A First Step Toward Understanding Inter-Domain Routing
Dynamics

Kuai Xu
kxu@cs.umn.edu

Jaideep Chandrashekar
jaideepc@cs.umn.edu

Zhi-Li Zhang
zhzhang@cs.umn.edu

Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN, USA

ABSTRACT

BGP updates are triggered by a variety of events such as link
failures, resets, routers crashing, configuration changes, and
so on. Making sense of these updates and identifying the
underlying events are key to debugging and troubleshooting
BGP routing problems. In this paper, as a first step toward
the much harder problem of root cause analysis of BGP up-
dates, we discuss if, and how, updates triggered by distinct
underlying events can be separated. Specifically, we explore
using PCA (Principal Components Analysis), a well known
statistical multi-variate technique, to achieve this goal.

We propose a method based on PCA to obtain a set of
clusters from a BGP update stream; each of these is a set of
entities (either prefixes or ASes) which are affected by the
same underlying event. Then we demonstrate our approach
using BGP data obtained by simulations and show that the
method is quite effective. In addition, we perform a high
level analysis of BGP data containing well known, large scale
events.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks|: Network
Operations—Network Monitoring

General Terms

Measurement, Management, Design

Keywords
Routing, BGP, Root Cause Analysis

1. INTRODUCTION

BGP [1], the de facto Internet inter-domain routing pro-
tocol, is an incremental path vector protocol: routing up-
dates (announcements and withdrawals) are generated only

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

S GCOMM'’ 05 Workshops, August 22-26, 2005, Philadel phia, PA, USA.
Copyright 2005 ACM 1-59593-026-4/05/0008 ...$5.00.

in response to network events, such as link or router failures
(or repairs), session resets, policy changes, misconfiguration,
etc. A BGP router may receive thousands of BGP updates
on a daily basis, reflecting activity from all over the Inter-
net. Given the critical nature of the Internet routing in-
frastructure, understanding BGP routing dynamics and the
underlying “root causes” is crucial but, at the same time,
extremely challenging.

A variety of events can trigger BGP updates. Some events
may affect prefixes originated from only a few ASes (Au-
tonomous Systems), generating only a small number of BGP
updates. For example, a network failure in a stub AS will
trigger route withdrawals only for destinations in that AS.
On the other hand, a link or router failure within a tier-1
AS may trigger a large burst of BGP updates—the event
not only affects network prefixes originated by the said AS
but also those from its customers. Moreover, network events
may occur concurrently or close together in time and BGP
updates from these events are likely to become interleaved as
they propagate across the Internet. Thus, a burst of BGP
updates observed by a distant BGP vantage point can be
caused by a number of unrelated events. On the flip side,
a burst of seemingly unrelated BGP updates may actually
be triggered by the same underlying event. For instance, a
failed switch at an Internet Exchange Point may affect mul-
tiple ASes that do not have direct connections to each other,
generating a burst of BGP updates whose AS Paths may not
intersect. As another example, a major fiber cut (e.g., the
Baltimore tunnel fire in 2001 [2]) may affect many ASes
whose long haul connections happen to share a common
fiber track, causing a flurry of “unrelated” BGP updates.
These examples, together with the routing policy complica-
tions illustrated in [3], highlight the potential pitfalls and
limitations of attempting to explain the (observed) updates.
This is further underscored by recent work directed at locat-
ing routing instabilities [4, 5, 6, 7]. While these efforts have
significantly advanced our understanding of routing dynam-
ics, they also raise several questions about how to go about
constructing a system that can diagnose and troubleshoot
routing events on the Internet.

In this paper, we discuss the first step toward such a goal,
which is also related to the problem of root cause analysis:
how to identify and separate BGP wupdates that are likely
triggered by distinct events. In this paper we explore a par-
ticular statistical method, Principal Components Analysis,
and study its effectiveness in separating updates, collected at
a vantage point, that have distinct underlying causes. Note

that we do not attempt to explain or localize the underlying
cause for the updates, but simply wish to group different
prefixes or ASes such that all the members in a group are
(most likely) affected by the same cause.

