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ABSTRACT 
In this paper, we propose a high-speed and programmable traffic 
management mechanism to enable easy and timely innovations. A 
control framework introduced by 4D, Tesseract, or OpenFlow, 
separates control functions from the switch nodes to a control 
server so that a variety of network control policies can be 
implemented outside of the switches. Within this framework, we 
propose a mechanism to enable flexible flow-based traffic 
management so that a variety of innovative traffic management 
schemes can be realized. Per-flow traffic management, however, 
requires packet-by-packet state updates, which can spoil this 
control framework. The proposed mechanism consists of a control 
server that monitors traffic conditions using sampled packets sent 
from the switches and calculates per-flow packet discarding rate, 
and switches that discard incoming packets according to the 
discarding rate. Packet sampling and discarding do not require 
packet-by-packet state handling at the switches and thus allows 
controls from a control server. We also propose a mechanism to 
compress the discarding information using a time series of bloom 
filters, so that frequent control updates are allowed. We tested the 
mechanism with per-flow WFQ emulation and the simulation 
results showed very good per-flow fairness. Furthermore, we 
found that the flow table is compressed 600 times smaller and that 
the processing cost at the server and the switches is small enough 
for use with 10 Gbps links. 

Categories and Subject Descriptors 
C.2.3 [COMPUTER-COMMUNICATION NETWORKS]: 
Network Operationss – Network monitoring, Network 
management. 

General Terms: Algorithms, Performance, Design 

Keywords: Traffic management, QoS, programmable, high-
speed, scalable, per-flow, bloom filter, network virtualization 

1. INTRODUCTION 
Several research initiatives including FIND [1], 4WARD [2], 

and Trilogy [3] have been started and much research has been 
conducted on “Future Internet”. One of the most important 
features of the future Internet would be flexibility of network 
functions for easy and timely innovations. To accelerate the 
development of such innovations, programmable network testbed 
projects, such as GENI [4], have been discussed in order to 
facilitate innovative experiments in more realistic network 
environments. A control framework introduced by 4D [5], 
Tesseract [6], Ethane [13], or OpenFlow [7], separates control 
functions from the switch nodes to a control server so that a 
variety of network control policies can be implemented outside of 
the switches. For example, new routing policies or security 
policies can easily be tested without the need for introducing new 
functionalities into the switches. 

Within this framework, we propose a mechanism to enable 
flexible flow-based traffic management. For example, new 
algorithms regarding active queue managements, DoS mitigation 
schemes, per-flow WFQ schedulers, to mention a few, are 
realized by control server programs. Per-flow traffic management, 
however, requires packet-by-packet state updates and thus 
requires fat and unaggregatable flow tables as well as rich 
functionalities on the switches. Considering that the number of 
flows can be as large as 1 million and their link speed is 
exceeding 10 Gbps in the Internet backbone links, realizing both 
programmability and high-performance at the same time is a big 
challenge. To achieve high-speed packet processing, switches 
should be stateless and its flow table size should be minimized. 
And, to control traffic management from a control server, control 
overhead has to be minimized so that frequent control updates are 
allowed. 

A variety of per-flow bandwidth controls can be realized by 
adaptive packet discarding, which dynamically changes 
discarding rate according to control policies and traffic conditions, 
therefore the switches can be stateless. For example, active buffer 
management schemes, including Fair RED (FRED) [9] or 
Random Early Discard with Preferential Dropping (RED-PD) 
[10] are typical examples of per-flow discarding rate control. 
Similarly, DoS attack mitigation schemes can be within this 
framework of discarding specific messages of specific flows. For 
example, SYN-flooding attacks can be mitigated by selectively 
discarding SYN packets of specific flows. In addition, as it is 
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shown in the following sections, per-flow bandwidth control 
using deficit round robin (DRR) [11] or weighted fair queue 
(WFQ) can also be emulated. Although delay or jitter control 
cannot be performed by merely discarding packets, the number of 
packets output, i.e. per-flow throughput, can be controlled. Also 
in [8], fair queuing is emulated in core switches without per-flow 
state maintenance, although it requires a packet header extension 
as well as per-flow state maintenance at edge switches. 

To minimize control overhead between switches and control 
servers, as well as to compress the flow table at switches, we 
propose a flow handling mechanism that uses a time series of 
bloom filters [12]. One good feature of a bloom filter is that the 
filter only needs to include the flows under control, and the filter 
size is independent of the number of entire flows. For example, let 
us assume a case where there are 1 million flows in total and 10% 
of them are needed to be shaped, the filter size is a magnitude of 
100 thousand, rather than 1 million. In fact, flows that send 
packets at a very high rate, or flows that attack the network, is 
only a small fraction of entire flows [10]. In addition, the flow 
table does not require a fine grain value for the discarding rate if 
the values are frequently updated (because the discarding rate is 
itself statistical). This is the similar case with a 1-bit D/A 
converter that generates an analogue signal (i.e. fine grain 
discarding rate) from a time series of “0” (i.e. not-discarding) and 
“1” (i.e. discarding). While the control server maintains multiple 
bloom filters to store multi-bit values for the discarding rate, the 
switch needs to keep one of the filters, which is frequently 
replaced with other filters. 

