
Off-the-path Flow Handling Mechanism for High-Speed
and Programmable Traffic Management

Hideyuki Shimonishi
System Platforms Research

Laboratories, NEC Corporation
1753 Shimonumabe, Nakahara,
Kawasaki, Kanagawa 211-8666,

Japan
+81-44-396-3491

h-shimonishi@cd.jp.nec.com

Takashi Yoshikawa

System Platforms Research
Laboratories, NEC Corporation
1753 Shimonumabe, Nakahara,
Kawasaki, Kanagawa 211-8666,

Japan
+81-44-396-2391

yoshikawa@cd.jp.nec.com

Atsushi Iwata

System Platforms Research
Laboratories, NEC Corporation
1753 Shimonumabe, Nakahara,
Kawasaki, Kanagawa 211-8666,

Japan
+81-44-396-2744

a-iwata@ah.jp.nec.com

ABSTRACT
In this paper, we propose a high-speed and programmable traffic
management mechanism to enable easy and timely innovations. A
control framework introduced by 4D, Tesseract, or OpenFlow,
separates control functions from the switch nodes to a control
server so that a variety of network control policies can be
implemented outside of the switches. Within this framework, we
propose a mechanism to enable flexible flow-based traffic
management so that a variety of innovative traffic management
schemes can be realized. Per-flow traffic management, however,
requires packet-by-packet state updates, which can spoil this
control framework. The proposed mechanism consists of a control
server that monitors traffic conditions using sampled packets sent
from the switches and calculates per-flow packet discarding rate,
and switches that discard incoming packets according to the
discarding rate. Packet sampling and discarding do not require
packet-by-packet state handling at the switches and thus allows
controls from a control server. We also propose a mechanism to
compress the discarding information using a time series of bloom
filters, so that frequent control updates are allowed. We tested the
mechanism with per-flow WFQ emulation and the simulation
results showed very good per-flow fairness. Furthermore, we
found that the flow table is compressed 600 times smaller and that
the processing cost at the server and the switches is small enough
for use with 10 Gbps links.

Categories and Subject Descriptors
C.2.3 [COMPUTER-COMMUNICATION NETWORKS]:
Network Operationss – Network monitoring, Network
management.

General Terms: Algorithms, Performance, Design

Keywords: Traffic management, QoS, programmable, high-
speed, scalable, per-flow, bloom filter, network virtualization

1. INTRODUCTION
Several research initiatives including FIND [1], 4WARD [2],

and Trilogy [3] have been started and much research has been
conducted on “Future Internet”. One of the most important
features of the future Internet would be flexibility of network
functions for easy and timely innovations. To accelerate the
development of such innovations, programmable network testbed
projects, such as GENI [4], have been discussed in order to
facilitate innovative experiments in more realistic network
environments. A control framework introduced by 4D [5],
Tesseract [6], Ethane [13], or OpenFlow [7], separates control
functions from the switch nodes to a control server so that a
variety of network control policies can be implemented outside of
the switches. For example, new routing policies or security
policies can easily be tested without the need for introducing new
functionalities into the switches.

Within this framework, we propose a mechanism to enable
flexible flow-based traffic management. For example, new
algorithms regarding active queue managements, DoS mitigation
schemes, per-flow WFQ schedulers, to mention a few, are
realized by control server programs. Per-flow traffic management,
however, requires packet-by-packet state updates and thus
requires fat and unaggregatable flow tables as well as rich
functionalities on the switches. Considering that the number of
flows can be as large as 1 million and their link speed is
exceeding 10 Gbps in the Internet backbone links, realizing both
programmability and high-performance at the same time is a big
challenge. To achieve high-speed packet processing, switches
should be stateless and its flow table size should be minimized.
And, to control traffic management from a control server, control
overhead has to be minimized so that frequent control updates are
allowed.

A variety of per-flow bandwidth controls can be realized by
adaptive packet discarding, which dynamically changes
discarding rate according to control policies and traffic conditions,
therefore the switches can be stateless. For example, active buffer
management schemes, including Fair RED (FRED) [9] or
Random Early Discard with Preferential Dropping (RED-PD)
[10] are typical examples of per-flow discarding rate control.
Similarly, DoS attack mitigation schemes can be within this
framework of discarding specific messages of specific flows. For
example, SYN-flooding attacks can be mitigated by selectively
discarding SYN packets of specific flows. In addition, as it is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PRESTO’08, August 22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-181-1/08/08...$5.00.

