A Study of iSCSI Extensions for RDMA (iSER)

Mallikarjun Chadalapaka (HP)
Michael Ko (IBM)
Patricia Thaler (Agilent).

Uri Elzur (Broadcom)
Hemal Shah (Intel)
Outline

• Background
 – The Who, Where
• Motivation and case for iSER
 – The Why
• Layering of iSCSI, iSER & iWARP
 – Stack and functionality distribution
• iSER design features
 – Connection setup, Transformation, Data integrity management
• Changes/extensions to iSCSI
 – What is changed and why
• Enhancements in iWARP protocols
 – Automatic invalidation
• Enhancements to iWARP Verbs
 – Efficient registration of STags
• Next steps
 – Standardization
• Questions
Background

- The iSER paper
 - is based on a (just concluded) protocol design,
 - explores work done by contributors from several companies in the RDMA Consortium,
 - belongs to the “Experience” category – the “E” in NICELI.

- iSER is “iSCSI Extensions for RDMA (iSER)”, iSER maps the iSCSI protocol over the iWARP protocol suite (RDMA over TCP/IP). The focus of this paper is:
 - how iSER enables efficient data movement for iSCSI using generic RDMA hardware
 - how/why certain iWARP architectural features were conceived during the iSER design.
iSCSI, TCP and the challenges therein

• iSCSI is an “application protocol” designed to run on TCP/IP.
 • transports the SCSI protocol exchanges so SCSI I/Os can be done over TCP/IP.

• TCP copy overhead and reassembly buffer requirements were identified as serious acceptance/deployment barriers during iSCSI’s early design.

• The iSCSI protocol thus includes an optional feature called “markers”.
 • Markers delineate iSCSI PDU boundaries via recurring pointers showing up at fixed intervals within the TCP data stream.
 • The iSCSI markers however aided iSCSI-specific direct data placement (can also be done without employing markers, albeit needing more reassembly memory) that directly places each iSCSI PDU into its final memory location.
 • With or without markers, iSCSI-specific data placement needed an iSCSI-specific NIC to efficiently run iSCSI protocol avoiding TCP data copies.
The case for iSER

Considerations the designers pondered over were -

- Does RDMA over TCP/IP technology satisfy the data movement needs of iSCSI? If so, when the RDMA technology advances, so does iSCSI.
- Why tackle fundamental issues such as copy elimination via iSCSI-specific protocol?
- Did iWARP say it offers CRC-level reliability on TCP/IP? Let iSCSI take the opportunity to stop playing transport!
- If nothing else, iSCSI needs iSER to run most efficiently on those (presumed to become) pervasive RNICs (RDMA-enabled NICs) in future.

The iSCSI designers were thus ultimately convinced of the need for iSER, an “extension” to iSCSI to enable it to run on RDMA over TCP/IP (aka iWARP).

iSER has the explicit design goal to let iSCSI run on RNICs requiring no greater number of interrupts than an iSCSI NIC does – i.e. run most efficiently on generic RNICs.
The iSER protocol is designed to run on RDMAP protocol of the iWARP suite.

- The paper contains a discussion of why RDMAP was preferred over DDP.

The iSER wire protocol is dependent only on RDMAP. However, the “iWARP Verbs” are a crucial part of the solution puzzle.

- During the iSER design, certain Innovations in iWARP Verbs were also made to best meet the needs of iSER.

The first step was to define an architecture model, “Datamover Architecture”, that distilled the needs of iSCSI to generic data movement primitives.

- iSER design was then mapping the primitives to RDMAP exchanges.
iSER design

- iSER protocol uses the well-known TCP port used for iSCSI connection establishment, rather than using a new iSER well-known port.
 - The iSCSI/iSER connection thus always starts in iSCSI “streaming” mode.
 - A new iSCSI login key used for turning the RDMA (iSER) mode on after login.
 - The existing discovery and boot mechanisms work with no changes.

- Transformation or Encapsulation?
 - A question not traditionally encountered in layered protocols.
 - The iSER protocol simply encapsulates certain iSCSI PDUs (called “control-type” PDUs) in iSER RDMA Send Messages, while it transforms certain other iSCSI PDUs (called “data-type” PDUs) into RDMA Writes or RDMA Reads.

- The iSER protocol relieves iSCSI of having to play transport role
 - iSER mandates that iSCSI-level PDU digests must not be used because iWARP guarantees CRC-level data integrity.
 - iSCSI CRC generation, checking, retransmission requests, retransmissions, timeout-based retransmissions - a lot of complexity in iSCSI is thus gone!
Changes to iSCSI

• The biggest set of changes to iSCSI in order to support iSER will be in the area of how iSCSI interfaces to its LLP (lower level protocol).
 • Traditional iSCSI interfaces directly with TCP.
 • Traditional iSCSI is involved in a lot of data movement activity.
 • In the new model, iSCSI simply yields the administration of data movement to iSER, and iSER and iWARP will work together to move the data.

• Wire protocol
 • iSCSI-level PDU digests (header & data) must not be used (so, don’t bother to use the PDU level recovery features of iSCSI).
 • No piggybacking of status on the last read data PDU (the receiving RNIC doesn’t demux during placement!)

• Other areas
 • Obviously, iSCSI should know to negotiate the new login key – to turn the RDMA (iSER) mode on after login.
 • iSCSI must “chunk” long unsolicited data sequences into PDUs so that each “mid-PDU” is exactly of negotiated max size.
Enhancement to RDMAP (automatic invalidation)

- SCSI has a clearly defined transactional model
 - Command (Initiator -> Target)
 - data (either way)
 - status (Target -> Initiator)
- The initiator iSER layer (client) exposes its STags to the target (server).
 - After receiving the status, initiator iSER layer will invalidate the STag mapping before using those buffers.
 - How about doing this invalidation automatically on receiving the status? That takes one hardware access out from the performance path.
Enhancements to iWARP Verbs (fast register)

- The initiator iSER layer (client) exposes its STags to the target (server).
 - The initiator iSER layer must register the Command buffer locally with the RNIC.
 - Registration process yields the STag, so must precede the advertisement.
 - This is a synchronous wait for a hardware response in the performance path.
- In the fast-register model, the STag is allocated to iSER apriori. It is merely associated with the Command buffer during runtime.
 - The “fast-registration” is now guaranteed to succeed.
 - The initiator iSER layer can post the fast-register and command requests to the hardware back-to-back, no more waiting.

→ The paper also discusses automatic deregistration and Shared Receive Queues.
Next Steps

• The Datamover Architecture for iSCSI (DA) and iSCSI Extensions for RDMA (iSER) specifications were publicly released by the RDMA Consortium on July 21, 2003 (all specs available on www.rdmaconsortium.org).

• Several Consortium member companies are working on productization of the iWARP protocol suite and iSER.

• Both DA and iSER specs are submitted to IETF as Internet Drafts for pursuing standardization.
Thank you!

- Questions?