Key Technologies and Architectures for Next Generation Mobile Networks

Krishan K. Sabnani, SVP
Networking Research, Bell Labs

August 27, 2007
The Network Evolution

Yesterday...
- Networks were designed to carry voice traffic
- Data traffic mostly overlaid on voice networks (using modems)

...Today...
- Volume of data traffic exceeds voice traffic
- Networks are designed to carry primarily data traffic
- Voice traffic overlaid on data networks (e.g. VoIP)

...Tomorrow...
- Future networks should be designed primarily for efficient content distribution and content search/location
 - Content distribution should not only be overlaid, but built in from ground up
- Future networks should also be able to effectively carry best-effort data traffic and QoS-sensitive multimedia traffic
BT’s Simplified 21CN UK Network

Multi-service access
- Copper
- Fibre & Copper
- DSL
- Agg Box
- Wireless

Converged core
- IP-MPLS-WDM
- Class 5 Call Server
- Content
- ISP
- WWW

End User
- ~5.5k sites

~100 sites

ACM MobiArch | Aug 27, 2007
Tomorrow’s Converged Network

- 3G Cellular Networks
- Radio Controller
- Edge Router
- Access Router
- Edge Router
- Access Router
- Always-On
- Global Roaming
- QoS-Enabled Packet Core Network
- Personalization
- Network Intelligence
- Enterprise Networks
- Quality of Service (e.g. for voice)
- Services Enablement Layer
- Home Networks
- Traffic Type (Multimedia)
- Next-Gen Metro Networks
- Access Router
- Access Router
- User Mobility
- 4G/Mesh
- Personalization
Enabling Technologies

• Future Telecom Networks will need secure, quality-enabled, high-speed, and well-managed converged packet cores

• Bell Labs has several breakthrough programs to enable this change. Here are three examples:
 - SoftRouter: A new architecture to deal with increased complexity of data networking
 - Base Station Router: An access router which terminates all radio network processing
 - AWARE System for Wireless DDoS Defense
Enabling Technologies

- Future Telecom Networks will need secure, quality-enabled, high-speed, and well-managed converged packet cores
- Bell Labs has several breakthrough programs to enable this change. Here are three examples:
 - SoftRouter: A new architecture to deal with increased complexity of data networking
 - Base Station Router: An access router which terminates all radio network processing
 - AWARE System for Wireless DDoS Defense
Routers Are Becoming Increasingly Complex

Complexity is an IP “Middle-Age” problem!

- IP provides end-to-end datagram delivery service to protocols/applications
- IP can use any link-layer technology that delivers packets

Emerging Applications are driving more functions into IP, expanding the “waist” of the IP hour glass

Router vendors incorporate all new IP functions into routers

Complexity is spread throughout the network

- Achieving network-wide objectives such as traffic engineering requires complex translation of global objectives to configuration information in numerous individual routers
- Misconfiguration or uncoordinated configuration can result in poor performance or even network instability
Solution: SoftRouter

Disaggregation of router hardware from software addresses this problem and has the potential for major additional advantages.

Bell Labs has a research program that disaggregates router control and transport planes (called SoftRouter-based approach):

- Transport plane: packet forwarding element
- Control plane: control element server and feature server
- Control element servers and transport plane communicate using standard protocols
- Approach similar to SoftSwitch-based disaggregation of class 5 switches
SoftRouter: New Router Architecture

- **Decoupling:** Separate complex control plane processing from the transport plane

- **Servers:** Implement control plane processing functions on dedicated external control plane servers

- **Standard Interface:** Define standard protocol for control plane servers to interface to the forwarding elements
Enabler for Chaining Packet Processing Services

Unix allows processing to be composed via “pipes”

```
cat infile > prog1 | prog2 | prog3 > outfile
```

Vision of packet services processing

service cards + service chaining = “network pipes”
Comprehensive Service Management

Reprogrammable service cards + reconfigurable service routing allow flexible composition of edge functions

Bell Labs Solution built around service routing

- Allows easy configuration, fault, performance management for edge services
- Configuration: on demand loading of services and definition of service chains
- Fault: active detection and recovery of faulty “services”
- Performance: resource control and statistics on current service performance
A service chain specifies an ordered sequence of services to be performed for a packet flow.

Abstractly, a service chain is defined by composing individual apps using AND or OR operator.