15

shown in the following sections, per-flow bandwidth control
using deficit round robin (DRR) [11] or weighted fair queue
(WFQ) can also be emulated. Although delay or jitter control
cannot be performed by merely discarding packets, the number of
packets output, i.e. per-flow throughput, can be controlled. Also
in [8], fair queuing is emulated in core switches without per-flow
state maintenance, although it requires a packet header extension
as well as per-flow state maintenance at edge switches.

To minimize control overhead between switches and control
servers, as well as to compress the flow table at switches, we
propose a flow handling mechanism that uses a time series of
bloom filters [12]. One good feature of a bloom filter is that the
filter only needs to include the flows under control, and the filter
size is independent of the number of entire flows. For example, let
us assume a case where there are 1 million flows in total and 10%
of them are needed to be shaped, the filter size is a magnitude of
100 thousand, rather than 1 million. In fact, flows that send
packets at a very high rate, or flows that attack the network, is
only a small fraction of entire flows [10]. In addition, the flow
table does not require a fine grain value for the discarding rate if
the values are frequently updated (because the discarding rate is
itself statistical). This is the similar case with a 1-bit D/A
converter that generates an analogue signal (i.e. fine grain
discarding rate) from a time series of “0” (i.e. not-discarding) and
“1” (i.e. discarding). While the control server maintains multiple
bloom filters to store multi-bit values for the discarding rate, the
switch needs to keep one of the filters, which is frequently
replaced with other filters.

Based on the above, we have developed a traffic
management mechanism that takes advantage of both
programmability at a control server and high-speed packet
processing of switch hardware. A control server program monitors
per-flow traffic conditions through packet sampling and maintains
per-flow state information to calculate per-flow packet discarding
rates according to the control policies. Since the server operation
is basically activated upon a reception of a sampled packet, whose
sampling rate is typically quite low, e.g., 1 packet out of 100, the
server’s processing cost should not be a problem. Then, the
calculated discarding rate is sent to the switches, which simply
discard packets according to this rate. Therefore, simple and fast
packet handling is enough for the switches.

In the following, we outline the proposed mechanism and
evaluate it with one typical application; per-flow packet
scheduling emulation using WFQ. Actually, WFQ emulation is a
challenging application to the proposed mechanism since it
requires very strict state maintenance and thus larger control error
could happen when there are a large number of short-lived flows,
which can not be captured by sampling. On the other hand,
applications like regulating heavy hitters or mitigating DoS attack
packets are very good application. Nevertheless, we tested WFQ
emulation to evaluate the ability of the mechanism.

2. Description of the Proposed Mechanism

2.1 Outline of the mechanism
Figure 1 illustrates the developed mechanism, which consists

of a control server and switches, and Fig. 2 shows the switch
functions and server functions. The control server can be a
separate server machine, as shown in the figure, or can be located
inside the switches as a local controller.

The server can control multiple switches, as shown in the
figure, for network wide traffic management. With network wide
traffic information, the server can make appropriate control
decisions and instruct appropriate switches. For example, if the
server can determine a switch that is close to the origin of a flow,
the server only needs to control that particular switch.
Alternatively, multiple servers can control a single switch so that,
for example, the switch accommodates multiple virtual network
slices and each slice has its own control servers for better
maintenance or safety.

The server may use Virtual Machine technologies or User
Mode Linux technology so that it maintains multiple control
programs easily and safely. Control programs should be
dynamically downloaded to the servers so that users can easily
install new algorithms. Furthermore, if the switch accommodates
multiple virtual networks or multiple types of flows, each of them
should be dynamically configured in order to be bound with
appropriate set of control programs. We will study there features
as we develop a prototype system by carefully following related
researches including GENI, PlanetLab [14], and VINI.