Validating our methodology, or any other for that mat-
ter, on actual Internet routing data is hard (the underly-
ing events and related dynamics are unknown). We in-
stead carry out extensive simulations to demonstrate that
our method is indeed effective. The results of applying our
algorithm to data thus obtained are very promising: our al-
gorithm can identify groups of prefixes affected by the same
event with high recall and precision. In addition, we also
analyze real world BGP data that is known to contain large
well-known events. Our initial results show that in most
cases, there are other events (with smaller impact) that take
place close in time to the reported events. This underscores
the necessity of a methodology such as ours prior to applying
any sophisticated root cause analysis algorithms.

A key methodological difference between our work and tra-
ditional efforts in root cause analysis is that ours is essen-
tially a black-box approach, i.e., our statistical technique
does not use information contained in the BGP updates,
and instead relies on the temporal correlations between up-
dates. We believe that such an agnostic methodology is im-
portant, at least in the initial stage, to overcome the lack of
“fidelity” in BGP updates. Stated another way, information
contained in BGP updates may be abstracted or even mis-
leading (e.g., the AS triggering the BGP updates may not
appear in the observed AS paths due to policies [3]). We
argue that two prefixes being updated at (approximately)
similar times is a stronger indicator, compared to similari-
ties in the AS paths, that they were affected by the same
underlying event. In the extreme case, the AS paths will
have nothing in common if the prefixes share physical, but
not logical, connectivity. We argue that the updates should
be separated, at the early stage, primarily based on the ex-
isting temporal correlations between updates. Additional
domain knowledge (and information in the updates) should
be incorporated at a later stage in the root cause analysis,
after the updates have been separated. Thus, the work that
we present in this paper serves to complement the existing
body of work in root cause analysis.

2. BACKGROUND

In this section, we first briefly describe BGP, focusing on
details relevant to this paper. Subsequently, we motivate
the reasons that lead to using PCA as a tool to study the
problem of separating BGP updates.

2.1 Border Gateway Protocol

BGP is an incremental, path-vector protocol: once a ses-
sion is established between neighboring routers, route up-
dates are generated only in response to network events. Sup-
pose a session between a pair of BGP routers fails, i.e., the
event is a link failure, then the adjacent routers initiate BGP
updates to their neighbors. These updates indicate how
“reachability” to certain destinations has changed. For ex-
ample, if the failure caused a loss of reachability to a destina-
tion network, the router will generate a withdrawal message,
listing the network prefixes that have become unreachable.
On the other hand, if the failure simply causes a path change
(or if the router learns of a previously unknown destination),
then an announcement is generated—containing a set of net-

work prefixes and associated path attributes. A particularly
relevant attribute is the “AS Path”, which indicates both the
origin AS for the prefix, as well as the sequence of ASes over
which the route was propagated. Upon receiving a BGP up-
date from a neighbor, a router might itself, after updating
its own routing state, generate a secondary route update.
Thus, by the mechanism just described, information about
“events” propagates router by router through the network.

As a service to the networking community, public “collec-
tion” sites such as Route-Views [8] maintain BGP peering
sessions with a number of routers in various ISPs and record
the received updates. Each of these routers acts as a vantage
point into the Internet. The logged updates reflect network
events that have occurred somewhere in the Internet.