Packets should be duplicated to both app2 and app3 - flow replication

Packets should be sent to either app2 or app3 on a flow basis - load balancing

Note: Pt-to-pt case is a degenerate case of either, packet leaving app1 should go to app2
Example Service Chain

app1 → app2

app3 → app4

app5 → app6

app8 → app9 → app10

and

or

app7
Example Application: Integrated Edge Packet Processing

IP Services Platform with programmable services card loaded with packet processing applications

Security: packet filtering/DDoS protection
Stop attacks to and from mobiles

Control: P2P control/Bandwidth mgmt
Control services a mobile receives

Application Acceleration/Enhancement: Transcoding/Caching/Voice Quality
Enhance application experience
Enabling Technologies

- Future Telecom Networks will need secure, quality-enabled, high-speed, and well-managed converged packet cores
- Bell Labs has several breakthrough programs to enable this change. Here are three examples:
 - SoftRouter: A new architecture to deal with increased complexity of data networking
 - Base Station Router: An access router which terminates all radio network processing
 - AWARE System for Wireless DDoS Defense
Current wireless networks are complex, involving many network elements, and result in high cost and high latency.

Base Station Router terminates all air-interface-specific functions in the base station.

- Collapsing Radio Access Network elements into the base station simplifies network and reduces latency.
- Pushing IP intelligence to the base station results in better Quality of Service support.
BSR: Flattening the Network

Gateway Switch Node
- IP
- TCP/UDP
- GTP
- GTP-U
- UDP
- IP
- AAL5
- ATM
- MM/SM/CC
- RRC
- GTP-U
- PDCP
- UDP
- RLC
- IP
- MAC
- AAL5
- FP
- ATM
- AAL2
- ATM
- ATM
- AAL2
- FP
- MAC-HS
- L1
- MAC-HS
- MAC
- RLC
- PDCP
- RRC
- MM/SM/CC
- IP
- TCP/UDP
- GTP
- GTP-U
- UDP
- IP
- AAL5
- ATM
- MoIP
- UDP
- IP
- GRE
- HA
- IP Switch
- GRE Tunnel
- IP
- UDP
- GRE
- PDCP
- RLC
- MAC
- MAC-HS
- L1
- MAC-HS
- MAC
- RLC
- PDCP
- RRC
- MM/SM/CC
- IP
- TCP/UDP
- GTP
- GTP-U
- UDP
- IP
- AAL5
- ATM
- MM/SM/CC
- RRC
Access-specific functions at the edge

Local multimedia or Location-Based-Services servers

Easier deployment and integration with wireline services

Improved fault tolerance and reliability
Benefits of Flattening the Network - Driving Simplicity

- Lower latency due to flat IP architecture
- Fewer bottleneck nodes as traffic is offloaded

Capex, Opex optimization
- Centralized aspects confined at IP layer for lower scaling cost

Future-proof technology innovation
- Simplifies evolution to IMS and LTE

BSR integrates all of this into a single box
Key Differentiators: Full Plug & Play

Step 0: Factory
Product identifications are programmed and labeled (bar code and identification)

Step 1: User’s Subscription
The user subscribes to the service (in a shop or on the web)
He/she selects the type of CPE and service set
He/she fill-in his/her personal details

Step 2: Subscription Confirmed
End user receives confirmation of the subscription and login information
Includes the Femto if he/she had subscribed by web

Step 3: Plug the Femto
Power-on the Femto
Auto-Configuration procedures starts:
A. Initialization to connect to BSR Gateways
B. Authentication
C. Auto-configuration of initial parameters
D. Check Femto location
E. Registration of authorized terminal

Step 4: Femto is working!
User receives a confirmation call or SMS on his mobile
Register up to 16 terminals

FemtoBSR System fully integrated in Customer’s IT to enable Plug & Play
Future picocells and femtocells will be deployed in non-secured locations (homes, public locations, etc)

Need a secure environment inside the cell where trust-related functions can be safely executed, eg:

- Cell and user authentication
- Integrity checks for signaling and control messaging
- Secure key storage
- Data encryption

The Cellsite Vault is a tamper-resistant, trusted, computing and storage environment within the BSR for where all security-related functions are safely performed.
Lucent Technologies' Base Station Router Receives CTIA Emerging Technology Award

Revolutionary Product Takes Top Honors for Most Innovative In-Building Solution

LAS VEGAS - Lucent Technologies (NYSE:LU) today announced that its Base Station Router (BSR) product was selected as the first place winner of a CTIA WIRELESS 2006 Wireless Emerging Technologies (E-tech) Award in the category of "Most Innovative In-Building Solution." Award recipients were announced yesterday in a ceremony at the Las Vegas Convention Center during the CTIA WIRELESS trade show.