2.2 Switch function (packet sampling)
The switches, which can be edge switches, core switches,

switches, firewalls, or any kind of network node, should sample
packets and send their headers to the server(s). Standard
mechanisms like sFlow [15] can be used for this purpose;
therefore, there is no need to develop new mechanisms. A simple
random sampling is enough for rate measurement, so there is no
need to keep flow information or state information at the switches.
Of course, it might be useful if the sampler can change the
sampling rate according to the types of traffic, or collects certain
types of control messages, e.g. TCP-SYN, SIP Invite, for more
sophisticated traffic control applications.

Sampled
packet
header

Control
information

New control policy
Control server

Anti-DoS middleware
SIP server protection middleware

Per-flow WFQ middleware
Programmable AQM middleware

Router

Packet
sampler

Packet
discarder

Router

Packet
sampler

Packet
discarder

Fig. 1: Basic idea of the proposed mechanism

Fig. 2: Basic functions of the proposed mechanism

Packet
sampler

Packet
discarder

Traffic management
software

Bloom filter
generation

Router

Control
server Flow table

Flow table
(bloom filter)

16

2.3 Server function
A control program on a control server maintains per-flow

state information. It updates flow status using the information
carried on sampled packet headers and performs any operations
needed for traffic management. When it determines the per-flow
packet discarding rate or any other control information, it is
compressed into bloom filters, which are sent to the switches
periodically.

2.4 Switch function (packet discarding)
When a switch receives one of the bloom filters, it keeps the

filter as a flow table. When it receives a packet on a line interface,
it examines whether the flow the packet belongs to is registered
on the filter or not, and if it is, the switch performs the
predetermined operation, i.e. discards the packet at the indicated
discarding rate, otherwise the switch passes through the packet.

2.5 Compression of flow table using bloom
filters
Bloom filters are used for an efficient data structure for a

flow table. They express whether an element (i.e. a flow) of a data
set (i.e. set of flows going through a switch) is included in a
subset of the elements (i.e. a set of flows that is indicated as
needing to be controlled). Bloom filter F is a series of bits having
pre-determined length N. To register a new flow whose ID is X in
F, multiple bit positions of F are set according to hash functions
Hj(X) (0<j≤K and 0≤Hj(X)<N), where K is the number of hash
functions. To check whether a flow is included in the filter or nor,
bit positions of F indicated by the same hash functions Hj(X) are
examined. If all the bit positions are set, the flow is included
otherwise the flow is not included. It is ensured that if a flow is
included in the subset, the filter must indicate the flow is included,
which means there are no false negatives. But, there is certain
possibility of a false positive. We will discuss this possibility in
the following section.

Since a bloom filter only states that a flow is IN or that a
flow is OUT, multiple bloom filters are necessary to express fine
grain control values. It would be possible to express 128 levels of
a discarding rate using 7 bloom filters, but this means that the
flow table requires 7 bloom filters to be kept on a switch. To
reduce the flow table size, we also proposed periodically
changing the bloom filter kept in a switch. As shown in Fig. 3, a
control server maintains M bloom filters for M levels of a packet
discarding rate. The server has a much larger memory than a
switch, so the number should not be a problem. If a flow has a
non-zero packet loss rate a, the flow is registered into aM
randomly chosen bloom filters. Then, one of the filters is sent to
the switch in a round robin manner. When a switch receives a new
bloom filter, it replaces the one it had by the one it receives. Thus,
packet loss rate varies over time at the switch, and if the filter
update is generally adequate, the resulting packet loss rate
becomes sufficiently smooth.

2.6 Application examples of the mechanism
There are a number of applications for our mechanism. We

describe some of them below. A useful feature of a bloom filter is
that key length can be arbitrary. Thus, any key, whether it is, for
example, a flow ID, source or destination IP address, protocol ID,
or message ID can be stored in the same filter. This makes our

mechanism so flexible that many applications can be applied
simultaneously

Active queue management (AQM)
Basically any type of AQM scheme can be written as a

program on a server. AQM that differentiates per-flow packet loss
rates can be performed using the bloom filter mechanism. Also
basic AQM schemes, which use the same packet loss rate for all
flows, can also be applied by filing bloom filters with “1”.

Emulation of per-flow packet scheduler
Per-flow bandwidth control using a per-flow packet

scheduler like WFQ or DRR can be emulated. By properly
configuring packet discarder in a switch, a definition of “flow”
can be flexibly configured. For example, be single TCP/IP flow or
it can be a group of flows destined for the same IP destination.

