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ABSTRACT

Internet security does not only depend on the security-related
investments of individual users, but also on how these users
affect each other. In a non-cooperative environment, each
user chooses a level of investment to minimize its own secu-
rity risk plus the cost of investment. Not surprisingly, this
selfish behavior often results in undesirable security degra-
dation of the overall system. In this paper, we first charac-
terize the price of anarchy (POA) of network security under
two models: an “Effective-investment” model, and a “Bad-
traffic” model. We give insight on how the POA depends on
the network topology, individual users’ cost functions, and
their mutual influence. We also introduce the concept of
“weighted POA” to bound the region of all feasible payoffs.
In a repeated game, on the other hand, users have more
incentive to cooperate for their long term interests. We con-
sider the socially best outcome that can be supported by the
repeated game, and give a ratio between this outcome and
the social optimum. Although the paper focuses on Inter-
net security, many results are generally applicable to games
with positive externalities.
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1. INTRODUCTION

Security in a communication network depends not only
on the security investment made by individual users, but
also on the interdependency among them. If a careless user
puts in little effort in protecting its computer system, then
it is easy for viruses to infect this computer and through it
continue to infect others’. On the contrary, if a user invests
more to protect itself, then other users will also benefit since
the chance of contagious infection is reduced. Define each
user’s “strategy” as its investment level, then each user’s
investment has a “positive externality” on other users.

Users in the Internet are heterogeneous. They have dif-
ferent valuations of security and different unit cost of in-
vestment. For example, government and commercial web-
sites usually prioritize their security, since security breaches
would lead to large financial losses or other consequences.
They are also more willing and efficient in implementing se-
curity measures. On the other hand, an ordinary computer
user may care less about security, and also may be less ef-
ficient in improving it due to the lack of awareness and ex-
pertise. There are many other users lying between these two
categories. If users are selfish, some of them may choose to
invest more, whereas others may choose to “free ride”, that
is, given that the security level is already “good” thanks to
the investment of others, such users make no investment to
save cost. However, if every user tends to rely on others,
the resulting outcome may be far worse for all users. This
is the free riding problem in game theory as studied in, for
example, [1].

Besides user preferences, the network topology, which de-
scribes the (logical) interdependent relationship among dif-
ferent users, is also important. For example, assume that
in a local network, user A directly connected to the Inter-
net. All other users are connected to A and exchange a large
amount of traffic with A. Intuitively, the security level of A
is particularly important for the local network since A has
the largest influence on other users. If A has a low valuation
of its own security, then it will invest little and the whole
network suffers. How the network topology affects the effi-
ciency of selfish investment in network security will be one
of our focuses.

In this paper, we study how network topology, users’ pref-
erence and their mutual influence affect network security in a
non-cooperative setting. In a one-shot game (i.e., strategic-
form game), we derive the “Price of Anarchy” (POA) [2] as
a function of the above factors. Here, POA is defined as the
worst-case ratio between the “social cost” at a Nash Equi-
librium (NE) and Social Optimum (SO). Furthermore, we



introduce the concept of “Weighted-POA” to bound the re-
gions of all possible vectors of payoffs. In a repeated game,
users have more incentive to cooperate for their long-term
interest. We study the “socially best” equilibrium in the
repeated game, and compare it to the Social Optimum.

1.1 Related Works

Varian studied the network security problem using game
theory in [1]. There, the effort of each user (or player) is
assumed to be equally important to all other users, and the
network topology is not taken into account. Also, [1] is not
focused on the efficiency analysis (i.e., POA).

“Price of Anarchy” (POA) [2], measuring the performance
of the worst-case equilibrium compared to the Social Op-
timum, has been studied in various games in recent years,
most of them with “negative externality”. These include
“selfish routing game” [3], “price competition game” [4] and
“resource allocation game” [5], etc. For example in the “self-
ish routing game”, if a user sends its traffic through a link,
other users sharing that link will suffer larger delays.

