Black Boxes: Making Ends Meet in Data Driven Networking

Sasu Tarkoma

Helsinki University of Technology and Helsinki Institute for Information Technology

Dirk Trossen

BT Research

Mikko Särelä

Nomadiclab, Ericsson Research

Introduction

- Current Internet is increasingly data and content centric
- The protocol stack may not offer best support for this
- End-to-end principle is no longer followed
 - Firewalls and NAT boxes
 - Peer-to-peer and intermediaries
- Ultimately, hosts are interested in receiving valid and relevant information and do not care about IP addresses or host names
- This motivate the design and development of new data and content centric networking architectures
 - Related work includes ROFL, DONA, TRIAD, FARA, AIP, ...

Current State

Observations

End-to-end reachability is broken

Unwanted traffic is a problem

Mobility and multi-homing are challenging

Multicast is difficult (does not scale)

Security is difficult

Not optimal fit for broadcast and all-optical networking

Where we are going

Observations

No topological addresses, only labels

Security enhanced using self-certification

End-to-end reachability, control in the network

Natural support for multicast, it is the norm

Support for broadcast and all-optical label-switching technologies

Dynamic state is introduced into the network

How do we make it scale?

Publish/Subscribe Internet Routing

- We propose a future network design that
 - gives more trust and more anonymity to Internet
 - ensures network and data availability
 - ensures rapid and accurate dissemination of crucial information
- The publish/subscribe model
 - Subscribers and publishers
 - Many-to-many communication
 - End-points described in terms of data and local links
 - Incorporating support for end-point identification
 - Flat self-certifying labels
 - Data-centric routing, forwarding, rendezvous

Many Faces of Rendezvous

RZV-0 RZV-I RZV-S RZV-C

Basic connectivity Internetworking Information Services Communal Services

Black Boxes

- The distinguishing feature is that the network is defined in terms of black boxes and their interconnections
 - Interconnections between boxes, upstream, transit, downstream
- Rendezvous is the central primitive
 - Rendezvous on multiple layers
- We utilize the notion of completeness to optimize processing and mobility updates
 - Complete / incomplete dissemination structures between boxes

 - Completeness can be used for network diagnostics

Conclusions

- We outline a data-centric network architecture
 - Publish and subscribe are the basic primitives making multicast the norm
 - Receiver driven (subscriber has control)
 - Composed of black boxes that hide internal routing
 - Rendezvous as the primitive to connect publishers and subscribers across boxes on multiple levels
 - Scoping to group data into manageable sets
- Principles and completeness are discussed in more detail in the paper
- FP7 Publish-Subscribe Internet Routing Paradigm (PSIRP) project (www.psirp.org)