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ABSTRACT
Suppose that there are n Senders and r Receivers. Our
goal is to design a communication network such that long
messages can be sent from Sender i to Receiver π(i) such
that no other receiver can retrieve the message intended for
Receiver π(i). The task can easily be completed using some
classical interconnection network and routers in the network.
Alternatively, if every Receiver is directly connected to all
n Senders, then the Senders can choose which channel to
use for communication, without using any router. Fast op-
tical networks are slowed down considerably if routers are
inserted in their nodes. Moreover, handling queues or buffers
at the routers is extremely hard in all-optical setting. An
obvious routerless solution, connecting each possible Sender-
Receiver pairs with direct channels seems to be infeasible in
most cases. The main result of the present work is the math-
ematical model of two networks and corresponding network-
protocols in which the Senders and the Receivers are con-
nected with only ro(1) channels (in practice no more than
32 channels in both networks); there are no switching or
routing-elements in the network, just linear combinations
of the signals are computed. Such designs would be usable
in fast all-optical networks. In the proof of the security
of the networks we do not use any unproven cryptograph-
ical or complexity theoretical assumptions: the security is
information-theoretically proved, and does not depend on
cryptographical primitives.

Categories and Subject Descriptors: B.4.3 Hardware
Input/output and data communications

General Terms: Design

Keywords: High speed optical networks, routerless rout-
ing, secure network protocols
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1. INTRODUCTION
The extreme bandwidth of a single optical fiber (25 000

GHz) is 1000 times larger than the total radio bandwidth of
planet Earth (25 Ghz) [2]. Using this bandwidth effectively
requires novel network designs. We propose two network
designs for high-speed optical communication.

Suppose that there are given n Senders S1, S2, . . . , Sn

and r Receivers R1, R2, . . . , Rr. Let π be a function from
{1, 2, . . . , n} to {1, 2, . . . , r}. Our goal is to send long mes-
sages from Si to Rπ(i), for i = 1, 2, . . . , n such that

(a) Rπ(i) can easily retrieve the message of Si, for i =
1, 2, . . . , n

(b) Rπ(i) cannot retrieve the message of Sj if π(i) �= π(j).

An obvious method for doing this is connecting Si with
Rπ(i) with private channels, that is, we use n channels for
the n Senders and the r Receivers. The advantage of this
solution is that n bits can be sent in parallel, and the trans-
mission is private, in the sense that Rπ(i) receives only the
transmission of Si, for i = 1, 2, . . . , n. The privacy is satis-
fied only if others have not access to the private channels.
The disadvantage of this solution is that the number of chan-
nels is equal to the number of communicating pairs, and this
is infeasible in most cases. Another problem with this so-
lution is that if next time Si wants to send messages to
Rσ(i), for i = 1, 2, . . . , n for some other function σ, then the
whole network has to be reconfigured. If every Sender is di-
rectly connected to all Receivers, this solves the reconfigura-
tion problem, but then the number of channels becomes nr.
Applying some classical interconnection networks (e.g., the
butterfly, Benes network, CCC) needs routers with buffers
(local memory). Due to the table-lookup features of routers
and the need of optical memory, all-optical routers are hard
to construct, expensive and still relatively slow components.

Another obvious solution is that all the Senders and Re-
ceivers use the same channel, and they transmit their mes-
sages one after the other. Transmitting n bits this way needs
n steps. In this case either a router has to be used just before
the messages get to the Receivers, or some sort of encryption
is needed for maintaining the privacy of the transmission.

Using encryption has several drawbacks. Streamciphers,
the most evident cryptographic tool which are fast and do
not cause overhead in the communication have lots of re-
cently proposed and successful attacks [6]. Block-ciphers
are much slower, and may be infeasible in, say, in the 1000
Gbit/s range, and also, they causes non-negligible overhead
in the communication.



Using routers and addressing in the messages will also
slow down the communication, especially in all-optical en-
vironments: with, say, 1000 Gbit/s throughput, by the best
of our knowledge, no routers exist.

The main result of the present work is a mathemati-
cal model of two networks, together with the associated
network-protocols, in which

(i) The n Senders and the r Receivers are connected with

only ro(1) channels in the first and log r channels in
the second network 1 Note, that in practice at most
32 channels are enough in both networks. The parallel
channels will not speed up the transmission relative
to the 1-channel network: the goal of using them is
to facilitate the privacy of the communication and the
distribution of the messages between the recipients,
without any encryption or routers.