On the contrary, in the network security game, if a user
increases his investment, the security level of other users
will improve. So it falls into the category of games with
positive externalities. Therefore, many results in this paper
may be applicable to other similar scenarios. For example,
assume that a number of service providers (SP) build net-
works which are interconnected. If a SP invests to upgrade
its own network, the performance of the whole network im-
proves and may bring more revenue to all SP’s.

In [6], Aspnes et al. formulated an “inoculation game” and
studied its POA. There, each player in the network decides
whether to install anti-virus software to avoid infection. Dif-
ferent from our work, [6] has assumed binary decisions and
the same cost function for all players.

2. PRICE OF ANARCHY (POA) IN THE
STRATEGIC-FORM GAME

Assume there are n “players”. The security investment (or
“effort”, we use them interchangeably) of player ¢ is x; > 0.
This includes both money (e.g., for purchasing anti-virus
software) and time/energy (e.g., for system scanning, patch-
ing). The cost per unit of investment is ¢; > 0. Denote
fi(x) as player i’s “security risk”: the loss due to attacks or
virus infections from the network, where x is the vector of
investments by all players. f;(x) is decreasing in each z;
(thus reflecting positive externality) and non-negative. We
assume that it is convex, and that fi(x = 0) > 0 is finite.
Then the “cost function” of player i is

gi(x) := fi(x) + ciz (1)

Note that f;(-) is generally different for different players.
In a Nash game, player i chooses his investment x; > 0 to
minimize g;(x). First, we prove in [8] that

PRrROPOSITION 1. There exists some pure-strateqgy Nash
Equilibrium (NE) in this game.

Denote X as the vector of investments at some NE, and x*
as the vector of investments at Social Optimum (SO). Also
denote the unit cost vector ¢ = (¢1,ca,...,cn)".

We aim to find the POA, @, which upper-bounds p(X),
where
Gx) _ 22,9i(%)

p(i) = G* _Zzgl(x*)

is the ratio between the social cost at the NE X and at
the social optimum. For convenience, sometimes we simply
write p(X) as p if there is no confusion.

Before getting to the derivation, we illustrate the POA in
a simple example. Assume there are 2 players, with their
investments denoted as z1 > 0 and z2 > 0. The cost func-
tion is ¢;(x) = f(y) + x4, = 1,2, where f(y) is the security
risk of both players, and y = x1 + x2 is the total invest-
ment. Assume that f(y) is non-negative, decreasing, con-
vex, and satisfies f(y) — 0 when y — co. The social cost is
G(x) = g1(x) +92(x) =2 f(y) + .
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Figure 1: POA in a simple example

At a NE x, 8%1'79:(?) = f'(z1 +Z2) + 1 =0,i = 1,2. Denote
§J = T1+ T2, then — f'(y) = 1. This is shown in Fig 1. Then,
the social cost G = 2 f(y) +¢. Note that [*(—f'(2))dz =
f@) — f(oo) = f(7) (since f(y) — 0 as y — 00), therefore
in Fig 1, 2- f(7) is the area B+ C + D, and G is equal to
the area of A+ (B + C + D).

At SO (Social Optimum), on the other hand, the total
investment y* satisfies —2f'(y*) = 1. Using a similar argu-
ment as before, G* = 2f(y*) + y* is equal to the area of
(A+B)+D.

Then, the ratio G/G* = [A+(B+C+D)]/[(A+B)+D] <
(B+ C)/B < 2. We will show later that this upper bound
is tight. So the POA is 2.

Now we analyze the POA with the general cost function
(1). In some sense, it is a generalization of the above exam-
ple.

LEMMA 1. For any NE X, p(X) satisfies

p(3) < max{l,maxf(- 3 225 oy o)

Note that (=), %f‘)) is the marginal “benefit” to the
security of all users by increasing xx at the NE; whereas ck
is the marginal cost of increasing xx.. The second term in the
RHS (right-hand-side) of (2) is the mazimal ratio between

these two.

