

# IKE Context Transfer in an IPv6 Mobility Environment

<u>Fabien Allard</u> (FT R&D) Jean-Marie Bonnin (Télécom Bretagne) Jean-Michel Combes (FT R&D) Julien Bournelle (FT R&D)



Incetelecom MobiArch'08 - Seattle (WA) – 22/08/08





- Context Transfer use case: IPsec / IKEv2
- Solution against SPI collision : a MOBIKE extension
- Implementation of CXTP for IPsec / IKE in a IPv6 mobility environment
- Conclusion & Future work

#### Issue :

- > Security provisioning is a major requirement in an all-IP-based network architecture providing multimedia services.
- > In a mobility context, security between mobile nodes and network access equipments must be set up from scratch after each HandOver (HO) and for each customer
- > In the case where an IPsec tunnel is dynamically set up between a Mobile Node (MN) and a Security Gateway (SG) using IKE
  - IPsec and IKE contexts are created in the MN and the SG
- > IKE signalisation
  - lot of message exchanges (specially when EAP is used)
  - cryptographic computation time for keys generation
- => takes a significant amount of time, crucially affecting the handoff performance
- Proposed solution to re-establish the security parameters :

### > Transfer of IPsec / IKE contexts between SG using CXTP (RFC 4067)



pSG = previous Security Gateway

nSG = new Security Gateway

### IPsec context = $(SAD^1 + SPD^2 + PAD^3)$ contexts + IKE<sup>4</sup> context

- 1. Security Association Database
  - > Consulted in order to know how to process each packet (AH/ESP)
    - SPI, Source/Destination IP addresses, IPsec protocol (AH/ESP)
    - Sequence counter number, anti-replay window
    - AH/ESP algorithms and keys
    - IPsec mode (tunnel or transport)
    - Path MTU
    - IPsec SA lifetime
- 2. Security Policy Database
  - > Defines the security policy to apply to each packet (IPSEC/BYPASS/DISCARD)
    - Inner source/destination IP addresses
    - Upper protocol
    - Security policy

MobiArch'08 – Seattle (WA)

#### 3. Peer Authentication Database

- > Identifies the peers that are authorized to communicate with the SG
  - Identifier
  - Authentication protocol and method
  - Pre-shared key or X.509 certificate
- 4. Internet Key Exchange
  - > Sets up the IPsec SAs dynamically between two network equipments.
    - Initiator and responder SPI
    - Initiator and responder Nonces
    - Cryptographic algorithms
    - SKEYSEED (from which all keys are derived)
    - Lifetime

## Solution against SPI collision : a MOBIKE extension

- SPI (Security Parameter Index)
  - > Uniquely identifies the initiator or responder of a SA
  - > SPI for IKE SA and SPI for IPsec SA
- Issue:
  - > After a Context Transfer, SPIs may need to be updated <u>if they are already in use in the</u> <u>nSG</u> => SPI collision
  - > In this case, new SPIs must be negociated between the MN and the nSG
- Proposed solution:
  - > Definition of a MOBIKE extension (UPDATE\_SPI message type) in order to handle the SPI negociation between the MN and the nSG
- What is MOBIKE ?
  - > IKEv2 Mobility and Multihoming Protocol

> Allows to update IP addresses of an IPsec tunnel created with IKEv2
MobiArch'08 – Seattle (WA)

### Solution against SPI collision : a MOBIKE extension





> Racoon for IKEv1 negociation

## Implementation of CXTP for IPsec / IKE in a IPv6 mobility environment - Results

- UDP traffic generator with 50ms delay between each packet.
- Mobile IPv6 HO delay is not take into account.
- Only focused on the security set up delay
  - > during this time, all UDP packets are lost

|                                          | Average delay | Number of | Total size of messages |
|------------------------------------------|---------------|-----------|------------------------|
|                                          | (in ms)       | messages  | (in Bytes)             |
| IKEv1 main mode                          | 1500          | 11        | 2182                   |
| IKEv1 aggressive mode                    | 1300          | 8         | 1896                   |
| IKEv1 with context transfer optimisation | 20            | 1         | 106                    |

## **Conclusion & Future work**

- Paper set out
  - > an application of the context transfer for IPsec/IKE
  - > a solution against the SPI collision using a MOBIKE extension
  - > a set of practical results showing that CT for IPsec can drastically reduce the time needed to re-establish an IPsec tunnel after a HO.
- Main gains of context transfer for security
  - > Performance improvements for IPv6 mobility environment
  - > Less security signalisation in the core network
- Future work
  - > CXTP for IKEv2 implementation
    - Comparison results with and without using CT optimisation

## **Questions**?

# Implementation of CXTP for IPsec / IKE in a IPv6 mobility environment - Results

• α

> HO delay

- β

> IKEv1 with CT optimisation delay to re-establish the IPsec tunnel

• Y

 IKEv1 in aggressive mode delay to re-establish the IPsec tunnel

• δ

> IKEv1 in *main* mode delay to re-establish the IPsec tunnel



## Implementation of CXTP for IPsec / IKE in a IPv6 mobility environment - Testbed

![](_page_13_Figure_1.jpeg)

- CXTP module
  - > follows RFC4067
- IPsec CXTP module
  - > PF\_KEYv2 API
  - > links CXTP module with FreeBSD kernel's databases (SAD + SPD contexts)
  - > links CXTP module with Racoon (IKEv1 context)
- Communication through a shared memory