

15

20

25

256 1024 4096

La
te

nc
y

S
tr

et
ch

Number of nodes

#landmarks=4, #realities=1

2-d, with landmark ordering
2-d, without landmark ordering

4-d, with landmark ordering
4-d, without landmark ordering

Figure 8: Latency savings due to land-
mark ordering used in CAN construction

0

20

40

60

80

100

V/16 V/8 V/4 V/2 V 2V 4V 8V

P
er

ce
nt

ag
e

of
 n

od
es

Volume

without uniform-partitioning feature
with uniform-partitioning feature

Figure 9: Effect of Uniform Partitioning
feature on a CAN with 65,536 nodes, 3
dimensions and 1 reality

“hot spot” problem on the Web. In Section 3.8 we discuss caching
and replication techniques that can be used to ease this hot spot
problem in CANs.

If the total volume of the entire coordinate space were VT and n
the total number of nodes in the system then a perfect partitioning
of the space among the n nodes would assign a zone of volume
VT /n to each node. We use V to denote VT /n. We ran simulations
with 216 nodes both with and without this uniform partitioning fea-
ture. At the end of each run, we compute the volume of the zone
assigned to each node. Figure 9 plots different possible volumes
in terms of V on the X axis and shows the percentage of the total
number of nodes (Y axis) that were assigned zones of a particular
volume. From the plot, we can see that without the uniform parti-
tioning feature a little over 40% of the nodes are assigned to zones
with volume V as compared to almost 90% with this feature and
the largest zone volume drops from 8V to 2V . Not surprisingly,
the partitioning of the space further improves with increasing di-
mensions.

3.8 Caching and Replication techniques for
“hot spot” management

As with files in the Web, certain (key,value) pairs in a CAN are
likely to be far more frequently accessed than others, thus overload-
ing nodes that hold these popular data keys. To make very popular
data keys widely available, we borrow some of the caching and
replication techniques commonly applied to the Web.

� Caching: In addition to its primary data store (i.e. those data
keys that hash into its coordinate zone), a CAN node main-
tains a cache of the data keys it recently accessed. Before
forwarding a request for a data key towards its destination,
a node first checks whether the requested data key is in its
own cache and if so, can itself satisfy the request without
forwarding it any further. Thus, the number of caches from
which a data key can be served grows in direct proportion to
its popularity and the very act of requesting a data key makes
it more widely available.

� Replication: A node that finds it is being overloaded by re-
quests for a particular data key can replicate the data key
at each of its neighboring nodes. Replication is thus an ac-
tive pushing out of popular data keys as opposed to caching,
which is a natural consequence of requesting a data key. A

popular data key is thus eventually replicated within a re-
gion surrounding the original storage node. A node holding
a replica of a requested data key can, with a certain prob-
ability, choose to either satisfy the request or forward it on
its way thereby causing the load to be spread over the entire
region rather than just along the periphery.

As with all such schemes, cached and replicated data keys should
have an associated time-to-live field and be eventually expired from
the cache.

4. DESIGN REVIEW
Sections 2 and 3 described and evaluated individual CAN design

components. The evaluation of our CAN recovery algorithms (us-
ing both large scale and smaller scale ns simulations), are presented
in [18]. Here we briefly recap our design parameters and metrics,
summarize the effect of each parameter on the different metrics and
quantify the performance gains achieved by the cumulative effect
of all the features.

We used the following metrics to evaluate system performance:

� Path length: the number of (application-level) hops required
to route between two points in the coordinate space.

� Neighbor-state: the number of CAN nodes for which an in-
dividual node must retain state.

� Latency: we consider both the end-to-end latency of the to-
tal routing path between two points in the coordinate space
and the per-hop latency, i.e., latency of individual application
level hops obtained by dividing the end-to-end latency by the
path length.

� Volume: the volume of the zone to which a node is assigned,
that is indicative of the request and storage load a node must
handle.

� Routing fault tolerance: the availability of multiple paths
between two points in the CAN.

� Hash table availability: adequate replication of a (key,value)
entry to withstand the loss of one or more replicas.