DoS mitigation
A server program can detect DoS attacks by monitoring

certain messages in the sampled packets and then configure the
bloom filters in order to regulate a certain portion of the messages
to mitigate the attack. When a server controls multiple switches, it
may send control information to the switches close to the source
of the attack or the switches close to the victim.

Call regulation
During disasters, SIP server failures, or congestion the

mechanism can be used to regulate calls by probabilistically
regulating SIP messages.

3. Application to WFQ Emulation
In this section, we describe per-flow WFQ emulation as one

of the applications of a control server. As illustrated in Fig. 4,
when a sampled packet header arrives at the server, following (1)
– (3) operations are performed. (1) The server monitors flow
behaviors using sampled packets and calculates per-flow queue
length of a corresponding WFQ scheduler. The queue length is
not a real one but rather it is a virtual queue length calculated as if
there were a WFQ scheduler. (2) Packet discarding rate is
calculated using an AQM mechanism and (3) the rate is encoded
into bloom filters. Then, periodically, independently of a
reception of a sampled header, one of the filters is picked up and
sent to the switch. The switch is configured for appropriate
definition of “flow”, which could be TCP/UDP flow, or MPLS
flow, or whatever, and discards packets as instructed by the server.
Therefore, it is expected that the number of packets sent and
discarded, and thus per-flow throughput, of both proposed
mechanism and real WFQ scheduler is consistent.

3.1 Maintaining “virtual” queue
When the server receives a sampled packet header of a flow, it

updates the length of a queue allocated to the flow by calculating
incoming bytes to the queue and outgoing bytes from the queue, as
follows;

Qi,j = max(Qi,j-1 + Ii,j – Oi,j, 0),

where Qi,j is the queue length of flow i at the reception of j-th

Fig. 3: compression of flow table using bloom filter

Packet discarding
rate for flow i

(N-step)

N

M bit bloom filter x N

Flow table

Control server Router

(1)

17

sampled header. Ii,j and Oi,j are the incoming and outgoing bytes
during the reception of (j-1)-th and j-th sampled headers,
respectively

Regarding UDP flows, incoming bytes Ii,j is estimated by
Ii,j = p SS,

where p is the sampling rate and SS is the segment size of a
packet. Regarding TCP flows, Ii,j can be obtained more accurately
using TCP sequence numbers, as follows;

Ii,j = SNi,j – SNi,j-1,
where SNi,j is the TCP sequence number shown in j-th sample.

Outgoing bytes, Oi,j, during time interval Tj and Tj-1, where Tj
is the time when j-th sample arrives, is calculated as follows

Oi,j = Aj (Tj – Tj-1),
where Aj is the bandwidth allocated to each flow. We assume that
the target bandwidth, or weight, of each flow is equal and thus
allocated bandwidth Aj is calculated as follows:

Aj = B / Cj,
where B and Cj are capacity of output link and the number of
active flows. The definition of active flows here is the number of
flows which has sent at lease one packet during a time interval.

3.2 Emulation of GPS discipline
Packet scheduling emulation defined by equations (1) to (5)

is not work-conserving, i.e. residual bandwidth is not properly
reused, and thus not WFQ. If there are flows whose sending rate
is less than the allocated bandwidth, there have to be some
residual bandwidth on the output link. To follow GPS
(Generalized Processor Sharing) discipline and hence emulate
WFQ scheduler, residual bandwidth has to be re-allocated to each
flow according to their weights.

We use the idea of virtual time [16]. Virtual time elapses
faster than real time when there is residual bandwidth so that
more packets are transmitted from the queues and the link is fully
utilized. Virtual time Tv

j, which correspond to real time Tj, is
updated upon an arrival of a sampled header of flow i, as follows:

Tv
j = Tv

j-1 + (Tj – Tj-1) (B / ∑ imax(Aj, Rv
i)),

Rv
i = Ii,j / (Tv

j – Tv
j-1),

where Rv
i is the receiving rate of flow i in virtual time domain.

Then virtual time is applied to Eq. (4) and we have:
Oi,j = Aj (Tv

j – Tv
j-1).

