TVA: A DoS-limiting Network Architecture

Xiaowei Yang (UC Irvine)
David Wetherall (Univ. of Washington)
Thomas Anderson (Univ. of Washington)

DoS is not even close to be solved

- Address validation is insufficient (botnets)
- Traceback is too little too late (detection only)
- Pushback lacks discrimination (imprecise)
- Secure overlay filtering requires offline authenticators (public servers)

Capabilities are a promising approach

- Destination control
 - The destinations know better.
- Network filtering based on explicit and unforgeable packet state, i.e., capabilities
 - Only the network can shed load before the damage has been made.
- Anderson et al. [Anderson03], Yarr et al. [Yarr04]

Sketch of the capability approach

1. Source requests permission to send.
2. Destination authorizes source for limited transfer, e.g., 32KB in 10 secs
 - A capability is the proof of a destination’s authorization.
3. Source places capabilities on packets and sends them.
4. Network filters packets based on capabilities.

Capabilities alone do not effectively limit DoS

- Goal: minimize the damage of the arbitrary behavior of k attacking hosts.
- Non-goal: make DoS impossible

Problems
1. Request or authorized packet floods
2. Added functionality in a router’s forwarding path
3. Authorization policies
4. Deployment

TVA addresses all of the above.

Challenges

1. Counter a broad range of attacks, including request and authorized packet floods
2. Router processing with bounded state and computation
3. Effective authorization policies
4. Incrementally deployable
Request packet floods

- Request packets do not carry capabilities.

Counter request packet floods (I)

- Rate-limit request packets

Counter request packet floods (II)

- Rate-limit request packets
- Routers insert path identifier tags [Yar03].
- Fair queue requests using the most recent tags.

Per path-id queues

Authorized packet floods

- Per-destination queues
- TVA bounds the number of queues.

Challenges

1. Counter a broad range of attacks, including request packet floods and authorized packet floods
2. Router processing with bounded state and computation
3. Effective authorization policies
TVA’s implementation of capabilities

- Routers stamp pre-capabilities on request packets
 - (timestamp, hash(src, dst, key, timestamp)
- Destinations return fine-grained capabilities
 - (N, T, timestamp, hash(pre-cap, N, T))
- Send N bytes in the next T seconds, e.g., 32KB in 10 seconds

Validating fine-grained capabilities

1. A router verifies that the hash value is correct.
2. Checks for expiration: timestamp + T ≤ now
3. Checks for byte bound: sent + pkt_len ≤ N

Bounded computation

- The main computation overhead is hash validation.
- On a Pentium Xeon 3.2GHz PC
 - Stamping pre-capabilities takes 460ns
 - Validating capabilities takes 1486ns

Bounded state

- Create a slot if a capability sends faster than N/T.
- For a link with a fixed capacity C, there are at most C/(N/T) flows
- Number of slots is bounded by C / (N/T)

Worst case byte bound is 2N in T seconds

- Average rate ≤ N/T
- Bytes ≤ N
- If a slot expires, it indicates that a capability sends slower than N/T.

Bounded number of queues

- Tag space bounds the number of request queues.
- Number of destination queues is bounded by C/R
Challenges

1. Counter a broad range of attacks, including request packet floods and authorized packet floods
2. Router processing with bounded state and computation
3. Effective authorization policies

Simple policies can be effective

- Fine-grained capabilities tolerate authorization mistakes.
- Client policy:
 - Authorize requests that match outgoing ones
- Public server policy:
 - Authorize all initial requests
 - Stop misbehaving senders
 - A server has control over its incoming traffic when overload occurs.

Evaluation

Overview of different schemes

- SIFF [Yarr04]
 - request and legacy traffic have the same priority
 - authorized traffic has a higher priority
 - time-limited capabilities
- Pushback [Mahajan01, Ioannidis02]
 - Network controlled filtering
- Legacy Internet
 - best-effort

Ns-2 Simulation Setup

- 10 legitimate users
- 1-100 attackers
- Scale down topology to speed up simulations
- Two metrics:
 - The transfer time of a fixed-length file (20KB)
 - Fraction of completed transfers

TVA is able to limit legacy packet floods
TVA is able to limit request packet floods

Simple policies can be effective

Conclusion

Types of Queues inside a TVA-router

TVA’s implementation of capabilities
ERROR: undefined
OFFENDING COMMAND:

STACK: