Engineering a User Level TCP

Kieran Mansley - kjm25@cam.ac.uk
Laboratory for Communication Engineering,
University of Cambridge.

Research Goal:
Reduce the CPU load of network protocol processing.
The Problems

✗ Faster networks deliver higher packet rates:
 • 100 byte packets at Gbps → 1.25 million packets per second.
 • 0.8us to deal with each one.
✗ Overhead of dealing with packets isn't decreasing.
✗ The BSD sockets API mandates copying the data.
✗ CPU cycles required to service network → 100%.
Possible Solutions

✓ Increase MTU to reduce the number of packets.
 ✓ OK for some traffic patterns, but no use for many.
✓ Interrupt coalescing to avoid receive livelock.
 ✓ Adds latency.
✓ Coprocessors on network interface.
 ✓ Expensive, adds latency.
✓ Change API to a zero copy compatible one.
 ✓ Loose compatibility. Hard to get adopted.
✓ User Level networking.
The CLAN Network

- Distributed Shared Memory based cluster network.
- Data transfer interface looks like a circular queue.
- Supports both DMA and PIO.
- Prototype hardware.
- Results in:
 ✓ Low overhead, low latency transfers.
 ✓ Simple ⇒ cheap & scalable.
User Level Stack Architecture

- Connection oriented network.
 - ✓ Very simple demultiplex.
 - ✗ Must maintain mapping between connections and sockets.
 - ✗ Connection setup overhead.

- Application thread does protocol processing.
 - ✓ No thread switches on the data path.
 - ✗ Thought needed to ensure everything gets the time it needs.

- Change blocking semantics of sockets.
 - ✓ No application changes.
 - ✗ Doesn't solve everything (in particular, `recv()`).
Performance

✓ Bandwidth Increased.
 • Standard NetPIPE test.

✓ Latency Reduced.
 • Less than half Gig Ethernet.
True Zero-Copy Transmission

- Sockets API requires a copy.
 - Otherwise application could overwrite packet before it is sent.
- To achieve zero-copy:
 - Modify blocking semantics of the sockets API.
 - Don't return until stack has finished with the data.
 - ✓ Doesn't impact greatly on performance in most cases.
 - ✓ Copy is now unnecessary.
 - ✗ But, still need to preserve the data for retransmission...
Gateway Assisted Retransmission

- Gateway accesses all packets flowing through it.
 - Can copy at little extra cost.
 - But, problems too:
 - Single point of failure?
 - Scalability of memory?
Summary

• Move TCP/IP stack to user level:
 ✓ Improved efficiency getting data to and from the NIC,
 ✓ Allows changes to the threading model in the stack which in turn:
 ✓ Enables zero copy transmission by moving retx to the gateway.
 ✗ Requires unusual (but simple, potentially cheap) hardware.

• Retransmission by the gateway:
 • Compromise between host based TCP/IP and full offload engine.
 ✗ Requires additional hardware (i.e. RAM on the gateway).
 ✓ But... releases resources (i.e. RAM on nodes) elsewhere in cluster.
Future Work

• Full performance measurement and comparison.
• Deal with the copy required for `recv()`.
• TCP Timers:
 × Many TCPS at user level means many timers.
 ✓ Improve efficiency by preventing timer firing when there is nothing for it to do.
 ✓ Allows for more accurate timers (when needed) without extra overhead.
• Load balancing:
 ✓ Implicit knowledge of the load on cluster nodes from the circular queue pointers.