The key design parameters affecting system performance are:

� dimensionality of the virtual coordinate space: d
� number of realities: r
� number of peer nodes per zone: p

167

Parameter “bare bones” “knobs on full”
CAN CAN

d 2 10
r 1 1
p 0 4
k 1 1

RTT weighted OFF ON
routing metric

Uniform OFF ON
partitioning

Landmark OFF OFF
ordering

Table 4: CAN parameters

Metric “bare bones” CAN “knobs on full CAN”

path length 198.0 5.0
neighbors 4.57 27.1

peers 0 2.95
IP latency 115.9ms 82.4ms

CAN path latency 23,008ms 135.29ms

Table 5: CAN Performance Results

� number of hash functions (i.e. number of points per reality
at which a (key,value) pair is stored): k

� use of the RTT-weighted routing metric
� use of the uniform partitioning feature described in Section 3.7

In some cases, the effect of a design parameter on certain met-
rics can be directly inferred from the algorithm; in all other cases
we resorted to simulation. Table 3 summarizes the relationship be-
tween the different parameters and metrics. A table entry marked
“-” indicates that the given parameter has no significant effect on
that metric, while " and # indicate an increase and decrease respec-
tively in that measure caused by an increase in the corresponding
parameter. The figure numbers included in certain table entries re-
fer to the corresponding simulation results.

To measure the cumulative effect of all the above features, we se-
lected a system size of n=218 nodes and compared two algorithms:

1. a “bare bones” CAN that does not utilize most of our addi-
tional design features

2. a “knobs-on-full” CAN making full use of our added features
(without the landmark ordering feature from Section 3.7)

The topology used for this test is a Transit-Stub topology with
a delay of 100ms on intra-transit links, 10ms on stub-transit links
and 1ms on intra-stub links (i.e. 100ms on links that connect two
transit nodes, 10ms on links that connect a transit node to a stub
node and so forth). Tables 4 and 5 list the values of the parameters
and metrics for each test. 6

We find these results encouraging as they demonstrate that for a
system with over 260,000 nodes we can route with a latency that is
well within a factor of two of the underlying network latency. The
number of neighbors that a node must maintain to achieve this is
approximately 30 (27.1 + 2.95) which is definitely on the high side
but not necessarily unreasonable. The biggest gain comes from
increasing the number of dimensions, which lowers the path length
from 198 to approximately 5 hops. However, we can see that the
latency reduction heuristics play an important role; without latency
heuristics, the end-to-end latency would be close to 5 � 115ms (#
hops � # latency-per-hop).

We repeated the above “knobs-on-full” simulation and varied the
system size n from 214 to 218 . In scaling the CAN system, we
scaled the topology by scaling the number of CAN nodes added

6The reason the IP latency is 82ms (in the “knobs-on-full” test)
instead of 115ms is not because the average latency of the physical
network is lower but because our CAN algorithm (because of the
use of zone overloading and RTT-weighted routing) automatically
retrieves an entry from the closest replica. 82ms represents the
average IP network level latency from the retrieving node to this
closest replica.

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

16K 32K 65K 131K

La
te

nc
y

S
tr

et
ch

Number of nodes

H(100,10,1)
H(20,5,2)
R(10,50)
10xH(20,5,2)

Figure 10: Effect of link delay distribution on CAN latency

to the edges of the topology without scaling the backbone topol-
ogy itself. This effectively grows the density at the edges of the
topology. We found, that as n grows, the total path latency grows
even more slowly than n1=d (with d = 10 in this case) because al-
though the path length grows slowly as n1=10 (from 4.56 hops with
214 nodes to 5.0 with 218 hops) the latency of the additional hops
is lower than the average latency since the added hops are along
low-latency links at the edges of the network.

Extrapolating this scaling trend and making the pessimistic as-
sumption that the total latency grows with the increase in path
length (i.e., as n1=10) we could potentially scale the size of the
system by another 210 , reaching a system size of close to a billion
nodes, before seeing the path latency increase to within a factor of
four of the underlying network latency.