These equations show that if the link is not fully utilized,
residual bandwidth is allocated to each queue by accelerating the
decrement of queue length. For example, if the link utilization is
50%, virtual time elapses two times faster than real time so that
two times more bytes are reduced from the queue, therefore
throughput of each flow doubles and the link is fully utilized.

3.3 Discarding rate calculation
Based on the queue length updated using above equations,

packet discarding rate Di,j of flow i is calculated using random
early discarding algorithm, as shown in the following equation:

Di,j = (Qi,j – Qmin/Cj) / (Qmax/Cj – Qmin/Cj),
where Qmin and Qmax are queue thresholds for minimum and
maximum discarding rate, respectively. The thresholds are divided
by the number of active flows so that the buffer capacity is
appropriately shared by the flows.

3.4 Bloom filter generation
Packet discarding rate of all flows is encoded into multiple

bloom filters as explained in the previous sections.

4. Simulation Results
In this section, we show some of simulation results of the WFQ

emulation example. Due to lack of the space, we only show a few
typical results. Variety of simulation results using web-like on-off
flows, for example, will appear in the future paper.

4.1 Evaluation model
Figure 5 shows the network model used for this simulation

study. The model is a dumb-bell topology and link capacity is 100
Mbps. A control server is attached to the switches and dedicated
links are provided for their communication. The number of flows is
100 and each flow uses either TCP-NewReno with SACK option or
constant bit rate UDP. Propagation delay between sender and
receiver ranges 1msec to 126msec.

We compared three different traffic management mechanisms;
(1) FIFO + tail drop, (2) FIFO + proposed WFQ emulation, and (3)
per-flow queue + DRR scheduler. For (1) and (2), the switches have
a single queue shared by all flows and the buffer capacity is 500KB.
For (3), the switches have separate per-flow queues and the buffer
capacity is either 500 KB (5 KB per queue) or 50 MB (500 KB per
queue).

We set (Bmin, Bmax) = (500 KB, 5 MB) for TCP flows to allow
more burstiness of TCP flows, and (Bmin, Bmax) = (50 KB, 500 KB)
for UDP flows. In this experiment, we assume that there’s no
collisions of hash functions, thus bloom filter size is 100 bit. The
control server maintains 100 bloom filters and its update for the
switches is 100 times per second. We used NS2 simulator [17].

4.2 Evaluation on sampling rate
Most of control server operations including WFQ and RED

emulation, as well as bloom filter generation, are performed when a
sampled packet header arrives. Therefore, sampling rate is a key
factor that determines server performance. Smaller sampling rate is
necessary for higher server performance, but it may deteriorate link
utilization, stability, and fairness among flows.

Figure 6 shows link utilization for different sampling rates. In
this case, two scenarios are examined; (1) 25 TCP flows whose RTT
ranges 1msec to 126msec with 5msec interval, (2) 4 sets of scenario
(1) flows. This figure shows that sampling rate has to be more
frequent than 1/100 to stabilize traffic control. If sampling rate is
less frequent than that, arriving rate is sometimes overestimated

Fig. 4: example; WFQ emulation

Packet
sampler

Packet
discarder

Router

Control
server

Flow table
(bloom filter)

WFQ

WFQ emulation
software

W
FQ

em
ul

at
io

n

D
is

ca
rd

 ra
te

ca

lc
ul

at
io

n

B
lo

om
 fi

lte
r

ge
ne

ra
tio

n

Flow table

sFlow Bloom filter
transfer

(3)

(4)

(5)

(6)

(7)

(4’)

(8)

(2)

18

and packet discarding rate tends to be higher, which results in
throughput degradation.

4.3 Evaluation using TCP flows
Figure 7 shows average throughput of individual flows for

the case where 100 TCP flows compete. In this case, fair share
throughput of a flow is 1 Mbps. RTT ranges 1msec to 126msec
with 5msec interval and each RTT group has 4 TCP flows. As a
nature of TCP, flows with shorter RTTs tend to obtain higher
throughput than longer RTT flows.