(ii) The encoding and decoding is nothing else just lin-
ear combinations of the message-bits, and this linear
combinations can be computed really fast.

(iii) There are no switching or routing-elements in the net-
work with hard-to implement buffers and local mem-
ory, just linear combinations are computed, with fixed
connections (channels or wires); moreover, the network
components used are simple enough to implement in
fast all-optical networks.

(iv) In the first network, Rπ(i) can learn only very little
(to be specified later) about any bit of the message of
Sj for any π(j) �= π(i), and only a negligible amount
of information on longer messages of Sj ; in the second
network Ri cannot learn anything about any bit of the
message of Sj for any π(j) �= π(i).

(v) In the proofs we do not use any unproven crypto-
graphical or complexity theoretical or any other as-
sumptions (e.g., no assumptions are used for the exis-
tence of one-way functions, or the computational hard-
ness of specific computational tasks). The security
is information-theoretical rather than cryptographical,
in the sense that it does not depend on unproven cryp-
tographical primitives.

For example, in perhaps the most appealing possible ap-
plication, all the Senders are controlled by a Video on De-
mand (VoD) multicaster, who distributes – say – video or
movie programming to several hundreds of thousands users.

Our first network uses MOD m addition gates for some
small modulus m (say m = 6 or m = 10) (see [9] for all-
optical realizations), the second network uses optically fea-
sible MOD 2 addition (i.e., XOR) gates, (see [7] or [5]). The
decoding at the user’s side is done with very simple and op-
tically feasible computations (counters or modular (XOR)
gates).

We would like to add that unlike the recent advances (e.g.,
[1], [8], [3]) our networks will be fast because they do not
contain routers, do not perform slow table-lookups, do not
need buffers or network-traffic increasing deflections, only
fast, optically feasible gates [5].

1Here o(1) denotes a quantity which goes to 0 as r goes to
the infinity.

1.1 The formal model
Let S1, S2, . . . , Sn denote the Senders, and let R1, R2, . . . , Rr

denote the Receivers. Additionally, we have t data trans-
mission channels, used for long-distance connection between
Senders and Receivers. Each Sender is connected – possi-
bly through some modular addition gates – to all of these t
channels, while the Receivers may be connected – through
modular addition gates – only to certain subsets of the chan-
nels.

On one channel one bit may be transmitted at a time. If
one Sender sends several bits simultaneously to an � element
subset of the t long-distance channels, then these bits will
travel synchronously on these � channels: that means, that
for any i, Receiver Ri will get those bits which were sent si-
multaneously, from all the long-distance channels, connected
to Ri, at the same time. However, we do not suppose that
different Receivers get these bits at the same time (it is al-
lowed that farther situated Receivers get the bits later than
the closer ones).

Figure 1 describes the general scheme in the case when
n = r. We need that the Sender’s bits travel synchronously
on the t long-distance channels. (Note, that this require-
ment can be assured by using the same wavelength opti-
cal signals on each channel, and by compensating for the
distance-differences at the Senders side by installing fiber
loops: this way the signals - if sent simultaneously by all
the senders - will travel synchronously). However, we need
not assume that the signals reach all the Receivers at the
same time: the Receivers are allowed to be scattered along
the long-distance channels (see Figure 2).

Figure 1: The common scheme

An arbitrary number of Senders may send messages to the
same Receiver.

We also assume that the Receivers have access only to
some subsets of the t long-distance channels. The security
of the network depends on this property: Receivers who had
access for all the channels would be able to decode all the
messages. Note, that this assumption is realistic, since in
high-speed optical networks intrusion and tampering with
the fibers and optical components (that is, gaining access to
the non-allowed channels) seems to be avoidable by using
common security measures.



Figure 2: Application for multicasting

1.2 The common properties of our networks
Both in our networks the Senders use random numbers

for security (in Network 1 for scheduling the transmissions,
in Network 2 for the encoding). These random numbers are
generated by the Senders cooperatively in Network 1 and
privately in Network 2.

Generating random bits cooperatively in Network 1 may
cause difficulties. This can be circumvented by generating
the random bits locally at the head-station (denoted by H
on Figure 1) of the long-distance channels, and sending to
the Senders.