To draw an analogy, we call the time ordered sequence of
updates observed at a single vantage point as a BGP update
stream, and this will form the starting point of our method-
ology. Intuitively, each component in the update stream can
be viewed as a “signal” associated with a particular variable
(or prefix, since updates are at the level of prefixes). Seen
another way, each event affects a number of prefixes, hence
induces signals for a set of variables. Typically, at the loca-
tion of the event (or close to it), these related signals are well
correlated. However, due to various external effects such as
network policies, timing delays, etc., when these signals are
recorded at a distant vantage point, the original relation-
ships may be slightly altered: signals for different variables
induced by the same event may become less correlated, or
signals for variables induced by different events may appear
to be related. However, it is reasonable to expect that sig-
nals that are “related”, i.e., induced by the same event will
have more in common than “unrelated” signals. Our goal
is to exploit correlations between these signals and identify
groups of variables affected by the same event.?

2.2 Exploiting Correlations

As discussed previously, we expect that if a set of prefixes
that are affected by the same event, updates for these pre-
fixes would reach a given vantage point at approximately
the same time. In other words, the updates for prefixes
affected by the same event will share a lot of temporal sim-
ilarity. There are a number of simple clustering techniques,
i.e., k-means, agglomerative, etc., that may be used to this
end. The drawback with these schemes is that in order to
be effective, they require some a priori knowledge about the
number of clusters. This is often hard to estimate; the dy-
namics hidden in the BGP data are exactly what we are
trying to locate.

Principal Components Analysis is a well studied statisti-
cal technique which operates by analyzing variance between
a given set of variables, which may be correlated and pro-
duces a new set of “latent”, uncorrelated variables, which
are called the principal components. Geometrically, PCA
is an orthonormal transformation of a set of points where
the variance of the original data in each direction is max-
imized. PCA is well suited to unsupervised tasks since it
relies completely on the variance existing in the data. One
of the classical applications of PCA is in “dimensionality
reduction”. In a typical dataset, few principal components

IFor our purpose, an event is simply any underlying dynamic
that affects a set of prefixes. Thus, a single instance of a link-
failure is termed an event. So is a flapping link (affecting a
different set of prefixes).

account for almost all the variance in the original data. This
aspect makes it particularly attractive for the problem we
study in this paper—we expect that few (underlying) events
affect a large number of prefixes, generating a large number
of updates. Moreover, since PCA “concentrates” variance
in each independent dimension, this property can be effec-
tively exploited to cluster the prefixes. In this paper, we ex-
plore the application of this technique toward the problem
of separating updates triggered by different events. In the
following, we provide a brief overview of the PCA method
before we go on to describing how it is actually used (next
section). A comprehensive description of PCA can be found
in [9)].

Suppose we have a time-series of n variables (sampled at
t discrete time steps), X = [X1,X2,...,Xy]", represented
as a n Xt matrix. Each row corresponds to a variable and
each column to a sample across the n variables. Let A1 >
A2 > ... >)\, be the rank ordered eigenvalues associated
with the matrix XX7 and [a1, @2, . .. , an] be the associated
eigenvectors. Then the i-th principal component, denoted
PC; of X, is obtained as PC; = of X. Importantly, the
variance captured by the ¢-th principal component is exactly
described by its corresponding eigenvalue, i.e., var(PC;) =
Ai. Also, ay is the direction along which the original data
has the largest variance; the fraction of variance captured

" o
by this component is Sl

Since PC=[au, @, . .. ,an]T X, PCA transforms the space
containing the “samples” of the n observable variables {X;}
into a new space of n principal components (or latent vari-
ables) denoted {PC;}, where the first variable PC contains
the most variance inherent in the original data, and PCj,
for 7=2...n, captures the maximal variance in the remain-
ing data (after removing the contributions of the previous
j—1 principal components). Informally, PCA re-expresses
the original data in an efficient manner, i.e., most of the
information in the original data is captured in a few PCs.

3. METHODOLOGY

In this section, we describe a methodology that takes an
update stream, i.e., updates collected at a vantage point, as
input and produces a set of “clusters”, each of which is a set
of prefixes or ASes that are all affected by the same under-
lying network event. First, we explain how to construct a
time-series representation of the update stream. Given this
representation, a number of statistical techniques may be
applied. In this paper we primarily explore the use of PCA
to cluster prefixes (or ASes) based on the raw temporal sim-
ilarity in their updates.