To better understand the effect of link delay distributions on the
above results, we repeated the “knobs-on-full” test for different de-
lay distributions on the Transit-Stub topologies. We used the fol-
lowing topologies:

� H(100; 10; 1): A Transit-Stub topology with a hierarchical
link delay assignment of 100ms on intra-transit links, 10ms
on transit-stub links and 1ms on intra-stub links. This is the
topology used in the above “knobs-on-full” test.

� H(20; 5; 2): A Transit-Stub topology with a hierarchical link
delay assignment of 20ms on intra-transit links, 5ms on transit-
stub links and 2ms on intra-stub links.

168

D
esign

Param
eters

path
length
(hops)

neighbor
state

totalpath
latency

per-hop
la-

tency
size

of
data

store
routing

fault
toler-

ance
data

store
availability

dim
ensions:d

O
(d
n
1
=
d)

(fig:4)

O
(d
)

#

(due
to

reduced
path

length)
-

-

"

-

realities:r

#

(fig:5)

O
(r)

#

(due
to

reduced
path

length)
-

O
(r)

"

O
(r)

num
ber

of
peer

nodes
per

zone:p

O
(1
=
p
)

O
(p
)

#

(due
to

reduced
path

length
and

reduced
per-

hop
latency)

#(table:2)
replicated

data
store

repli-
cated:

O
(p
),

partitioned
data

store:
-

"

(due
to

backup
neighbors)

replicated
data

store:

O
(p
),

partitioned
data

store:
-

num
ber

of
hash

functions:k
-

-

#

(fig:7)
-

O
(k
)

-

O
(k
)

use
of

R
T

T-w
eighted

routing
m

etric
-

-

#

(due
to

reduced
per-hop

latency)

#(table:1)
-

-
-

use
of

uniform
partitioning

feature
reduced
variance

reduced
variance

-
-

reduced
variance

(fig:9)
-

-

Table
3:

E
ffectof

design
param

eters
on

perform
ance

m
etrics

� R(10; 50): A Transit-Stub topology with the delay of every
link set to a random value between 10ms to 50ms.

� 10xH(20; 5; 2): This topology is the same as H(20; 5; 2)
except that the backbone topology is scaled by a factor of 10
which implies that the density of CAN nodes on the resultant
topology is about 10 times lower.

For each of the above topologies, we measure the latency stretch
- the ratio of CAN latency to IP latency - for different system sizes.
The results are shown in Figure 10. We see that while the delay
distribution affects the absolute value of the latency stretch, in all
cases, the latency stretch grows very slowly with system size. In
no case do we see a latency stretch of more than 3 for system sizes
up to 130,000 nodes. The fastest growth is in the case of random
delay distributions. This is because in this case, as we grow the
CAN system size, the new links added at the edges of the network
need not be low latency links (unlike with the hierarchical delay
distributions). Finally, we see that latency stretch with topology
H(20; 5; 2) is slightly lower than with topology 10xH(20; 5; 2).
This is due to the higher density of CAN nodes in the case of
H(20; 5; 2); higher densities allow the latency heuristics to yield
higher gains.

5. RELATED WORK
We categorize related work as related algorithms in the litera-

ture relevant to data location and related systems that involve a data
location component.

5.1 Related Algorithms
The Distance Vector (DV) and Link State (LS) algorithms used

in IP routing require every router to have some level of knowledge
(the exact link structure in the case of LS and the distance in hops
for DV) of the topology of entire network. Unlike our CAN routing
algorithm, DV and LS thus require the widespread dissemination
of local topology information. While well suited to IP networks
wherein topology changes are infrequent, for networks with fre-
quent topology changes, DV and LS would result in the frequent
propagation of routing updates. Because we wanted our CAN de-
sign to scale to large numbers of potentially flaky nodes we chose
not to use routing schemes such as DV and LS.

Another goal in designing CANs was to have a truly distributed
routing algorithm, both because this does not stress a small set of
nodes and because it avoids a single point of failure. Hence we
avoided more traditional hierarchical routing algorithms [16, 19,
11, 3].