We should remark, that in Network 2, XOR gates (i.e.,
MOD 2 additions) are used only at the Receiver’s side, and
not at the Senders’ side.

Both of our networks facilitate the re-configuration of the
Sender-Receiver correspondence without any change in the
hardware; that is, the same network can be used to send bits
from Si to Rπ(i), for i = 1, 2, . . . , n, and for any function π.
The Sender/Receiver rôles (and the direction of the com-
munication) cannot be exchanged in our networks; however,
if we place the same network with the Ri’s as senders and
Si’s as receivers next to our network, then everybody can
send and also receive messages. Because of this quite usual
trick, we will speak only about one-directional communica-
tion from the Senders to Receivers.

Both of our networks seem to be applicable in long-
distance communication (Figure 1) and also in high-speed
multicasting environment (Figure 2).

In Figure 1, we may suppose that the Senders are in the
U.S. and the Receivers are in Europe, and the small number
of high-speed (and high-cost) channels crosses the Atlantic.

Figure 2 illustrates the multicasting application. Here
the multicaster (e.g., the server of some Video-on-Demand
provider) plays the rôle of the Senders. In this case the syn-
chronization and the generation of common random bits are
easier than in the general case, when the Senders can be spa-
tially distributed. The Receivers are the users, who are not
allowed to tamper with the fixed connections to the trans-
mitting channels (i.e., some channels cannot be received by
some users). The Receivers are allowed to be at different
spatial positions of the communication channels, so this ap-
plication may be used in a VoD service of a big city. For
example, the fibers may be placed into service tunnels in the

ground below the streets, together with the expensive opti-
cal gates, and the homes can be connected to the network
with short, inexpensive fibers and optical devices.

The 100 Gbit/s transmission rate seems to be possible
commercially soon. This means, that theoretically, on a
single 100 Gbit/s channel (without counting overheads) from
10 000 to 100 000 users can be served simultaneously with
individually chosen DVD-quality video programming (which
needs 1 Mbit/s to 10 Mbit/s transmission rate), if routers
do not slow down the transmission. In our networks simply
there are no routers.

The following table summarizes the properties of our net-
works.

1.3 Summary of the properties of our net-
works

Netw. No. of Rand. Security time for
channels numb. xmit n bits

n chan. n no yes 1
1 chan. 1 no no n

Netw. 1 no(1) sync. yes (n + 1) log 6

Netw. 2 O(log n) priv. gen. yes see note

Note: The last column contains the total time needed
to transmit 1 bit by Sender Si to Receiver Rπ(i), for i =
1, 2, . . . , n. This schedule of transmission, however, is ad-
vantageous mostly in Network 1 (its security also depends
on this schedule). In Network 2, packets of length d can be
sent to n Receivers with using n(d + O(log n)) transmission
time (in other networks we do not send packets, just bits).
However, Network 2 is much more adequate for sending long
messages only to a small set of Receivers. For example, if n
bits is sent only to R1 in one packet, then the time is only
n + log n.

1.4 Remarks on the Overhead of our Net-
works

The traditional packet-switching networks contains
routers for directing the packets to their respective ad-
dresses. That means, that router W is connected to Re-
ceivers R1, R2, . . . , Rs, and if a packet is sent to, say R1,
then R2 will not get that packet.

It turned out, that in high-speed optical networks tradi-
tional (electronic) routers slow down the traffic considerably,
and designing all-optical, high-speed routers is still a chal-
lenge for today’s technology. Consequently, the first router
that divides the traffic of the optical channel slows down the
traffic significantly and so decreases the throughput of the
optical channel.

Our networks do not contain routers at all. There is a
price of this simplicity: in our networks an encoded form of
every message is heard by every receiver, but those, who are
not supposed to read it, could not decode it.

2. NETWORK 1
In packet-switched networks, the Receivers should know

their own identity (say, an IP or MAC address) in order to
pick up only those packets from the transmission channels,
which are addressed to them. Note, that in Network 1,
described in this section, the Receivers need not know even
their own identity: the bits, intended to be sent to them,
will find them securely and automatically.



2.1 Preliminaries
Let m be a composite number m = pe1

1 pe2
2 · · · pe�

� , and let
� > 1.