Proor. At NE,
Lgiz(j) =—c ifz;>0 (3)
Lg;x) Z —C4 lf .’fi = O



By definition,
Gx) Y, fi®)+c'x
G Y, filx*) +eTx*
Since f;() is convex for all . Then fi(X) < fi(x*) + (x —
X*)Tv_fi(f(). So
® xS VEE) + R+ Y, fi(x)

p(x) =

_ xXTY VAR A ® e+ 3, VAR + X, fi(xY)
= fil) + T
Note that

_ _ - Afy (%
e+ 3, VA®) = X, @ilen + 5

There are two possibilities for every player i: (a) If Z; = 0,
then Z;[c; + 32, 2] = 0. (b) If & > 0, then 2L —

—c;. Since % < 0 for all k, then >, fr(%)

< —c¢;, SO

ox; —
Zilei + 3, 2] <0,
As a result,
_ —x*T S VHE) + X, fi(x*
< XTDVE LT A

> filxr) +cTx
(i) If zy = 0 for all 4, then the RHS is 1, so p(x) < 1.
Since p cannot be smaller than 1, we have p = 1.
(ii) If not all 7 = 0, then ¢'x* > 0. Note that the RHS
of (4) is not less than 1, by the definition of p(X). So, if we
subtract ), fi(x*) (non-negative) from both the numerator

and the denominator, the resulting ratio upper-bounds the
RHS. That is,

—x"T 3, Vi(%)

x) <
p(x) < P

< max{ (- Y0 200y

where 3, %iT(j) is the k’th element of the vector ), V fi(X).
Combining case (i) and (ii), the proof is completed. [

In the following, we give two models of the network se-
curity game. Each model defines a concrete form of f;(-).
They are formulated to capture the key parameters of the
system while being amenable to mathematical analysis.

2.1 Effective-investment (‘“’EI’’) model

Generalizing [1], we consider an “Effective-investment” (EI)
model. In this model, the security risk of player i depends
on an “effective investment”, which we assume is a linear
combination of the investments of himself and other play-
ers.

Specifically, let pi(3_7_, @jiz;) be the probability that
player 7 is infected by a virus (or suffers an attack), given the
amount of efforts every player puts in. The effort of player j,
zj, is weighted by ay;, reflecting the “importance” of player
j to player i. Let v; be the cost of player i if he suffers an at-
tack; and ¢; be the cost per unit of effort by player i. Then,
the total cost of player ¢ is g;(z) = Uz‘pi(Z?:1 ajizj) + ¢izi.

For convenience, we “normalize” the expression in the fol-
lowing way. Let the normalized effort be x; := ¢;z;, Vi. Then

9i(x) = vipi(3)_, CZJ]Z ;) +
= oipi (S 207 Biwg) + @i
where (j; = o%%l (so Bii = 1). We call 3;; the “relative

importance” of player j to player i.
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Define the function V;(y) = v; - p;(Ziy), where y is a

Ci

dummy variable. Then g;(x) = fi(x) + z;, where

fi(x) = Vi(32h_, Biizs) (5)

Note that V;(-) is still decreasing, non-negative and con-
vex.

PROPOSITION 2. In the EI model defined above,
p <maxp{l+3,, . Bri}. Furthermore, the bound is tight.

PROOF. Let X be some NE. Denote h := . Vfi(x).
Then the kth element of h

T, OVi(Xh_1 Bji%;)

hi =

15}
SVI(ZT, BiiTy)

From (3), we have %ﬂctﬁ”i]) = B Vi (32T, Bjikj) =
Vi,(zyzl ﬂji{fj) > —1. So hx > — ZZ ﬂkz Plug this into (2),
we obtain an upper bound of p:

p < max{l,max{—hi}} < Q := max{l + Z;k Bri}  (6)
O

(6) gives some interesting insight into the game. Since
Bri is player k’s “relative importance” to player 4, then 1 4
Zi:#k Bri = Y, Bri is player k’s relative importance to the
society. (6) shows that the POA is bounded by the maximal
social “importance” among the players. Interestingly, the
bound does not depend on the specific form of V;(-) as long
as it’s convex, decreasing and non-negative.

