Six/One Router

A Scalable and Backwards-Compatible Solution for Provider-Independent Addressing

Towards More Scalable and Flexible Routing

- core: flexible, but not scalable
 - global routing table at every provider
 - track route changes Internet-wide
- edge: scalable, but inflexible
 - provider-allocated addresses
 - renumbering on provider change
 - multi-homing infeasible
- need routing architecture that...
 - is scalable
 - avoids renumbering
 - supports multi-homing

Towards More Scalable and Flexible Routing

- core: flexible, but not scalable
 - global routing table at every provider
 - track route changes Internet-wide
- edge: scalable, but inflexible
 - provider-allocated addresses
 - renumbering on provider change
 - multi-homing infeasible
- need routing architecture that...
 - is scalable
 - avoids renumbering
 - supports multi-homing

Towards More Scalable and Flexible Routing

- core: flexible, but not scalable
 - global routing table at every provider
 - track route changes Internet-wide
- edge: scalable, but inflexible
 - provider-allocated addresses
 - renumbering on provider change
 - multi-homing infeasible
- need routing architecture that...
 - is scalable
 - avoids renumbering
 - supports multi-homing

Address Indirection

- decouples addressing at edge from Internet core
- global mapping system for remote edge addresses

Address Indirection

- decouples addressing at edge from Internet core
- global mapping system for remote edge addresses

Address Indirection

- decouples addressing at edge from Internet core
- global mapping system for remote edge addresses

Address Indirection with Tunneling

- prolonged path
- no incentives model for proxies

Contribution of Six/One Router

address indirection enabling...

- minimum extra packet overhead
- direct-path routing
- autonomous deployment

idea: one-to-one address rewriting

Network Setup and Addressing

one-to-one mapping between edge/transit addresses

Address Rewriting

- provider-independence by rewriting local addresses
- transparency through rewriting remote addresses

Backwards Compatibility

- natural fall-back to unilateral rewriting
- loss of transparency requires NAT traversal support

Multi-Homing Support

Multi-Homing Support

redirect via packet extension with original edge address.

Conclusions

address indirection enabling...

- minimum extra packet overhead
- direct-path routing
- autonomous deployment'

...possible with one-to-one address rewriting

- transparent with bilateral rewriting
- backwards compatible with unilateral rewriting

future work: implementation and experimentation