In [4] it is proven that the second degree, 2r-variable poly-
nomial

P (x, y) =
r∑

i�=j,i,j=1

aijxiyj ,

can be computed with ro(1) multiplications of homogeneous
terms, where coefficients aij satisfy that

aij ≡ 1 (mod peu
u ),

for at least one u : 1 ≤ u ≤ �, and, moreover, if for some
v: aij �≡ 1 (mod pev

v ), then aij ≡ 0 (mod pev
v ). (Note, that

for prime moduli, one needs at least r multiplications to
compute such a polynomial. ) Consequently, polynomial

Q(x, y) =

(
r∑

i=1

xi

) (
r∑

i=1

yi

)
− P (x, y)

can be computed also with only t = ro(1) homogeneous mul-
tiplications:

Q(x, y) =
t∑

j=1

(
r∑

i=1

bijxi

) (
r∑

i=1

cijyi

)
, (1)

and it has the following properties:

(i) the coefficients of the xiyi terms equals to 1, for i =
1, 2, . . . , r,

(ii) any other coefficient is 0 modulo at least one prime-
power divisor of m.

In particular, for m = 6, the coefficient of any xiyj (where
i �= j ), is either 0, or 4 or 3 modulo 6.

2.2 Linear Combinations
From now on, we fix m to be 6. For a general, non-prime-

power composite m, our results are analogous, but they are
more uncomfortable to state.

Let us consider a vector of r variables x = (x1, x2, . . . , xr),
and let us compute z = (z1, z2, . . . , zt) ∈ {0, 1, 2, 3, 4, 5}t,
where

zj =
r∑

i=1

bijxi mod 6 (2)

that is, simply a linear combination, determined by (1), for
j = 1, 2, . . . , t. Or, in matrix notation, where B = {bij}
denotes an r × t matrix with entries {bij} of equation (1):
z = xB mod 6.

Certainly, different x’s may lead to the same z, since t =
ro(1) << r, for large enough r.

Now, from (1), polynomial Q(x, y) with any substitution

of the y’s can be computed from the t = ro(1) values of z.

In particular, plugging in y(i) = (0, 0, . . . ,

i︷︸︸︷
1 , 0, . . . , 0), we

will get modulo 6 the following polynomial:

xi + 4(xi1 + xi2 + · · · + xi�) + 3(xj1 + xj2 + · · · + xjk) (3)

where different indices denote different numbers.
Or, in other words, with the notation of C = {cij} as an

r × t matrix of cij entries from (1),

x′ = x + 4xU + 3xV = xBCT = zCT , (4)

where U = {uij} and V = {vij} are some r × r matrices
with 0’s in the diagonal, and with the following property:
for all i and j, either uij or vij ≡ 0 (mod 6), for all i and j.

Note, that matrices B and C are independent of vector x,
that is, they are constant matrices.

We describe our network 1 now. First, assume that the
number of Senders and Receivers are the same: n = r,
and, moreover, such that Ri gets messages from Si, for
i = 1, 2, . . . , r; handling other functions π is given in Section
2.4.

Our network 1 is constructed as follows: The vector z
with t mod 6 coordinates is computed as in (2). The coor-

dinates of this vector is transmitted through t = ro(1) chan-
nels (these are the long-distance channels). Then, at the
Receivers’ side, vector z is transformed to length-r vector
x′, as in (4).

Note, that this transformation simply means computing
x′

i as the sum of several bits, arrived on some of the t long-
distance channels (we allow that some of them are added
more than once, but less than 5 times: this multiplicity is
equal to their coefficients, determined by (4)). Note also,
that this computation is done locally at each Receiver.

Getting back the actual vector x needs some further steps,
what we call filtering, and we detail it in the next section.

2.3 The Protocol
We describe the transmission-protocol in rounds. In every

round, every sender Si will transmit securely a bit xi to the
corresponding receiver, Ri, i = 1, 2, . . . , r. In u consecutive
rounds, every sender will send u bits, that is, sending u-bit
messages needs u rounds of the following protocol.

A round is performed as follows:
Step 1 - Encoding - From the bits of x = (x1, x2, . . . , xr)

the mod 6 integers z = (z1, z2, . . . , zt) is computed by linear
combinations taken modulo 6: z = xB mod 6, as in (2).

Step 2 - Transmission - The mod 6 numbers z1, z2, . . . , zt

are sent on t channels to the receivers.
Step 3 - Decoding - The linear transformation x′ =

(x′
1, x

′
2, . . . , x

′
r) = zCT is computed modulo 6 at the re-

ceivers’ side, and number x′
i is given to receiver Ri, i =

1, 2, . . . , r. (Note, that because of the obvious information-
theoretical reasons, generally it is not possible to retrieve
bit xi from integer x′

i).
Step 4 - Pre-Filtering - A random µ : {1, 2, . . . , n} →

{1, 2, . . . , n} permutation is generated at the sender’s side.
Then for j = 1, 2, . . . , n Steps 1, 2 and 3 are repeated for
xµ(j) ∈ {0, 1}n instead of x, where xµ(j) coincides with x,

except on position µ(j), whereas xµ(j) is 0 if it was 1 in
x or 1 if it was 0 in x. Let x′′

i denote the coordinate i of
xµ(j)BCT .

Step 5 - Post-Filtering - Now, receiver Ri stores value x′
i

in its memory, and follows the next program after receiving
any new x′′

i , originating in Step 4:

if x′′
i = x′

i it does nothing;

if x′′
i = x′

i − 1 then Ri concludes that xi = 1;

if x′′
i ≡ x′

i ± 3 then it does nothing;

if x′′
i ≡ x′

i ± 4 then it does nothing;

if x′′
i = x′

i + 1 then Ri concludes that xi = 0.

Theorem 1. After performing one round, receiver Ri re-
trieves the bit xi, for i = 1, 2, . . . , n.



Proof. Clearly, x′
i is equal to quantity, given in formula

(3); so decreasing any non-zero xj in the sum of formula
(3) by 1, leads to either a decrease of 1 of the sum (in the
case when exactly xi was decreased, or by 0 (when an xj

was decreased with a 0 coefficient in formula (3)), or by 4 or
3 modulo 6, (when the coefficient of the decreased variable
was 4 or 3, respectively). Similarly, an increase by 1 will
result an increase by 1 or 0 or 3 or 4 modulo 6, where 0,
3 and 4 means that not the variable with coefficient 1 was
increased. Consequently, a change by value 1 means that
xi = 0, by value -1 means that xi = 1.

2.4 Building Network 1 for the General Ad-
dressing Function

First, consider the case when n = r and π is a permu-
tation, other than the identity. Network 1 can easily be
reconfigured as follows. Suppose, that Sender Si needs to
send bits to Receiver Rπ(i) for some permutation π. Then
– since all the Senders are connected to all the channels
– Sender Si will simply send the same messages as Sender
Sπ(i) would have sent to Rπ(i). Note, that no wiring and no
MOD 6 gates at the wires will be changed. This reasoning
shows that the re-configuration is easy.

Let us consider now (not necessarily equal) n and r, and a
function π from {1, 2, . . . , n} to {1, 2, . . . , r}. If π is an injec-
tion (that is, no Receiver gets messages from two different
Senders), then the original network protocol (and filtering)
works. Suppose now, that S1, S2, S3 want to send messages
to - say - R1. Then we play the original network protocol
with the substitution x1 + x2 + x3 for x1 and 0 for x2 and
x3. Then, x1 + x2 + x3 will appear at R1 with coefficient 1.
Now, in the filtering process, only those random µ permu-
tations may be used which fix the order of the image of the
first three numbers, say µ(1) < µ(2)µ(3). This property fa-
cilitates that R1 can recollect the bits of the long sequences
which is sent to her by S1, S2 and S3, respectively. Clearly,
this method can be generalized to any π.

2.4.1 An alternative £ltering method
The following modification of the filtering steps of the

protocol relies on the fact that if we one-by-one increase the
value of g, then 3g will have period 2, and 4g will have period
3 modulo 6, but g itself will have period 6, modulo 6.