3.1 Constructing the BGP Update Matrix

Given a stream of BGP updates recorded over an interval
at a single vantage point, we first convert it to a (BGP) up-
date matriz, X, as follows. Let P = {p1,p2,... ,pn} be the
set of all prefixes for which at least one update (announce-
ment or withdrawal) was observed in the interval. Also,
let A= {ai,az2,...,am} be the set of corresponding origin
ASes that these prefixes belong to.

To construct the (prefix based) time-series, we divide the
observation interval into discrete bins of size §. In this paper,
we select § = 30, which corresponds to a popular choice in
routers for the announcement rate limiting timer.

In each time slot j, we calculate the number of distinct up-
dates associated with a prefix p; and denote this as X;;. In
other words, X;; is the number of updates seen in time j that
affected prefix p;. Furthermore we convert the matrix en-

tries into standard units with the transformation: X=(Xj;;)
with)N(ij = (X;; — pi)/oi. Then, each row)N(Z is a time series
with zero mean and wunit variance; this represents the “rel-
ative” signal strengths associated with each prefix p;. Also,
the absolute value of)N(ij indicates how much the observed
update signal in bin j differs from the overall (mean) signal
strength seen over the entire stream.

Note that, with few exceptions, each prefix is uniquely as-
sociated with an “origin” AS. Thus, we can also construct
the matrix X at a more aggregate level, in terms of the
origin ASes, rather than prefixes. In this case, each row cor-
responds to a distinct origin AS, and each entry represents
the number of updates for any prefix belonging to the AS.

The BGP update matrix thus constructed, which we can
view as a discrete time series, is in a very general form.
There are a number of statistical methods that may be ap-
plied to understand different relationships between the pre-
fixes (or ASes). However, for reasons discussed previously,
PCA seems particularly well suited for our purpose. In the
next part we describe how we apply this particular technique
to obtain the clusters described previously.

3.2 Using PCA to Extract AS Clusters

Applying the PCA algorithm to the BGP update matrix
X returns a set of “latent” variables, which (abstractly) cor-
respond to distinct events. However, we are more interested
in obtaining the set of original variables, i.e., objects from
the set P (or even A) that are affected by the same event.

Applying the PCA procedure to X, we obtain n eigenvec-
tors, and consequently the n (principal) components. Our
first observation is that all the n PCs extracted from X are
not equal. Those associated with larger eigenvalues contain
more information (hence the term “principal”) and are more
“significant” than others. Deciding on the specific number
of PCs depends to a large extent on the particular applica-
tion and several heuristics are described in the literature [9].
Here, we wish to focus on events that have a large impact
(affect a large number of prefixes or ASes and trigger a large
number of updates). The heuristic that suggests itself is the
so called Kaiser’s criterion, stated as follows: select a prin-
cipal component, PC;, as being significant if A\; > k. Note
that the set {\;}1<i<n is rank ordered; thus if j < n is the
largest integer such that A\; > k, we have that PC; : ¢ < j
are significant, while PC; : ¢ > j are not, and can be dis-
carded. The intuition behind Kaiser’s criterion is as follows:
since var(X;) = 1, A\; > k implies that the corresponding
principal component “explains” the variance of at least x
original variables. Having decided on the number of princi-
pal components to be retained, for convenience we refer to
each component as a major or significant event.

