Kerberized Handover Keying: A Media-Independent Handover Key Management Architecture

Yoshihiro Ohba (yohba@tari.toshiba.com)
Toshiba America Research, Inc. (USA)

Subir Das (subir@research.telcordia.com)
Ashutosh Dutta (adutta@research.telcordia.com)
Telcordia Technologies (USA)
Problem description (1/2)

- Wireless access networks require cryptographic data protection at link-layer
- Enabling cryptographic data protection requires security signaling
- Security signaling takes time, especially for peer-entity authentication in a roaming environment where authentication credentials are stored in a AAA server
 - AAA servers are typically located away from access networks
- IETF HOKEY WG is working on EAP (Extensible Authentication Protocol) signaling optimization based on two approaches
 - Pre-authentication: a proactive handover optimization technique by which a peer runs EAP for a candidate target authenticator from the serving access network
 - Low-latency Re-authentication: an extension to EAP to minimize message roundtrips by utilizing keying material generated by a previous EAP session
Problem description (2/2)

• Pre-authentication applicability is limited to environments where proactive signaling can take effect
 - Optimization for reactive operation is missing

• Low-latency re-authentication still requires communication to an AAA server (in home or visited network) after handover
 - Difficult to support real-time applications

We propose another approach using Kerberos to address these issues
Kerberos overview

• Kerberos is a three-party authentication and key management protocol based on symmetric keys

• There are three principals in Kerberos; a client, a server, and a key distribution center (KDC)

• KDC provides two special servers: an Authentication Server (AS) and a Ticket Granting Server (TGS)

• It is assumed that each client and server has a pre-established trust relationship with KDC based on a secret key
Kerberos overview (cont’d)

- In Kerberos, a session key is generated by the KDC and distributed to the client
 - The session key is used by the client and server to securely establish an application session

- The client then distributes the session key to the server using a ticket, or a record generated by the KDC to help a client authenticate itself to a server

- The ticket contains the identity of the client, a session key, a timestamp and other information
 - The session key is encrypted using the server's secret key shared only with the KDC

- The Kerberos protocol consists of three exchanges where the initial exchange is performed only once
 - AS-REQ/AS-REP exchange for acquisition of a TGT (Ticket Granting Ticket)
 - TGS-REQ/TGS-REP exchange for acquisition of a ticket used for the server
 - AP-REQ/AS-REP exchange for installation of the ticket to the server
Kerberos sequence

C

S

KDC

TGT acquisition

AS_REQ

AS_REP

TGS_REQ

TGS_REP

Per-server ticket acquisition

AP_REQ

AP_REP

Present Ticket and get access to S

S: Application Server
C: Application Client
KDC: Key Distribution Center
KHK in a nutshell

• A mobile node and an authenticator act as a client or a server of Kerberos

• The roles of client and server can be reversed depending on the timing when a ticket is delivered to the authenticator (role reversing)

• Two modes of operation
 - **Proactive mode** is the case in which ticket delivery to the MN happens before the handover
 - **Reactive mode** is the case in which ticket delivery to the MN happens after the handover

• Proactive mode is more optimized than reactive mode since it does not require for a mobile node to communicate with KDC after handover

• In proactive mode, the signaling latency after handover is expected to be less than 20msec (comparable to IEEE 802.11i 4-way handshake)

• KHK does not require an authenticator to create any state for a mobile node before handover even in proactive mode (i.e., more efficient than pre-authentication)
Proactive mode

MN (Client) → KDC

AS-REQ → AS-REP

D1,D2

TGS-REQ (A1), TGS-REQ (A2)

TGS-REP (T1), TGS-REP (T2)

A1 (Server)

AP-REQ (T1)

AP-REP

KRB-SAFE or SAP

A2 (Server)

AP-REQ (T2)

AP-REP

KRB-SAFE or SAP

Ai: Authenticator
Ti: Ticket for Ai
Di: Event “Discovered Ai”
Hi: Event “Switched to Ai”
Reactive mode

Kerberos role is reversed between MN and Authenticator (Role Reversing)
Authorization and accounting