We cover only the basic case here (n = r, π is the identity).
So, we can modify Steps 4 and 5 as follows:
Step 4’ - Pre-filtering-variant- A random µ : {1, 2, . . . , n} →

{1, 2, . . . , n} permutation is generated at the sender’s side.
Then for j = 1, 2, . . . , n, Steps 1, 2 and 3 are repeated for six
values of xµ(j) ∈ {0, 1, 2, 3, 4, 5}n instead of x, where xµ(j)

coincides with x, with a possible exception of position µ(j),

whereas xµ(j) takes on values u, for u = 0, 1, 2, 3, 4, and 5,
in this order, in case of xµ(j) = 1, and xµ(j) takes on values
u, for u = 0, 5, 4, 3, 2, 1, in this order, in case of xµ(j) = 0.

Let x′′
i denote the coordinate i of xµ(j)BCT .

Step 5’ - Post-Filtering-variant - Receiver Ri stores value
x′

i in its memory, and follows the following program after
receiving the 6 new x′′

i ’s in Step 4:

if if the period of x′′
i is 6 then Ri concludes that xi = 1

if the values are increasing and concludes that xi=0 if
the values are decreasing;

if if the period of x′′
i is less than 6 then it does nothing.

Note, that this filtering method can be more applicable
than the original one when the signals are physically rep-
resented as waves or pulses, because then the filtering step
can be performed as filtering out waves or pulses of higher
frequency (= lower period).

2.5 The Security of Network 1
The security of the network-protocol relies on the inde-

pendently generated random permutations µ in each round.
Let us review, what Ri can learn from the bits, addressed

to others. Clearly, Ri will know the number of the 1-bits
with coefficient 4 and also the number of the 1-bits with
coefficient 3 in formula (3), but Ri will not know the identity
of the 1-bits. Note, that Ri will not know anything about
the values of those bits which has coefficient 0 in formula
(3). So we have proved the following

Theorem 2. After each round of the protocol, Receiver
Ri learns its own bit, and also the number of the 1-bits with
coefficient 3 in formula (3), and also the number of the 1-
bits with coefficient 4 in formula (3), and nothing else, for
i = 1, 2, . . . , n.

In other words, due to the random order of listing the bits
in the filtering step, the Receivers learn only the sum of two
fixed subsets of the bits, beside their own bit.

2.5.1 Note on the number of channels
In the practice we can decrease the number of channels if

the modulus is slightly increased: this way more than 500
000 000 pairs can communicate securely in one direction
using 32 channels.

Without going into details, choosing m = 17 for modulus,(
32

17

)
> 500000000

pairs can communicate on 32 channels. The price of this is
that the security will be decreased a little bit: Every Re-
ceiver can learn the sum of 16 pairwise disjoint, fixed sub-
sets of bits instead of just 2 fixed subsets, and for one round
(n + 1)�log 17� = 5n + 5 bits will be transmitted instead of
(n + 1)�log 6� = 3n + 3.

Note, that with modulus 17 (which is a prime) we cannot
get the good asymptotic results as with 6.

3. NETWORK 2
We do not make here assumptions on the number of

Senders. Suppose, that the number of Receivers (in Eu-
rope) is r, and let k denote the smallest integer such that(
2k
k

) ≥ r. Clearly k = O(log r). Suppose, that we would like
to transmit data on optical lines through the Atlantic, from
the U.S. to Europe and suppose, that we have 2k dedicated
optical fibers under the Atlantic. We will use packets of
length r +2k for communication as an example, we will dis-
cuss the altering of the packet length later. Every Receiver
has a 2k bit long unique address, to be defined in the next
paragraph. Note that, as we have an all-optical network,
the address cannot be used for directing the packets, when
a Sender sends a packet, all Receivers will get a packet (but
not the same one).

Suppose further that every Sender is capable to send one-
one packet to the 2k fibers at the same time (not necessarily
the same packet), and we suppose the 2k packets reach the



“optical switch” at the European end of the fibers at the
same time. We also assume that there are no collisions (a
device at the American end of the fibers may take care about
this). The 2k element set of the fibers will be denoted by F .

We assign a k element subset of F for each Receiver
uniquely, and the address of a Receiver will be the char-
acteristic vector of this subset. The optical switch contains
optical XOR gates only (see [7] or [5] on constructions of
optical XOR gates). For each Receiver we XOR the data of
her k fibers and forward the result to her.

The algorithm of a Sender S is the following. Suppose we
are going to send a message to a Receiver R having address
x. Taking x we can calculate that R is connected to fiber set
A ⊆ F , where |A| = k. Now we compose a packet that will
start with 2k bits of address x then followed by r “useful”
bits (these will be the next r data bits we are going to send).
Let y denote the r + 2k bit long packet we made.