Perhaps closest in spirit to the CAN routing scheme is the Plax-
ton algorithm [15]. In Plaxton’s algorithm, every node is assigned
a unique n bit label. This n bit label is divided into l levels, with
each level having w = n=l bits. A node with label, say xyz, where
x,y and z are w bit digits, will have a routing table with:

� 2w entries of the form: � X X

� 2w entries of the form: x � X

� 2w entries of the form: x y �

where we use the notation � to denote every digit in 0; :::; 2w � 1,
and X to denote any digit in 0; :::; 2w � 1.

Using the above routing state, a packet is forwarded towards a
destination label node by incrementally “resolving” the destination
label from left to right, i.e., each node forwards a packet to a neigh-
bor whose label matches (from left to right) the destination label in
one more digit than its own label does.

169

For a system with n nodes, Plaxton’s algorithm routes inO(log n)
hops and requires a routing table size that is O(log n). CAN rout-
ing by comparison routes in O(dn1=d) hops (where d is dimen-
sions) with routing table size O(dr) which is independent of n. As
mentioned earlier, setting d = (log

2
n)=2 allows our CAN algo-

rithm to match Plaxton’s scaling properties. Plaxton’s algorithm
addresses many of the same issues we do. As such it was a natural
candidate for CANs and, early into our work, we seriously consid-
ered using it. However, on studying the details of the algorithm,
we decided that it was not well-suited to our application. This is
primarily because the Plaxton algorithm was originally proposed
for web caching environments which are typically administratively
configured, have fairly stable hosts and maximal scales on the or-
der of thousands. While the Plaxton algorithm is very well suited to
such environments, the peer-to-peer contexts we address are quite
different. We require a self-configuring system which is capable
of dealing with a very large set of hosts (millions), many of them
potentially quite flaky. However, because the targeted application
is web caching, the Plaxton algorithm does not provide a solution
whereby nodes can independently discover their neighbors in a de-
centralized manner. In fact, the algorithm requires global knowl-
edge of the topology to achieve a consistent mapping between data
objects and the Plaxton nodes holding those objects. Addition-
ally, every node arrival and departure affects a logarithmic number
of nodes which, for large systems with high arrival and departure
rates, appears to be on the high side because nodes could be con-
stantly reacting to changes in system membership.

Algorithms built around the concept of geographic routing [9,
12] are similar to our CAN routing algorithm in that they build
around the notion of forwarding messages through a coordinate
space. The key difference is that the “space” in their work refers
to true physical space because of which there is no neighbor dis-
covery problem (i.e. a node’s neighbors are those that lie in its ra-
dio range). These algorithms are very well suited to their targeted
applications of routing and location services in ad-hoc networks.
Applying such algorithms to our CAN problem would require us to
construct and maintain neighbor relationships that would correctly
mimic geographic space which appears non trivial (for example,
GPSR performs certain planarity checks which would be hard to
achieve without a physical radio medium). Additionally, such ge-
ographic routing algorithms are not obviously extensible to multi-
dimensional spaces.

5.2 Related Systems

5.2.1 Domain Name System
The DNS system in some sense provides the same functionality

as a hash table; it stores key value pairs of the form (domain name,
IP address). While a CAN could potentially provide a distributed
DNS-like service, the two systems are quite different. In terms of
functionality, CANs are more general than the DNS. The current
design of the DNS closely ties the naming scheme to the manner in
which a name is resolved to an IP address, CAN name resolution
is truly independent of the naming scheme. In terms of design, the
two systems are very different.

5.2.2 OceanStore
The OceanStore project at U.C.Berkeley [10] is building a utility

infrastructure designed to span the globe and provide continuous
access to persistent information. Servers self-organize into a very
large scale storage system. Data in OceanStore can reside at any
server within the OceanStore system and hence a data location al-
gorithm is needed to route requests for a data object to an appro-

priate server. OceanStore uses the Plaxton algorithm as the basis
for its data location scheme. The Plaxton algorithm was described
above.

