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ABSTRACT
In this work, we show that machine learning, e.g., graphical
models, plays an important role for the self-configuration of
ad hoc wireless network. The role of such a learning ap-
proach includes a simple representation of complex depen-
dencies in the network and a distributed algorithm which
can adaptively find a nearly optimal configuration.

Categories and Subject Descriptors
I.6.5 [Model Development]: Modeling methodologies

General Terms
Distributed Automated Management

1. INTRODUCTION
Self-configuration is for the network to achieve a desired

network configuration by the cooperation of individual nodes.
A key requirement is to find an optimal local algorithm so
that the desired global configuration be achieved. Although
many algorithms and protocols provide promising results, it
is unclear when optimal self-configuration is available in a
fully distributed fashion. This work intends to address the
following questions: (a) How to quantify the optimality of a
configuration? (b) When and how can the local adaptation
results in a globally optimal configuration?

We show that graphical models provide a simple and ex-
plicit representation of inter-dependencies in a network con-
figuration. Such a representation shows when and why a
local management results in a nearly optimal global config-
uration.

2. PROBLEM FORMULATION
Consider an ad hoc wireless network with N nodes, with

positions, X = {X1, · · · , XN}. Let σij be random activity of
link (i, j), referred to as a “communication dipole,” σij = 1
if node i is transmitting to node j; and σij = −1, otherwise.
A network configuration is a combination of both node po-
sitions and link activities, i.e., G(σ, X), and an optimal con-
figuration includes an optimal physical topology (X∗) with
maximal channel reuse (σ∗) under management constraints.
The optimal configuration (σ∗, X∗) is defined as the most
likely configuration that maximizes the likelihood function,
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i.e., arg max(σ,X) P (σ, X| σ0, X0), where (σ0, X0) is the ini-

tial configuration.
Self-configuration is to obtain an optimal distributed al-

gorithm characterized by local rules, gi( ), for 1 ≤ i ≤ N ,
(X̂i(t + 1), σ̂ij(t + 1)) = arg max(Xi(t+1),σij (t+1)) gi(Xi(t + 1), σij(t + 1)|
XNi

(t), σNij
(t)), where Ni and σ

Nij
are the neighbors of node

i and dipole σij , and |
N
Q

i=1

gi() −P (σ, X|σ0, X0) |< δ for a

given δ > 0.

3. PROBABILISTIC NETWORK MODEL
To quantify the goodness of a network configuration, we

obtain the likelihood P (σ, X| σ0, X0) which will be obtained
from P (σ|X, σ0, X0) and P (X|σ0, X0).

Assuming the traffic demand is all-to-all for simplicity,
the management constraint for σ is then to maximize the
spatial channel reuse. Thus, P (σ|X, σ0, X0) = P (σ|X). Each
feasible communication configuration of a network can be
represented with the total energy of the network, which is
referred to as “configuration Hamiltonian,” then character-
ized by the total negative power −

P

ij
Pj , and denoted as

H
′

(σ|X), which is
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+RI (σ, X) + R3(σ, X) + β ·
P

ij ‖SINRij − SINRth‖,

(1)

where ηij = (σij + 1)/2, NM
ij is the neighboring dipoles

within MAC range of an active dipole σij ; and the dipoles
outside the MAC range, denoted as NI

ij , are allowed to be
active concurrently, resulting in interference. Relevant inter-
ference neighbors are those whose power exceeds a thresh-
old, i.e., Pth ≤ Pm · l−4

mj . The minimum region that covers
all relevant interference neighbors is referred to as “inter-
ference range.” The interference outside the inference range
is denoted with a remainder RIij

(σ, X). With RI (σ, X) =
P

ij RIij
(σ, X), being the total contribution due to interfer-

ence outside the interference range.
The total energy H

′
(σ|X) can now be related to probabil-

ity P (σ|X) using an analogy between communication activ-
ities in ad hoc wireless networks and particles in statistical
physics [2]. The probability distribution of particle systems
obeys the Maxwell-Boltzmann distribution [2]. As a result,
for a configuration Hamiltonian, the corresponding Boltz-

mann distribution is P (σ|X) = exp−H
′
(σ|X)
T

/
P

σ
exp−H

′
(σ|X)
T

.

We now obtain the probability distribution of node posi-
tions P(X|σ0, X0), assuming that current node positions are
conditionally independent of initial conditions, i.e., P (X|σ0, X0)



= P (X|X0). With no management purposes, nodes’ move-
ment can be characterized by a two-dimensional random-
walk around fixed positions, i.e., X0, where P (X|X0) is a
multi-variate Gaussian distribution with an exponent H(X|X0)

= (X −X0)T · (X −X0)/ 2σ2, and the variance of node move-

ment σ2. Management constraints make nodes move cooper-
atively to achieve a pre-defined constraint, e.g., 1-connected
topology. The 1-connectivity can be achieved by a Yao-like
graph, which can be implemented with

C(Xi, Xj) =

(

0 ,
|lij−lth|

lth
< ǫ0 or j /∈ Nθ

i

|lij − lth| , otherwise
(2)

where ǫ0 is a small constant, lth is a threshold, and Nθ
i is

the set of the nearest neighboring nodes of node i for every
angle θ (θ=90o in this work). The extended Hamiltonian for
the topology is H

′
(X|X0) = H(X|X0) +

P

i

P

j∈Nθ
i

ζ ·C(Xi, Xj)

, where ζ is a weighting constant.