The next step is to actually group the variables (prefixes
or ASes). Our “clustering” algorithm uses the fact that each
PC is simply a linear combination of the original variables
(rows in the BGP update matrix), i.e.,

n
PC; = al-TX = [aile +...+ aan]T = [Z ainj]T
j=1

For a significant principal component, say PC;, the coeffi-
cient (PC loading) ajj; reflects the influence of PC; on the

variance contributed by Xj, i.e., the update signals from AS
j. Let a; = maxi<;j<ns; be the maximal value of the coef-
ficients. We then select ASes that contribute approximately
the same loading and place them in the same cluster. The
underlying intuition is that signals that contribute (approx-
imately) the same loading to a particular PC are most likely
related, i.e., affected by the same event. To do this, we select
all coefficients that are “close” to the maximal value, group-
ing the corresponding ASes that satisfy this condition into
the AS cluster associated with PC;. Following our earlier
intuition, the underlying “event” captured by PC; is most
likely to affect those variables whose corresponding PC load-
ings are close to the maximal value; thus updates associated
with these ASes are likely to be highly correlated.

Algorithm 1 EXTRACTCLUSTER(PC,, {j}, K, €)

PC; is such that X\; > k; CLUS = {};
a® = maxi<k<nQik; @7 = maxi<k<n|ovik
if at # o~ then
for j =1 ton do
Qij = =i
end for
a=a"
else
a=a
end if
for j =1 ton do
if a5 > (1 —€)*a and a;; < a then
CLUS =CLUSU{j}
end if
end for
if |CLUS| > then
return CLUS
end if

The detailed algorithm for extracting the cluster from a
PC is given in Algorithm 1. The parameter € is used to
control the correlation “tolerance” among prefixes in the
same cluster: smaller values of € will admit more prefixes,
with less strongly correlated updates, into a cluster.

The parameter x, which controls which PCs are run through
the algorithm, is used to control the “significance” of (in-
ferred) events. For example, with x = 1, only dominant
PC;’s with \; > k = 1 with an extracted cluster of size at
least two are considered as “significant” events.

In general, for a given k, we regard a PC; (and its asso-
ciated AS cluster) as an inferred event (with respect to k) if
i > Kk and the size of the resulting cluster > k. This defi-
nition reflects our intuition that “significant” events cause a
larger number of updates (thus, larger variance) and affect
more than a few prefixes (or ASes). While these notions
are subjective, our intent is simply to provide a framework
to differentiate events that are significant from those which
constitute the data noise. In the next section, we apply
our methodology to “simulated” update streams to verify
its effectiveness in identifying the significant events.

4. SIMULATIONS

In this section, we describe details of how simulated BGP
update traces were obtained, and the results of applying
our algorithm on them. Testing our approach in a controlled
setting helps us determine the “optimal” parameter settings,
and also enables us to validate, and verify the effectiveness,
of our methodology. The latter is much harder to carry out
with real BGP data — there is little information about the
underlying dynamics responsible for the updates. The key

question we attempt to answer in this section is whether the
events “inferred” by our (PCA based) algorithm do, in fact,
correspond to actual events. As we show shortly, the answer
is affirmative.

We carried out a large number of simulations, using dif-
ferent topology families, with the SSFNet simulation pack-
age [10]. In this section, we only discuss the results from
a fixed 400 node power-law AS topology [11]. Each node
in the topology represents an AS with a single router and
originating a single destination prefix. Also, routers prefer
routes with shorter AS paths. Finally, we attach a vantage
point to a node in the graph which records all updates.

In each simulation, we generate a set of dynamic events
(between six and eight) of two types: major events, which
affect a large number of ASes; and minor events, which have
a relatively small impact (and act as the noise). For major
events, which are 60% of all events, a node is failed (once)
and subsequently restored, i.e., a single on-off instance. In
contrast, minor events are persistent; selected nodes are pe-
riodically failed and restored. Clearly, a major event affects
reachability to many ASes, triggering a large number of up-
dates, while a minor event affects only one or at most a few
ASes (and this happens multiple times). The rationale for
choosing this event-configuration comes from the analysis of
Internet prefixes carried out by Ceasar et. al. [5].