It also provides a simple way to compute POA under the
model. We define a “dependency graph” as in Fig. 2, where
each vertex stands for a player, and there is a directed edge
from k to ¢ if Bx; > 0. In Fig. 2, player 3 has the highest
social importance, and p < 1+ (0.6 + 0.8 4+ 0.8) = 3.2. In
another special case, if for each pair (k,?), either By, = 1
or Br; = 0, then the POA is bounded by the maximum
out-degree of the graph plus 1. If all players are equally
important to each other, i.e., Bx; = 1,Vk, ¢, then p <n (i.e.,
POA is the number of players). This also explains why the
POA is 2 in the example considered in Fig 1.

1
1
0.
0.8
0.3
0.
0.8

Figure 2: Dependency Graph and the Price of An-
archy (In this figure, p <1+ (0.6 4+ 0.8+ 0.8) = 3.2)

The following is a worst case scenario that shows the
bound is tight. Assume there are n players, n > 2. (i =
1,VEk,i; and for all 4, Vi(y;) = [(1 — €)(1 — yi)]+, where [-]+



means positive part, y; = 37, Bjiz; = 7, x;j, € > 0 but
is very small.

Givenx_; =0, gi(x) = [(1—€)(1—z;)]++x; = (1—€)+e-z;
when x; < 1, so the best response for player i is to let x; = 0.
Therefore, z; = 0,Vi is a NE, and the resulting social cost
G(x) = >,[Vi(0) + Z:] = (1 — €)n. Since the social cost is
G(x)=n-[(1-€)(1 -3, x:)]+ + >, ®i, the social optimum
is attained when ) zj = 1 (since n(1 —¢€) > 1). Then,
G(x*) = 1. Therefore p = (1 — €)n — n when € — 0. When
e =0, z; =0,Vi is still a NE. In that case p = n.

2.2 Bad-traffic (“BT”’) Model

Next, we consider a model which is based on the amount
of “bad traffic” (e.g., traffic that causes virus infection) from
one player to another. Let ry; be the total rate of traffic
from k to . How much traffic in rx; will do harm to player
i depends on the investments of both £ and i. So denote
ok,i(Tk, ;) as the probability that player k’s traffic does
harm to player i. Clearly ¢ (-, ) is a decreasing function.
We also assume it is convex. Then, the rate at which player
1 is infected by the traffic from player k is rgi¢r i (Tk, ;).
Let v; be player i’s loss when it’s infected by a virus, then
gi(x) = fi(x) + x;, where the investment x; has been nor-
malized such that its coefficient (the unit cost) is 1, and

fi(x) = v Z Thi Po,i (T, T4)
Py

If the “firewall” of each player is symmetric (i.e., it treats
the incoming and outgoing traffic in the same way), then it’s
reasonable to assume that ¢ i(xk, i) = Gik(xs, T).

ProPOSITION 3. Inthe BT model, p < 1+max; ;). #J > Zildk
J

Tij

The bound is also tight.

PRrROOF. Let h := )" Vfi(X) for some NE X. Then the
j-th element

ofi(x afi(x of;(x
- g

i i#£]

8(}3';;@',@1'
= S gt
i#] J

We have

v Z s 09,3 (%1, ;)

i O,

z 2 9fi (%)

i#j  Oxj

4G = 5,0 961 (@1,3,)
95, U5 i T ey

0¢,,i(Z;,%;)

_ Digy VT 9z < max

- 995, (Z5,%i) ~ iitj VT
. 9%, Mt VT

Zi;éj VjTij bz Y

. 094,i(%5,%5)
Do Vit

VT4

where the 3rd equality holds because ¢; ;(z;, ;) =
by assumption.
From (3), we know that af] (x) > —1. So

of;(x) > (1 + max 277
ox; iitj VjTij

b1 (w5, ;)

hj = (1+g;)