With the derived Hamiltonians, the overall configuration
Hamiltonian results in H

′
(σ, X| σ0, X0) = ςσ· H

′
(σ|X) + ςX ·

H
′
(X|X0), where ςσ and ςX are scaling constants, adjusting

the Hamiltonians with different scales [2].

4. GRAPHICAL REPRESENTATION
To determine the optimality of self-configuration, it suf-

fices to examine whether the obtained likelihood function is
factorizable over cliques. This can be done using the proba-
bilistic graphical models widely studied in machine learning
[1]. Specifically, a set of random variables, e.g., X, is called
Gibbs Random Field (GRF) if it obeys Gibbs distribution,

P (X) = Z−1
0 exp−H(X)

T
[2].

Since the Boltzmann distribution of a network configu-
ration obeys a Gibbs form, thus from Hammersley-Clifford
theorem [2], a network configuration can be represented with
two Markov Random Fields (MRFs), i.e., (σ|X) and (X|X0).
The remaining question is if these MRFs are factorizable
into small clique potentials [2].

Fig.1 (a) illustrates a one-dimensional network topology.
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(a) MAC and Interference Neighborhood on Linear Topology
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(b) With RI(σ, X) (c) Without RI (σ, X)

Figure 1: Dependence of (σ, X)

In Fig.1 (b), a link between two dipoles indicates their statis-
tical dependence. Since link activities of all dipoles are mu-
tually dependent, the graph is fully connected. However, the
outside interference, RI (σ, X), is relatively small compared
to the first three terms in the configuration Hamiltonian of
Equation (1). Moreover, the third-order term, i.e., R3(σ, X),
is also negligible compared to the second-order term. Hence,
the resulting dependence now becomes local as shown in
Fig.1 (c). And the system Hamiltonian can be well repre-
sented with only the first and second order terms, i.e., αij

and αij,mn, which define an approximation P l(σ|X) with

an exponnent Ĥ′ (σ|X) = −
P

ij α
ij

· ηij +
P

mn∈NI
ij

α
ij,mn

·ηijηmn. The approximated MRF, (σ|X), is now the well-
known second-order Ising model [2]. The following proposi-
tion shows the goodness of the approximation.

Proposition 1: Let lij be the distance between a signal
source i and destination j of a dipole σij ; and lmj be the
distance between an interference source m and signal des-

tination j. Then |H(σ|X)−Hl(σ|X)
H(σ|X)

| ≤ O(maxij,mn l−2
ij l−2

mj),

for lmj > lij > 1. The proof is straightforward with simple
algebra and thus omitted.

Next, for the 1-connected topology, the corresponding Hamil-

tonian, H
′

(X|X0), shows that the random field, (X|X0), is a
second-order energy MRF [2]. Therefore, the coupled MRF
(σ, X| σ0, X0) can be fully described by an Ising model and
a second-order MRF together, representing the nested local
dependence with random bonds.

5. DISTRIBUTED ALGORITHM
The nearly optimal configuration is the one that maxi-

mizes the approximated likelihood function. Maximizing the
global likelihood function reduces to maximizing local like-
lihood at cliques, i.e., for 1 ≤ i, j ≤ N , (X̂i(t+1), σ̂ij(t+1)) =

arg max(Xi(t+1),σij (t+1)) P l(Xi(t + 1), σij(t + 1) |XNi
(t), σNi

(t)).

Therefore, the nearly optimal local rule
Q

i gi() = P l().
Stochastic relaxation is an optimal distributed algorithm
through Gibbs sampling [1]. Now self configuration is viewed
as local optimizations of Hamiltonian on cliques.

An important application of self-configuration is adaptive
recovery from failures. Consider node failures from an op-
timal configuration. There is a trade-off between global op-
timization of network configuration and failure localization.
Fig. 2 (a) shows the self-configured topology from initial

 

 

 

 

(a) Self-configuration and Failure (b) Self-Recovery

Figure 2: Self-Configuration and Recovery

randomness, where the failed nodes are marked by stars.
Due to failure localization, Fig. 2 (b) shows that only nodes
and links within the arc are involved in the recovery.

6. CONCLUSION
We find that a random-bond model is the probability

distribution of the network configuration where link activ-
ities are coupled by random coefficients due to node posi-
tions. This model shows that the nested Markov dependence
naturally appears in the ad hoc wireless networks. Thus,
self-configuration is achieved in a fully distributed fashion
through stochastic relaxation.
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