- Kerberos tickets also carry authorization information

- The authorization information must come from AAA
 - KDC needs to be an AAA client for authorization

- Accounting is still performed at each authenticator
 - Authenticators are an AAA client for accounting (as well as initial authentication)
Authorization and accounting (cont’d)

Authorization information over Kerberos (proactive mode)

Authorization information over AAA protocol

AAA Infrastructure

Accounting information over AAA protocol

KDC

Mobile Node

Authenticator
Multi-realm operation in Kerberos

• Kerberos is designed to operate across organizational boundaries
 - A client in one organization can be authenticated to a server in another

• Each organization wishing to run a Kerberos server establishes its own "realm"
 - The name of the realm in which a client is registered is referred to as the local realm

• By establishing "inter-realm" keys, the administrators of two realms can allow a client authenticated in the local realm to prove its identity to the servers in other realms
 - Multi-realm operation addresses the scalability issue

• Realms can be formed hierarchically
Mapping between Kerberos realms and AAA domains

- In general, Kerberos realms and AAA domains are independent
 - However, for simplicity, we introduce an operationally reasonable model

- KHK uses DNS domain name as Kerberos realm name and AAA domain name

- The relationship between an AAA domain and Kerberos realms
 \[D(n) = R_n \]

 - \(D(n) \): a AAA domain whose DNS domain name is \(n \)
 - \(R_n \): a set of Kerberos realms for which the realm name contain \(n \) in their suffix

AAA domain “mydomain.com”

<table>
<thead>
<tr>
<th>Kerberos Realm</th>
<th>Kerberos Realm</th>
</tr>
</thead>
<tbody>
<tr>
<td>“r1.mydomain.com”</td>
<td>“r2.mydomain.com”</td>
</tr>
</tbody>
</table>
Bootstrapping Kerberos

• One problem with Kerberos is lack of a mechanism to dynamically create the principal name of the local KDC and the secret key

• A mechanism to dynamically bootstrap Kerberos is needed for KHK to work across multiple AAA domains

• Bootstrapping should be made available from initial network access authentication using EAP
Kerberos bootstrapping using EAP-EXT

- EAP-EXT is a tunneling method that encapsulates any EAP authentication method and provides capabilities negotiation by which newly defined functionality can be enabled.

- EAP-EXT provides backward compatibility to the existing EAP authentication methods.
 - No modification to existing EAP methods is needed.

- We propose to define a mechanism to bootstrap Kerberos using EAP-EXT.
EAP-EXT message format with Kerberos bootstrapping

<table>
<thead>
<tr>
<th>Code</th>
<th>Identifier</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Version</td>
<td>Flags</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capabilities</td>
</tr>
</tbody>
</table>

TLVs (optional)

Capabilities:
- Bit 0: ‘R’ bit (Re-authentication)
- Bit 1: ‘C’ bit (Channel Binding)
 - **Bit 2: ‘K’ bit (Kerberos)**
 - Bits 3-7: Reserved
Kerberos bootstrapping sequence using EAP-EXT

MN (EAP Peer/Client) → EAP-Request/
EAP-EXT{"K'=1, Method"}

EAP-Response/
EAP-EXT{"K'=1, Method"}

KDC → EAP-Server

EAP-Request/
EAP-EXT{"K'=1, Method"}

EAP-Response/
EAP-EXT{"K'=1, AUTH"}

EAP-Request/
EAP-EXT{"K'=1, KRB-BOOT, AUTH"}

EAP-Response/
EAP-EXT{"K'=1, AUTH"}

EAP-Success

KRB-BOOT
Conclusion and Future Work

• Conclusion
 – We proposed a new media-independent key management architecture using Kerberos to achieve seamless handover across multiple technologies
 – We recommend that network equipment vendors and network operators investigate the cost for deploying KHK

• Future Work
 – A proof of concept based on an implementation to an existing wireless link-layer technology, especially with the support of inter-domain operations
 – Performance evaluation to compare with other secure handover architectures such as HOKEY
 – Investigation on how to interwork with IEEE 802.21
 – Investigation on expanding bootstrapping Kerberos from initial network access authentication to support SSO (Single-Sign On)
Thank you!