To select candidate nodes for each type of event, we first
construct the path-set for the vantage point. Simply, this is
the set of paths used by the vantage point to reach each of
the 400 destination nodes in the topology. Given this path-
set, we compute the transit cost of each node as the number
of “paths”, in the path-set, that traverse it. Intuitively, the
transit cost of a node is the smallest number of destinations
that will be affected by the failure. If node x lies on the path,
from the vantage point, to the set of destinations {a, b, ¢, d},
the transit cost for x is 4. Consequently when node z fails,
we expect to see updates for each of the nodes in the set
{a,b,c,d}. Clearly, the transit cost for a stub node (with
degree 1) is 1. Thus, nodes that have a higher transit cost
will have a greater impact on the topology when they fail
or are repaired. To simulate major events, we select nodes
with a high transit cost (and a low transit cost nodes for
the minor events). The inter-arrival times between events
are exponentially distributed (the mean is set to the conver-
gence time for the topology). For minor events, the number
of on-off cycles is selected such that there is at least one mi-
nor event occuring around the same time as a major event.
However, the duration between cycles is fixed.

We performed over 300 simulation runs with this topol-
ogy. In each instance we generated the required number of
events, and at the end of the simulation, fed the updates col-
lected at the vantage point into our algorithm. The output
is a set of AS clusters which are, informally, the “inferred”
events. We use the recall and precision metrics, described in
the following, to evaluate our algorithm on the simulations.
Note that in the simulations, since each node originates ex-
actly one prefix and hence the BGP update matrix, whether
constructed in terms of prefixes or origin ASes, is the same;
we use the terms AS clusters and prefix clusters interchange-
ably.

From the topology itself, corresponding to each event, we
determine the ezpected set of affected ASes. This is simply
the set of ASes for which we expect to see updates for the
event (when a node fails). Let a particular “observed” set of

0.025

0.024f

False Positive Rate

e wﬁgﬁ@
-z T aR BT T o

Recall

(a) Recall (b) Precision (C) False Positive Rate

Figure 1: Performance of algorithm with varying e, which controls tolerance during clustering.

ASes, i.e., an inferred AS cluster be denoted as S,. With this the additions increase the observed event size, which is the

set, we can associate an expected set S. that best matches denominator in the expression for precision.

the observed set. Then we can define the recall as % The corollary to this observation, i.e., increasing e lowers
[S6NSe ¢ precision, is that the false positive rate also increases the

and precision as L, for each observed event.

[Sol same way. An inferred (observed) event is a false positive if

it cannot be matched with any real event. Fig. 1(c) plots
4.1 Simulation Results the fraction of events that are false positives when different
€ values are used in the algorithm. Clearly, larger € allows
ASes to be incorrectly included into an event cluster, i.e.,
ASes with weaker temporal similarity may be grouped to-
gether. In such cases, while the dominant AS cluster (which
is the inferred cluster that best “covers” the expected set)
has high recall. However, smaller events are broken up and
do not match any expected event.

From the results presented in this section, we see that:
first, our algorithm performs very well in separating the
ASes affected by distinct events, and secondly, the algorithm
is not overly sensitive to the parameter €. Thus, while there
is a tradeoff between recall and precision for different €, a
reasonable value would be in the range [0.75,0.9]. In prac-
tice, we expect that a network operator would subjectively
decide on a value depending on whether recall or precision
is more important.

Next, we briefly discuss the overall results of applying
our methodology on data obtained from simulation. In the
results that follow, we set kK = 2, so that the algorithm only
reports events that affect at least two ASes (or prefixes,
equivalently). The generated simulation traces correspond
to about 663 events, half of which were major events (as
defined in the setup).

In Fig. 1(a), we plot the cumulative distribution of re-
call for different values of e. The x-axis in the figure corre-
sponds to different recall values. Notice in the figure that
the overall recall is quite good (in the worst case, i.e., with
e = 0.10, less then 15% of events have a recall lower than
0.95), and there is some variation across the different e val-
ues). When e = 0.10, about 0.05% of events have recall lower
than 0.7, while the recall is about 0.9 for the same fraction
when € = 0.30. Also, at least 99.5% of events have a recall
greater than 0.9 when € = 0.30. Clearly, larger € translates
into higher recall. Note that e affects the “tolerance” of the 5. CASE STUDY

factor loading, i.e., how much the loading for a variable can To further validate our approach, we perform several de-
differ from the the maximal loading, and still be included in tailed case studies of BGP routing data containing reported
the cluster. Thus by increasing ¢, we allow greater latitude routing events. In almost all cases, we identified several
in the factor loadings while including ASes in the cluster. smaller events having occurred around the same time. This
Including more ASes, by increasing €, cannot decrease the clearly illustrates the pitfalls in applying simplistic methods
recall. However, the flip side of this effect is that precision to perform root cause analysis, without first separating the
decreases by allowing more ASes into the cluster. updates for different events.

Fig. 1(b) plots the cumulative distribution of the precision In each case study instance, corresponding to large scale
metric for different e values. Overall, the precision is still events reported on NANOG [12], we construct the BGP up-
quite high—about 80% of inferred events have a preicision date stream for the interval containing the event. Subse-
greater than 0.95 in the best case (with ¢ = 0.10). In the quently, we ran our algorithm on the update stream. Unlike
worst case, i.e., € = 0.30, the precision is greater than 0.90 in the previous section, here we construct the BGP update
in more than 65% of all inferred events. However, changing matrix based on the origin ASes (rather than prefixes). The
€ has a larger impact on precision as compared to the recall. reason for this is that it is relatively hard to analyze topo-
To see this in more detail, notice that when ¢ = 0.30, 10% logical similarity and spatial relationships between prefixes.
of the events have precision less than 0.35, and 70% of the Such information is key to understanding if the prefixes in
events have precision greater than 0.5; in contrast, when a cluster are indeed related. On the other hand, spatial re-
€ = 0.10, precision is less than 0.4 for 10% of the events, and lationships about ASes are somewhat easier to understand
at least 80% of the events have precision greater than 0.5. from the Internet AS graph.

The explanation is that increasing e makes it more likely Table 1 summarizes six different case studies. The first
that ASes are incorrectly included into a cluster. While two columns describe the subject header in the NANOG

these (erroneously) included ASes do not impact the recall, posting and when it was posted. The third column lists

Known events | Date [View [# ASes observed during the window | # of inferred events | Size of the most significant event
Network outage 07/21/2003 | AS1221 487 11 182

Northeast blackout 08/14/2003 | AS11608 587 15 118

Hardware problem 02/23/2004 | AS6539 607 8 385

Peering link instability | 05/25/2004 | AS11608 225 12 31

Network unreachable 06/12/2004 | AS1239 781 10 662

Route leaking 09/17/2004 | AS6539 1333 14 1168

Table 1: Summary of six events obtained from NANOG used for case studies.

100000

10000

1000

Update volume

1
9:01pm 9:16pm 9:31pm 9:46pm 10:01] T16pm10:31pm10:46pm11:01pm
Time (September 17, 2004)

Figure 2: Update stream around the time of “AS22534

route leaking” event.

the particular vantage point used to construct the stream.
Column 4 lists the number of origin ASes for which updates
were observed over the interval of the event. Column 5 lists
the number of events that were “inferred” as major by our
algorithm (with k = 2). Finally, the last column indicates
the size of the most significant event, i.e., the size of the AS
cluster extracted from PC:. Note that in all of these cases,
there are a multiplicity of events in the observation interval.
Due to a lack of space, we only describe the detailed analysis
for the last event in Table 1.