5.2.3 Publius
Publius [13] is a Web publishing system that is highly resis-

tant to censorship and provides publishers with a high degree of
anonymity. The system consists of publishers who post Publius
content to the web, servers that host random-looking content, and
retrievers that browse Publius content on the web. The current Pub-
lius design assumes the existence of a static, system-wide list of
available servers. The self-organizing aspects of our CAN design
could potentially be incorporated into the Publius design allowing
it to scale to large numbers of servers. We thus view our work as
complementary to the Publius project.

5.2.4 Peer-to-peer file sharing systems
Section 1 described the basic operation of the two most widely

deployed peer-to-peer file sharing systems; Napster and Gnutella.
We now describe a few more systems in this space that use novel
indexing schemes. Although many of these systems address ad-
ditional, related problems such as security, anonymity, keyword
searching etc., we focus here on their solutions to the indexing
problem.

Freenet [5, 2] is a file sharing application that additionally pro-
tects the anonymity of both authors and readers. Freenet nodes hold
3 types of information: keys (which are analogous to web URLs),
addresses of other Freenet nodes that are also likely to know about
similar keys, and optionally the data corresponding to those keys.
A node that receives a request for a key for which it does not know
the exact location forwards the request to a Freenet node that it
does know about, and whose keys are closer to the requested key.
Results for both successful and failed searches backtrack along the
path the request travelled. If a node fails to locate the desired con-
tent, it returns a failure message back to its upstream node which
will then try the alternate downstream node that is its next best
choice. In this way, a request operates as a steepest-ascent hill-
climbing search with backtracking. The authors hypothesize that
the quality of the routing should improve over time, for two rea-
sons. First, nodes should come to specialize in locating sets of
similar keys because a node listed in routing tables under a partic-
ular key will tend to receive mostly requests for similar keys. Also,
because of backtracking, it will become better informed in its rout-
ing tables about which other nodes carry those keys. Second, nodes
should become similarly specialized in storing clusters of files hav-
ing similar keys. This is because forwarding a request successfully
will result in the node itself gaining a copy of the requested file,
and most requests will be for similar keys and hence the node will
mostly acquire files with similar keys. The scalability of the above
algorithm is yet to be fully studied.

Ongoing work at UCB7 looks into developing a peer-to-peer file
sharing application using a location algorithm similar to the Plax-
ton algorithm (although developed independently from the Plaxton
work). A novel aspect of their work is the randomization of path
selection for improved robustness.

A description and evaluation of these and other file sharing ap-
plications can be found at [23]. A key difference between our CAN
algorithm and most of these file sharing systems is that under nor-
mal operating conditions, content that exists within the CAN can al-
ways be located by any other node because there is a clear “home”
(point) in the CAN for that content and every other node knows
what that home is and how to reach it. With systems such as [2, 6]
7Private communication with Adam Costello

170

however it is quite possible that even with every node in the sys-
tem behaving correctly, content may not be found either because
content is beyond the horizon of a particular node [6] or because
different nodes have different, inconsistent views of the network
[2]. Whether this is an important distinguishing factor depends of
course on the nature of an application’s goals.

6. DISCUSSION
Our work, so far, addresses two key problems in the design of

Content-Addressable Networks: scalable routing and indexing. Our
simulation results validate the scalability of our overall design - for
a CAN with over 260,000 nodes, we can route with a latency that
is less than twice the IP path latency.

Certain additional problems remain to be addressed in realizing
a comprehensive CAN system. An important open problem is that
of designing a secure CAN that is resistant to denial of service at-
tacks. This is a particularly hard problem because (unlike the Web)
a malicious node can act, not only as a malicious client, but also
as a malicious server or router. A number of ongoing projects both
in research and industry are looking into the problem of building
large-scale distributed systems that are both secure and resistant to
denial-of-service attacks [13, 10, 2].

Additional related problems that are topics for future work in-
clude the extension of our CAN algorithms to handle mutable con-
tent, and the design of search techniques [8, 21] such as keyword
searching built around our CAN indexing mechanism.