Jain’s fairness index of Proposed, DRR (50MB), DRR
(500KB), and Drop-tail are 0.996, 0.999, 0.365, and 0.800,
respectively. This figure shows that DRR with a huge buffer
achieves best fairness among flows. Highest throughput is just 1.1
times larger than lowest throughput. However, if the buffer
capacity is 500KB, same as other FIFO cases, DRR shows the
worst fairness because buffer capacity of each queue becomes too
small. This is because the buffer capacity is strictly separated for
each flow and no statistical multiplexing gain is expected. Drop-
tail is somewhat better than DRR with small buffer, but the
throughout difference is still large and highest throughput is 4
times larger than lowest throughput. Our mechanism achieves
good fairness even with small buffer capacity. By setting Bmax
larger than the actual buffer capacity, the buffer is efficiently
shared. As a result, per-flow fairness of the proposed mechanism
is comparable with a DRR scheduler.

4.4 Evaluation using TCP and UDP flows
Figure 8 shows average throughput of individual flows for

the case where 10 UDP flows and 90 TCP competes, thus fair
share throughput is 1 Mbps. RTT of each TCP flow is fixed at
20msec. Sending rate of UDP flows ranges from 1 Mbps to 10
Mbps with 1 Mbps interval.

In this case, Jain’s fairness index of Proposed, DRR (50MB),
DRR (500KB), and Drop-tail are 0.998, 0.999, 0.100, and 0.317,

respectively. DRR with huge buffer and our mechanism shows
good per-flow fairness. With drop-tail, UDP flows obtain larger
throughput and throughput of TCP flows are about half of the fair
share throughput. DRR with small buffer results in very poor
fairness and link utilization. Since buffer capacity allocated to
each flow is very small, retransmission timeout frequently occurs
and thus throughput is seriously degraded.

5. Discussions on Implementation Issues

5.1 Flow table size
Bloom filters have a possibility of false positive, and there is

a tradeoff between false positive ratio and bloom filter size. False
positive ratio f can be calculated by the following equation:

where α, β, and C is the ratio of large flows (i.e. flows needs to be
controlled) to the entire flows, average packet discarding rate of
large flows, and maximum member of concurrent active flows.
For example, if we assume that number of entire flows,
concurrent active flows, and large flows, is 1 million, 0.1 million,
and 0.1 million, respectively, and that 10% packet discard is
enough to slow down TCP flows, we obtain a false positive ratio
shown in Fig. 9 for various filter sizes and number of hash
functions.

If we assume that false positive ratio is 0.001, this means
0.1% of innocent flows suffer from improper packet discard. It
may be possible to spread the risk of inappropriate damage by
frequently changing hash functions. In this case, 0.001 false
positive ratio can be understood that many flows get very small
level of false packet discard. If this is acceptable, bloom filter size
and flow table size become 17 Kbit with K=5. On the other hand,
if we assume to have a flow table with 5-tuple, one entry size is

Fig. 5: evaluation model

RTT=1-126msec, Link bandwidth =100Mbps

Senders Receivers

Router

Control server

Router

Fig. 6: evaluation of sampling rate

0

20

40

60

80

100

120

0.1 0.03 0.01 0.003 0.001
Sampling rate

Li
nk

 u
til

iz
at

io
n

[%
] 100 TCP flows

25 TCP flows

Fig. 7: throughput of TCP flows with different RTTs

Proposed

DRR (500KB)

DRR (50MB)
Drop-tail

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t [

M
bp

s]

Flow ID

Proposed
Dtop-tail

DRR (500KB buffer)
DRR (50MB buffer)

Fig. 8: throughput of co-existing UDP and TCP flows

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t [

M
bp

s]
Flow ID

Proposed
Dtop-tail

DRR (500KB buffer)
DRR (50MB buffer)

Proposed
DRR (500KB)

DRR (50MB)

Drop-tail

()KNCKef /1 αβ−−≅

19

32+32+8+16+16=104 bit for an IPv4 flow. And thus a size of a
flow table with 0.1 million flow entry becomes 10 Mbit.
Therefore, in this particular example, flow table size is
compressed 600 times smaller by using bloom filters.