A “route leaking” event was reported (on NANOG) on
Sept. 17, 2004. It was specifically reported AS22534 was
leaking transit routes from AS3356 (Level 3) to AS6461
(Metromedia Fibre Network). The probable cause was a
misconfiguration at a router inside AS22534. Fig. 2 is a
time series of the number of updates received at the vantage
point. The dramatic spike soon after 10:00 p.m. was blamed
on the reported event. However, our algorithm identified 14
distinct events in the same time interval, only one of which
corresponds to the reported event. Upon further examina-
tion, we noted that the “spike” contains updates from 6 of
the 14 events. In other words, there were 5 other events that
occurred (very) near the time of the reported event. We can
be quite certain that these events are unrelated since the
update patterns for these events are distinct, and different
from that seen for the route leaking event.

The take away message from here is that even though a
single event can account for most of the updates observed
at a given time, there may be other unrelated events around
the time that contribute a relatively smaller amount. Ana-
lyzing these updates without first separating them may lead
to incorrect inference of the root causes. However, as we
have shown in this paper, we can use statistical correlation
methods to separate updates associated with distinct events.

6. CONCLUSIONS

In this paper, we explored the use of Principal Compo-
nents Analysis as a way to separate separate BGP updates
triggered by distinct events. We tested our approach exten-
sively with simulation traces and showed that our simple al-

gorithm can separate events with a high degree of accuracy.
In addition, we examined several case studies to further in-
vestigate the soundness of our approach.

An implicit assumption that we made in modelling the
BGP update stream was that distinct events affect disjoint
sets of prefixes or ASes, i.e., it is unlikely that two distinct
events will affect the same prefix (or AS) in the same obser-
vation interval. While we believe this to hold in the majority
of cases, there may be instances where this is not true. In
such cases, our PCA based algorithm does not perform as
well as if the events affect disjoint sets; this is related to the
orthogonality of the new axes determined by the eigen vec-
tors. We are currently investigating other techniques such as
Independent Component Analysis and Kernel PCA, which
can relax the requirement for orthogonality.

The paper describes a specific method to address, what is
essentially the first step in the much harder problem of root
cause analysis (of BGP updates). Thus, our work comple-
ments the existing techniques in the area. In the immediate
future, we are trying to evaluate the improvement achieved
by using our techniques prior to applying a more fine grained
analysis as is described in previous work [5, 6].

7.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science
Foundation under grants I'TR-0085824 and CNS 0435444.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

8.
(1

(2]
(3]
[4]
[5]
(6]
(7]
(8]
(9]
[10]

(11]

(12]

REFERENCES
Y. Rekhter and T. Li, “A Border Gateway Protocol 4
(BGP-4),” Mar. 1995, rFC 1771.

“2001 Baltimore tunnel fire,” http:
//www.usfa.fema.gov/downloads/pdf/publications/tr-140.pdf.
R. Teixeira and J. Rexford, “A measurement framework for
pin-pointing routing changes,” in Proc. of ACM SIGCOMM
Network Troubleshooting Workshop, 2004.
Di-Fa Chang and Ramesh Govindan and John Heidemann,
“The temporal and topological characteristics of BGP path
changes,” in Proc. of ICNP, 2003.
M. Caesar, L. Subramanian, and R. Katz, “Root cause analysis
of Internet routing dynamics,” U.C. Berkeley Technical Report
UCB/CSD-04-1302, Tech. Rep., Nov. 2003.
A. Feldmann and O. Maennel and Z. Mao and A. Berger and
B. Maggs, “Locating Internet routing instabilities,” in Proc.
ACM SIGCOMM, 2004.
M. Lad, D. Massey, and L. Zhang, “Link-rank: A graphical tool
for capturing bgp routing dynamics,” in Proc. of NOMS, Apr.
2004.

“Routeviews,” http://archive.routeviews.org.
1. Jolliffe, Principal Component Analysis (2nd edition), ser.
Spinger Series in Statistics. Springer, 2002.

“Scalable Simulation Framework,” http://www.ssfnet.org.
M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-law
relationships of the Internet topology,” in Proc. ACM
SIGCOMM, Aug. 1999.
NANOG, “NANOG mailing list,” http://www.nanog.org.