Our interest in exploring the scalability of our design, and the
difficulty of conducting truly large scale experiments (hundreds of
thousands of nodes), led us to initially evaluate our CAN design
through simulation. Now that simulation has given us some under-
standing of the scaling properties of our design, we are, in collabo-
ration with others, embarking on an implementation project to build
a file sharing application that uses a CAN for distributed indexing.

7. ACKNOWLEDGMENTS
The authors would like to thank Steve McCanne, Jitendra Pad-

hye, Brad Karp, Vern Paxson, Randy Katz, Petros Maniatis and the
anonymous reviewers for their useful comments.

8. REFERENCES
[1] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility

of a Serverless Distributed File System Deployed on an
existing set of Desktop PCs. In Proceedings of SIGMETRICS
2000, Santa Clara, CA, June 2000.

[2] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A
Distributed Anonymous Information Storage and Retrieval
System. ICSI Workshop on Design Issues in Anonymity and
Unobservability, July 2000.

[3] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. H. Katz.
An Architecture for a Secure Service Discovery Service. In
Proceedings of Fifth ACM Conf. on Mobile Computing and
Networking (MOBICOM), Seattle, WA, 1999. ACM.

[4] P. Francis. Yoid: Extending the Internet Multicast
Architecture. Unpublished paper, available at
http://www.aciri.org/yoid/docs/index.html, Apr. 2000.

[5] FreeNet. http://freenet.sourceforge.net.
[6] Gnutella. http://gnutella.wego.com.
[7] J. Guterman. Gnutella to the Rescue ? Not so Fast, Napster

fiends. Link to article at http://gnutella.wego.com, Sept.
2000.

[8] Infrasearch. http://www.infrasearch.com.

[9] B. Karp and H. Kung. Greedy Perimeter Stateless Routing.
In Proceedings of ACM Conf. on Mobile Computing and
Networking (MOBICOM), Boston, MA, 2000. ACM.

[10] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An
Architecture for Global-scale Persistent Storage. In
Proceedings of ASPLOS 2000, Cambridge, Massachusetts,
Nov. 2000.

[11] S. Kumar, C. Alaettinoglu, and D. Estrin. SCOUT: Scalable
Object Tracking through Unattended Techniques. In
Proceedings of the Eight IEEE International Conference on
Network Protocols, Osaka, Japan, Nov. 2000.

[12] J. Li, J. Jannotti, D. D. Couto, D. Karger, and R. Morris. A
Scalable Location Service for Geographic Ad-hoc Routing.
In Proceedings of ACM Conf. on Mobile Computing and
Networking (MOBICOM), Boston, MA, 2000. ACM.

[13] A. D. R. Marc Waldman and L. F. Cranor. Publius: A
Robust, Tamper-evident, Censorship-resistant, Web
Publishing System. In Proceedings of the 9th USENIX
Security Symposium, pages 59–72, August 2000.

[14] Napster. http://www.napster.com.
[15] C. Plaxton, R. Rajaram, and A. W. Richa. Accessing nearby

copies of replicated objects in a distributed environment. In
Proceedings of the Ninth Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA), June 1997.

[16] J. B. Postel. Internet Protocol Specification. ARPANET

Working Group Requests for Comment, DDN Network
Information Center, SRI International, Menlo Park, CA,
Sept. 1981. RFC-791.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, J. Padhye,
and S. Shenker. Grass-roots Content Distribution: RAID
meets the Web. Jan. 2001. unpublished document available
at http://www.aciri.org/sylvia/.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
ICSI Technical Report, Jan. 2001.

[19] Y. Rekhter and T. Li. A Border Gateway Protocol 4 BGP-4.
ARPANET Working Group Requests for Comment, DDN
Network Information Center, Mar. 1995. RFC-1771.

[20] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H.
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In Proceedings ACM
Sigcomm 2001, San Diego, CA, Aug. 2001.

[21] M. Welsh, N. Borishov, J. Hill, R. von Behren, and A. Woo.
Querying large collections of music for similarity. Technical
report, University of California, Berkeley, CA, Nov. 1999.