According to (2), it follows that

ViT 54
< max{1l max hi}} <@Q:=1+ max ——
P { { }} Q (4,9)i#7 VT

(7)

O

Note that v;r;; is the damage to player ¢ caused by player
j if player ¢ is infected by all the traffic sent by j, and v;r;;
is the damage to player j caused by player i if player j is
infected by all the traffic sent by i. Therefore, (7) means that
the POA is upper-bounded by the “maximum imbalance”
of the network. (Also, one can find an example where the
bound is tight [8].) As a special case, if each pair of the
network is “balanced”, i.e., v;rj; = vjrij, Vi, j, then p < 2!

3. BOUNDING THE PAYOFF REGIONS
USING “WEIGHTED POA”

So far, the research on POA in various games has largely
focused on the worst-case ratio between the social cost (or
welfare) achieved at the Nash Equilibria and Social Opti-
mum. Given one of them, the range of the other is bounded.
However, this is only one-dimensional information. In any
multi-player game, the players’ payoffs form a vector which
is multi-dimensional. If an observer observes a NE payoff
vector, it would be interesting to characterize or bound the
region of all feasible vectors of individual payoffs, sometimes
even without knowing the exact cost functions. This region
gives much more information than solely the social optimum,
because it characterizes the tradeoff of efficiency and fairness
among different players. Conversely, given any feasible pay-
off vector, it is also interesting to bound the region of the
possible payoff vectors at all Nash Equilibria.

We show that this can be done by generalizing POA to the
concept of “Weighted POA”, Qw, which is an upper bound
of pw(X), where

oy Gw(®)

pu(®) = T > wi - 9i(X)

> wi - gi(xw)
Here, w € RY; is a weight vector, X is the vector of invest-
ments at a NE of the original game; whereas xj, minimizes
a weighted social cost Gw (x) 1= >, w; - gi(x).

To obtain Qw, consider a modified game where the cost
function of player i is

gw(x) = fz(x) + éixi = w; 'gi(X) = wifi(x) + w; - T

Note that in this game, the NE strategies are the same as
the original game: given any x_;, player i’s best response re-
mains the same (since his cost function is only multiplied by
a constant). So the two games are strategically equivalent,
and thus have the same NE’s. As a result, the weighted
POA Qw of the original game is exactly the POA in the
modified game (Note the definition of x3,). Applying (2) to
the modified game, we have

max{1, m}?.X{(— Z afl(X) —5—)/¢}}

%@wkck)}} (®)
Tk

IN

pw(X)

max{1, m]?x{(f

Then, one can easily obtain the weighted POA for the two
models in the last section.

PROPOSITION 4. In the EI model,

itk WiBki
pw < Qu = max{1 + 2”#7’“} (9)
k Wi
In the BT model,
WiV5T 44

pw < Qw =14+ max
(4,5):1#37 ’U)]’U]’I"U



. = Gw(x s witgq (X
Since pw(X) = Gé,) = Eziwi-gf(ii‘:) < Qw, we have
Do wi - gi(x%) 2 D, wi - 9i(X)/Qw. Notice that xj, min-

imizes Gw(x) = >, w; - gi(x), so for any feasible x,

Zwi - gi(x) > Zwi - gi(xyy) > Zwi - 9i(%X)/Qw

Then we have

PROPOSITION 5. Given any NE payoff vector g, then any
feasible payoff vector g must be within the region

B:={glw'g>w"g/Qw, YW € R}

Conversely, given any feasible payoff vector g, any possible
NE payoff vector g is in the region