The Wireless E-tech Awards program is designed to give industry recognition and exposure to the best wireless products and services in the areas of Consumer, Enterprise and Network technology. Nearly 200 applications were submitted and reviewed by a panel of recognized members of the media, industry analysts and executives, as well as select show attendees. Products were judged on innovation, functionality, technological importance, implementation and overall "wow" factor.
Enabling Technologies

• Future Telecom Networks will need secure, quality-enabled, high-speed, and well-managed converged packet cores

• Bell Labs has several breakthrough programs to enable this change. Here are three examples:
 - SoftRouter: A new architecture to deal with increased complexity of data networking
 - Base Station Router: An access router which terminates all radio network processing
 - AWARE System for Wireless DDoS Defense
Wireless Data Networks Subject to Existing and New Types of Attacks

New Network Constraints

Complex Signaling
Mobile Endpoint
Finite Air Resources

Existing IP Threats
- Spam
- Virus
- Worms
- Malware
- Phishing
- DDoS

New Wireless Threats
- Signaling DoS
- Battery Drain
- RF DoS
- Paging Attacks
- Wireless-unfriendly apps (e.g. P2P)
AWARE: A Bell Labs 3G/4G Wireless Security Solution

- AWARE Detector is a behavioral-based packet inspection engine with algorithms tuned to the specifics of the wireless network architecture & protocols.
- We have developed algorithms based on traffic profiling and statistical models that can detect low volume wireless DoS attacks.
- The system detects and mitigates traffic that will cause RNC signaling overload, unnecessary airlink usage, paging overload, and unnecessary subscriber battery drain.
 - Mitigation: signaling to inline elements to block unwanted traffic and mobile quarantine to remove infected or malicious mobile from wireless network.
Denial of Service - Signaling Attacks on 3G Networks

Structure of Signaling Overload

- Attack leverages active mobile sessions in the network
- Small amounts of data are sent to re-initiate the session after it is released, causing extra signaling load

Impact

- Low-volume attack generates signaling congestion at the RNC
- Overload of the RNC will result in a denial of service to subscribers
Denial of Service - Battery-Drain and RF Channel Exhaustion

Structure of a Battery-Drain Attack

- Attack leverages active mobile sessions and sends packets to prevent transition to dormancy (e.g., low volume 40 bytes every 10 seconds)

Impact

- Wastes radio resources
- Drains mobile battery
Battery Drain on live UMTS Wireless PC Card

Observed affect on energy consumption due to unwanted traffic coming from various Internet sources and other mobiles.

ALU-launched battery-drain attack

External scans induced battery drain

Current (mA)

Time (minutes:seconds)
Recent Abuse Observed on North American Carrier’s 3G Network

Detection Evasion: need to identify subscriber not IP address

- Same subscriber’s mobile used 24 different IP address when performing scans on other mobiles

Worms and Port Scans (attempt/response)

Result in significant wasted air resources

- Port 135: 10+ different worms (31,213 / 2,326)
- Port 137: Chode worm (135,483 / 2925)
- Port 139: 10+ different worms (59,698 / 4063)
- Port 1026: MS message spam (67,034 / 436)
- Port 5900: install of backdoor program, (96,159 / 2,380)
- Mobile scanner: scans 4426 mobiles on 6 different ports

One subscriber’s abusive behavior:

- Uploaded 1GB / Downloaded 3.5GB
- Communicated with P2P sites - 5k eDonkey & 37k Gnutella sites

Malfunction Device Impact on Wireless Network:

- One 3G network was continuously experiencing Denial of Service overloads due to a malfunctioning air card
- Several man-months were required to identify the device
Conclusions

- Multimedia content is the major driver for next-gen networks.
- These networks have to be QoS-enabled, reliable, secure, and manageable.
- Bell Labs has several programs to enable the mobile networks of the future: SoftRouter, Base Station Router, and AWARE DDoS System.
- Mobile networking has a truly exciting future.