Now we choose a fiber f ∈ A and for each e ∈ F \ {f}
we construct a random packet pe of length r + 2k. Then we
construct pf as

pf = y ⊕
⊕

e∈A\{f}
pe.

After this procedure we may send the 2k pe packets at the
same time to the corresponding fibers.

The algorithm of the Receivers is quite simple. They know
their own address of length 2k. When a packet arrives they
check whether the first 2k bits are equal to their address,
and if this is the case then they read the following r bits
and consider them as data. So the equipment of a Receiver
do not have to be more clever than an Ethernet card.

As the consequence of the algorithm of the Senders one
can see that the Receiver R intended by the current Sender
will recognize that the packet is for her, and read the right
data (as she gets exactly packet y). What happens with the
other Receivers? We claim that

• they all will hear absolutely random noise, and

• they will recognize that the packet is not for them
except with a negligible probability.

To see the first statement we prove slightly more.

Lemma 3. For a subset B of fiber set F⊕
e∈B

pe

is exactly y if B = A and consists of r + 2k independent
random bits if ∅ �= B �= A.

Proof. The first part of this statement is an obvious
consequence of the procedure of the Senders. For the sec-
ond part first observe, that if the selected fiber f is not
an element of B then the sum above is a MOD 2 sum of
|B| independent random sequences. The next thing to un-
derstand is that pf itself consists of independent random
bits because it is a MOD 2 sum of a fixed sequence y and
a random sequence

⊕
e∈A\{f} pe. Now suppose f ∈ B but

B �= A. If B ⊂ A then for C = A \ B we have C �= ∅
and f �∈ C, so

⊕
e∈C pe is a random sequence, and so is⊕

e∈B pe = y ⊕ ⊕
e∈C pe. If there is an e′ ∈ B \ A then

independently of what q =
⊕

e∈B\{e′} pe is, q ⊕ pe′ consists

of independent random bits.

For the defective recognition, the probability that a par-
ticular Receiver other than R thinks that the packet is for
her is at most

1

22k
<

1

n

Summarizing, the aimed Receiver R gets the right data,
all other users do not get any information neither about
the data nor about the addressee. But with a very small
probability a Receiver may think that the packet is for her,
she also gets noise as data and none useful information. This
probability is small enough if r is large, as we assumed here.

The overhead of this protocol is O(log r)
r

(2k address bits
contrasted with the r data bits), of course, if we increase the
length of the packets then this value can be made arbitrary
small.

If r cannot be assumed so large, then the probability, that
a Receiver not intended by S falsely recognize the packet as
her own, is not small enough. To fix this problem, we assign
also an extended address for each Receiver that is l copies of
her original address, in succession. Now the packet length
will be 2lk + r and starts with the extended address of the
intended Receiver and, of course, the Receivers look for their
extended address at the beginning of each packet. Now, the
above error probability can be decreased to 1

22lk . On the
other hand we increased the overhead.

It is worth to see some particular numbers that fit the
practice. First of all, the packet length should not be too
large, we may use packets of length 1024. The number of
leased fibers is usually some nice number, let it be 32 = 2k.
With this number we can choose the number of Receivers
r = 500 million. Further, we choose to repeat the address
bits twice, so the length of an extended address is 64 and a
packet contains 960 useful data bits. The probability, that
a Receiver not intended by S falsely recognize the packet as
her own, is

1

264
<

1

1000000000000000000

This probability is so small that the expected time for a user
to get a “bad frame” is more than 100 years.

The drawback of this method that some triple of Receivers
together can decipher the message for R, but not an arbi-
trary triple and not any two of them. If we increase the
number of fibers from 2k = O(log r) to k2 = O(log2 r) then
we can assign a set of fibers to each user in such a way, that
no coalition of k − 1 users can decipher of a message sent
to a user not in the coalition. For this assignment we use
the momentum curve in the k-dimensional space over field
GF (2k). It has 2k points, any k of them are linearly inde-
pendent over GF (2k). Each point can be represented as a
binary vector of length k2 in such a way that any k of them
are linearly independent over GF (2). These vectors can be
used as the characteristic vectors of the “per user” fiber sets.
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