B:= {g|ng <wig Qw,Vw € R}

In other words, the Pareto frontier of B lower-bounds the
Pareto frontier of the feasible region of g. (A similar state-
ment can be said for B.) As an illustrating example, consider
the EI model, where the cost function of player ¢ is in the
form of gi(x) = Vi(327_, Bjiz;) + z;. Assume there are two
players in the game, and 611 = /822 = 1, B12 = ﬂ21 = 0.2.
Also assume that g;(x) = (1—2]2.:1 Bjixi)++xi, fori=1,2.
It is easy to verify that z; = 0,7 = 1,2 is a NE, and
g1(X) = g2(X) = 1. One can further find that the boundary
(Pareto frontier) of the feasible payoff region in this example
is composed of the two axes and the following line segments
(the computation is omitted):

g2==5(n—15)+t7s g

92:—02 gl_ﬁ)—i_rlg 916[075]
which is the dashed line in Fig. 3.

By Proposition 5, for every weight vector w, there is a
straight line that lower-bounds the feasible payoff region.
After plotting the lower bounds for many different w’s, we
obtain a bound for the feasible payoff region (Fig 3). Note
that the bound only depends on the coefficients 3;;’s, but
not the specific form of Vi(-) and V2(-). We see that the
feasible region is indeed within the bound.

Feasible region

0 0.5 1 1.5 2

Figure 3: Bounding the feasible region using
weighted POA
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4. REPEATED GAME

The Folk Theorem [7] provides a Subgame Perfect Equilib-
rium (SPE) in a repeated game with discounted costs when
the discount factor sufficiently close to 1, to support any cost
vector that is Pareto-dominated by the “reservation cost”
vector g. The ith element of g, gi, is defined as

gi = mi>r(1) gi(x) given that x; = 0,Vj # 1
- Ti2

and we denote z; as a minimizer. g; = ¢;(z; = i, x—; = 0)
is the minimal cost achievable by player ¢ when other players
are punishing him by making minimal investments 0.

Without loss of generality, we assume that g;(x) = fi(x)+
x;, instead of g;(x) = fi(x) + c;x; in (1). This can be done
by normalizing the investment and re-defining the function
fi(x).

For simplicity, we make some additional assumptions in
this section:

1. fi(x) (and gi(x)) is strictly convex in z; if x_; = 0.
So z; is unique.

2. 99:(0)

o~ < 0 for all i. So, x; > 0.

3. For each player, f;(x) is strictly decreasing with z; for
some j # i. That is, positive externality exists.

By assumption 2 and 3, we have g;(x) < gi(z; = zi,x—; =
0) = gi, Vi. Therefore g(x) < g is feasible.

A Performance Bound of the best SPE

According to the Folk Theorem [7], any feasible vector g <
g can be supported by a SPE. So the set of SPE is quite
large in general. By negotiating with each other, the players
can agree on some SPE. In this section, we are interested
in the performance of the “socially best SPE” that can be
supported, that is, the SPE with the minimum social cost
(denoted as Gg). Such a SPE is “optimal” for the society,
provided that it is also rational for individual players. We
will compare it to the social optimum by considering the
“performance ratio” v = Gg/G*, where G is the optimal
social cost, and

Gg = infx>o

s.t.

22 9i(%)

gi(x) < gi, Vi

(11)

Since g;(-) is convex by assumption, due to continuity,

Gg =

miny>o
s.t.

22 9i(%)

gi(x) < gi,Vi

where g;(x) < g; is the rationality constraint for each player
i. Denote by xg a solution of (12). Then ), gi(xg) = Gp.

Recall that g;(x) = fi(x) + x;, where the investment x;
has been normalized such that its coefficient (unit cost) is
1. Then, to solve (12), we form a partial Lagrangian

Lx,N) = 35 91(x) + 35 Nelgr(x) — gi]
= Zk(l + )\;C)gk(x) - Zk )\;cgi
and pose the problem maxy/>o minx>o0 £(x,A’). Let A be

the vector of dual variables when the problem is solved (i.e.,
when the optimal solution xg is reached).