[22] E. Zegura, K. Calvert, and S. Bhattacharjee. How to Model
an Internetwork. In Proceedings IEEE Infocom ’96, San
Francisco, CA, May 1996.

[23] Zeropaid.com. File sharing portal at
http://www.zeropaid.com.

171

11
1

2 4 3 6 75 1110

8

9

1

2

3

4

5

6

7

8

9

10

Figure 11: Example depth-first search for a replacement node

APPENDIX

A. CAN MAINTENANCE: BACKGROUND
ZONE REASSIGNMENT

The immediate takeover algorithm described in Section 2.3 may
result in a single node being assigned multiple zones. Ideally, we
would like to retain a one-to-one assignment of nodes to zones,
because this prevents the coordinate space from becoming highly
fragmented. To achieve this one-to-one node to zone assignment,
we use a simple algorithm that aims at maintaining, even in the face
of node failures, a dissection of the coordinate space that could have
been created solely by nodes joining the system.

At a general step we can think of each existing zone as a leaf of
a binary “partition tree.” The internal vertices in the tree represent
zones that no longer exist, but were split at some previous time. The
children of a tree vertex are the two zones into which it was split.
Of course we don’t maintain this partition tree as a data structure,
but it is useful conceptually.

By an abuse of notation, we use the same name for a leaf ver-
tex, for the zone corresponding to that leaf vertex, and for the node
responsible for that zone. The partition tree, like any binary parti-
tion tree, has the property that in the subtree rooted at any internal
vertex there are two leaves that are siblings.

Now suppose a node wants to hand-off a leaf x. If the sibling
of this leaf is also a leaf (call it y) the hand-off is easy: simply
coalesce leaves x and y, making their former parent vertex a leaf,
and assign node y to that leaf. Thus zones x and y merge into a
single zone which is assigned to node y. If x’s sibling y is not a
leaf, perform a depth-first search in the subtree of the partition tree
rooted at y until two sibling leaves are found. Call these leaves z
and w. Combine z and w, making their former parent a leaf. Thus
zones z and w are merged into a single zone, which is assigned to
node z, and node w takes over zone x.

Figure 11 illustrates this reassignment process. Let us say node
9 fails and by the immediate takeover algorithm node 6 takes over
node 9’s place. By the background reassignment process, node 6
discovers sibling nodes 10 and 11. One of these, say 11 takes over
the combined zones 10 and 11, and 10 takes over what was 9’s
zone.

While the partition tree data structure helps us explain the re-
quired transformations, its global nature makes it unsuitable for
actual implementation. Instead we must effect the required trans-
formations using purely local operations. All an individual node
actually has is its coordinate routing table which captures the adja-
cency structure among the current zones (the leaves of the deletion
tree). However, this adjacency structure is sufficient for emulation
of all the operations on the partition tree.

A node I performs the equivalent of the above described depth-
first search on the partition as follows:

Number of dimensions avg(# hops) max(# hops)

2 1.12 3
3 1.09 3
4 1.07 3

Table 6: Background zone reassignment

� let dk be the last dimension along which node I’s zone was
halved (this can be easily detected by merely searching for the
highest ordered dimension with the shortest coordinate span).

� from its coordinate routing table, node I selects a neighbor
node J that abuts I along dimension dk such that J belongs
to the zone that forms the other half to I’s zone by the last
split along dimension dk.

� if the volume of J’s zone equals I’s volume, then I and J are
a pair of sibling leaf nodes whose zones can be combined.

� If J’s zone is smaller than I’s then I forwards a depth-first
search request to node J , which then repeats the same steps.

� This process repeats until a pair of sibling nodes is found.

We used simulation to measure the number of steps a depth-first
search request has to travel before sibling leaf nodes can be found.

Table 6 lists the number of hops away from itself that a node
would have to search in order to find a node it can hand off an extra
zone to. Because of the more or less uniform partitioning of the
space (due to our uniform partitioning feature from Section 3.7), a
pair of sibling nodes is typically available very close to the request-
ing node, i.e., the dissection tree is well balanced.

172