5.2 Processing capability of a switch
Memory size for a flow table is small enough to be located

on a corner of a logic LSI or FPGA, and there is no need to add
external SRAM or CAM. Thus, access latency to the flow table
can be as small as one or two clock cycles. If we assume that
clock cycle of a FPGA is 100 MHz, 64 byte packets are processed
in every 5 clock cycles at 10 Gbps links. Since the number of
memory accesses with K=5 is 5 times per packet, we can
conclude that our mechanism can be applied to switches having
more than 10 Gbps links.

5.3 Processing capability of a control server
In our evaluation, we found that it is OK that sampling rate is

1/100 and bloom filter update frequency is 100 times a second.
Assuming that a packet size is 1.5 KB, the number of packet
headers sampled from a 10 Gbps link is 8300 per second.
Therefore, the server updates packet discarding rate 8300 times a
second and sends bloom filter 100 times a second, which would
be small enough for modern CPU capability.

5.4 Communication bandwidth between
server and switch

Assuming that header length is 40 bytes and the switch sends
8300 samples a second, the bandwidth consumed by sFlow
packets is 2.7 Mbps. Also, assuming that bloom filter size is 15
Kbit and its update frequency is 100 times a second, the
bandwidth consumed by the filter update is 1.5 Mbps. These
communication bandwidths should be reasonably small compared
to the link capacity.

6. Conclusion
In this paper, we proposed a programmable and scalable

traffic management mechanism that can handle more than 10
Gbps and more than 1 million flows. The proposed mechanism
consists of control server software, which enables programmable
traffic management, and a hardware packet discarder for high-
speed switches. We also proposed a flow table mechanism that

uses a time series of bloom filters, which compresses the flow
table by 1/600. We tested the proposed mechanism with a per-
flow WFQ emulation and the results ware promising, although we
need more evaluations of the cases where there are a large number
of short-lived flows that can not be captured by sampling. More
importantly, evaluation of the mechanism using more appropriate
applications like regulating heavy hitters or mitigating DoS attack
packets are our important future work.

7. References
[1] NSF NeTS FIND Initiative, http://www.nets-find.net/
[2] 4ward project page, http://ww.4ward-project.eu
[3] EU FP7 IST Trilogy project, http://www.trilogy-project.org
[4] GENI: Global Environment for Network Innovations,

http://www.geni.net/
[5] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J.

Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang, "A clean
slate 4D approach to network control and management,"
ACM Computer Communication Review, October 2005

[6] H. Yan, D. A. Maltz, T. S. Eugene Ng, H. Gogineni, H.
Zhang, Z. Cai, “Tesseract: A 4D Network Control Plane”,
NSDI 2007

[7] OpenFlow Switch Consortium,
http://openflowswitch.org/index.php

[8] I. Stoica, S. Shenker, H. Zhang, "Core-Stateless Fair
Queueing: A Scalable Architecture to Approximate Fair
Bandwidth Allocations in High Speed Networks",
SIGCOMM'98

[9] D. lin and R. Morris: “Dynamics of Random Early
Detection”, In Proc. of ACM SIGCOMM 1997

[10] R. Mahajan, S. Floyd, and D. Wetherall: “Controlling High-
Bandwidth Flows at the Congested Switch”, In Proc. of
ICNP2001

[11] M. Shreedhar and G. Varghese: “Efficient Fair Queueing
using Deficit Round Robin,” IEEE/ACM Trans. On
Networking, 1996

[12] A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey”, Allerton Conference 2002.

[13] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown
and S. Shenker, “Ethane: Taking Control of the Enterprise”,
In Proc. of ACM SIGCOMM 2007

[14] PlanetLab, http://www.planet-lab.org/
[15] P. Pheal, S. Panchen, and N. McKee, “InMon Corporation’s

sFlow: A Method for Monitoring Traffic in Switched and
Routed Networks,” IETF, RFC3176, 1992

[16] S. J. Golestani, “A self-clocked fair queueing scheme for
broadband applications”, In Proc. of INFOCOM 1994

[17] Network Simulator version 2 (ns-2), available from
http://www.isi.edu/nsnam/ns/

Fig. 9: false positive ratio of bloom filters

0.0001

0.001

0.01

0.1

1

1000 10000 100000
Bloom filter size [bit]

Fa
ls

e
po

si
tiv

e
ra

tio

K=1

K=3

K=5K=7
K=9

20