(12)

PROPOSITION 6. The performance ratio 7y is upper-bounded
by v = GE/G* < man{l -+ )\k}



The result can be understood as follows: if A\x = 0 for all
k, then all the incentive-compatibility constraints are not
active at the optimal point of (12). So, individual rationality
is not a constraining factor for achieving the social optimum.
In this case, v = 1, meaning that the best SPE achieves the
social optimal. But if Ay > 0 for some k, the individual
rationality of player k prevent the system from achieving
social optimum. Larger A\, leads to a poorer performance
bound on the best SPE relative to SO.

Proor. Consider the following convex optimization prob-
lem parametrized by t = (¢1,t2, ..., tn), with optimal value

V(t):
V(t) =

ming>o
s.t.

22 9i(%)

gi(x) < t;,Vi (13)

When t = g, it is the same as problem (12) that gives the
social cost of the best SPE; when t = g*, it gives the same
solution as the Social Optimum. According to the theory of
convex optimization, V' (t) is convex in t. Therefore,

V(g)-V(g") <VV(g)(g—g")

Also, VV (g) = —A, where X is the vector of dual variables
when the problem with t = g is solved. So,

GE = V(g)
< V(g)+A"(g" —g)
= G (g - g)
Then
GE )\Tg*
= < <
7= S 1+ 17g = m}gx{l + Ak}
O

Proposition 6 gives an upper bound on v assuming the
general cost function g;(x) = fi(x) + z;. Although it is
applicable to the two specific models introduced before, it
is not explicitly related to the network parameters. In the
following, we give an explicit bound for the EI model.

PrROPOSITION 7. In the EI model where
9i(x) = Vi(37_, Bjizj) + i, 7y is bounded by

B

. ik
< min{max —,
= {z‘,j,k Bk @}
where Q = maxi{l + > irith Brit-

The part v < @Q is straightforward: since the set of SPE
includes all NE’s, the best SPE must be better than the
worst NE. The other part is derived from Proposition 6 (its
proof is included in [8] due to the limit on space).

Note that the inequality v < max; j» g:i
tight bound, especially when ;i is very small for some j, k.
But in the following simple example, it is tight and shows
that the best SPE achieves the social optimum. Assume
n players, and (;; = 1,Vi,j. Then, the POA of the one-
shot game is p < @ = n according to (6). In the repeated

game, however, the performance ratio v < max; j,m gi’"f =1

may not give a

im
(i-e., social optimum is achieved). This illustrates the per-
formance gain resulting from the repeated game.
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5. CONCLUSIONS

We have studied the equilibrium performance of the net-
work security game. Our model explicitly considered the
network topology, players’ different cost functions, and their
relative importance to each other. We showed that in the
strategic-form game, the POA can be very large and tends to
increase with the network size, and the dependency and im-
balance among the players. This indicates severe efficiency
problems in selfish investment. Not surprisingly, the best
equilibrium in the repeated game usually gives much bet-
ter performance, and it’s possible to achieve social optimum
if that does not conflict with individual interests. Imple-
menting the strategies supporting an SPE in a repeated
game, however, needs more communications and coopera-
tion among the players.

Given that the efficiency can be bad with selfish invest-
ment, a natural question is how to induce good or optimal
performance. With a social planner, a well-known “due care”
scheme can achieve social optimum theoretically (see, for ex-
ample, [1]). In this scheme, each player 7 is required to invest
at least 7, the investment in the socially optimal solution.
Otherwise, he will be punished according to the amount of
“damage” he causes to other players. It can be shown that
the best strategy of player 7 is to invest x;. Although this
scheme is quite simple conceptually, in practice it is not easy
to implement. Firstly, the social planner needs to collect a
large amount of information about the players in order to
find the optimal level of investment by each user. Then, it
needs to enforce this punishment scheme by monitoring the
players’ actual efforts/investments. Meanwhile, the privacy
concern of the players can further hinder the intervention of
the social planner. So, in the future, we would like to explore
effective and practical schemes to improve the efficiency of
investments in network security.
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