Based on the above, we have developed a traffic 
management mechanism that takes advantage of both 
programmability at a control server and high-speed packet 
processing of switch hardware. A control server program monitors 
per-flow traffic conditions through packet sampling and maintains 
per-flow state information to calculate per-flow packet discarding 
rates according to the control policies. Since the server operation 
is basically activated upon a reception of a sampled packet, whose 
sampling rate is typically quite low, e.g., 1 packet out of 100, the 
server’s processing cost should not be a problem. Then, the 
calculated discarding rate is sent to the switches, which simply 
discard packets according to this rate. Therefore, simple and fast 
packet handling is enough for the switches. 

In the following, we outline the proposed mechanism and 
evaluate it with one typical application; per-flow packet 
scheduling emulation using WFQ. Actually, WFQ emulation is a 
challenging application to the proposed mechanism since it 
requires very strict state maintenance and thus larger control error 
could happen when there are a large number of short-lived flows, 
which can not be captured by sampling. On the other hand, 
applications like regulating heavy hitters or mitigating DoS attack 
packets are very good application. Nevertheless, we tested WFQ 
emulation to evaluate the ability of the mechanism. 

2. Description of the Proposed Mechanism 

2.1 Outline of the mechanism 
Figure 1 illustrates the developed mechanism, which consists 

of a control server and switches, and Fig. 2 shows the switch 
functions and server functions. The control server can be a 
separate server machine, as shown in the figure, or can be located 
inside the switches as a local controller.  

The server can control multiple switches, as shown in the 
figure, for network wide traffic management. With network wide 
traffic information, the server can make appropriate control 
decisions and instruct appropriate switches. For example, if the 
server can determine a switch that is close to the origin of a flow, 
the server only needs to control that particular switch. 
Alternatively, multiple servers can control a single switch so that, 
for example, the switch accommodates multiple virtual network 
slices and each slice has its own control servers for better 
maintenance or safety. 

The server may use Virtual Machine technologies or User 
Mode Linux technology so that it maintains multiple control 
programs easily and safely. Control programs should be 
dynamically downloaded to the servers so that users can easily 
install new algorithms. Furthermore, if the switch accommodates 
multiple virtual networks or multiple types of flows, each of them 
should be dynamically configured in order to be bound with 
appropriate set of control programs. We will study there features 
as we develop a prototype system by carefully following related 
researches including GENI, PlanetLab [14], and VINI. 

2.2 Switch function (packet sampling) 
The switches, which can be edge switches, core switches, 

switches, firewalls, or any kind of network node, should sample 
packets and send their headers to the server(s). Standard 
mechanisms like sFlow [15] can be used for this purpose; 
therefore, there is no need to develop new mechanisms. A simple 
random sampling is enough for rate measurement, so there is no 
need to keep flow information or state information at the switches. 
Of course, it might be useful if the sampler can change the 
sampling rate according to the types of traffic, or collects certain 
types of control messages, e.g. TCP-SYN, SIP Invite, for more 
sophisticated traffic control applications. 
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Fig. 1: Basic idea of the proposed mechanism 

Fig. 2: Basic functions of the proposed mechanism 
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2.3 Server function 
A control program on a control server maintains per-flow 

state information. It updates flow status using the information 
carried on sampled packet headers and performs any operations 
needed for traffic management. When it determines the per-flow 
packet discarding rate or any other control information, it is 
compressed into bloom filters, which are sent to the switches 
periodically. 

2.4 Switch function (packet discarding) 
When a switch receives one of the bloom filters, it keeps the 

filter as a flow table. When it receives a packet on a line interface, 
it examines whether the flow the packet belongs to is registered 
on the filter or not, and if it is, the switch performs the 
predetermined operation, i.e. discards the packet at the indicated 
discarding rate, otherwise the switch passes through the packet. 

2.5 Compression of flow table using bloom 
filters 
Bloom filters are used for an efficient data structure for a 

flow table. They express whether an element (i.e. a flow) of a data 
set (i.e. set of flows going through a switch) is included in a 
subset of the elements (i.e. a set of flows that is indicated as 
needing to be controlled). Bloom filter F is a series of bits having 
pre-determined length N. To register a new flow whose ID is X in 
F, multiple bit positions of F are set according to hash functions 
Hj(X) (0<j≤K and 0≤Hj(X)<N), where K is the number of hash 
functions. To check whether a flow is included in the filter or nor, 
bit positions of F indicated by the same hash functions Hj(X) are 
examined. If all the bit positions are set, the flow is included 
otherwise the flow is not included. It is ensured that if a flow is 
included in the subset, the filter must indicate the flow is included, 
which means there are no false negatives. But, there is certain 
possibility of a false positive. We will discuss this possibility in 
the following section. 

Since a bloom filter only states that a flow is IN or that a 
flow is OUT, multiple bloom filters are necessary to express fine 
grain control values. It would be possible to express 128 levels of 
a discarding rate using 7 bloom filters, but this means that the 
flow table requires 7 bloom filters to be kept on a switch. To 
reduce the flow table size, we also proposed periodically 
changing the bloom filter kept in a switch. As shown in Fig. 3, a 
control server maintains M bloom filters for M levels of a packet 
discarding rate. The server has a much larger memory than a 
switch, so the number should not be a problem. If a flow has a 
non-zero packet loss rate a, the flow is registered into aM 
randomly chosen bloom filters. Then, one of the filters is sent to 
the switch in a round robin manner. When a switch receives a new 
bloom filter, it replaces the one it had by the one it receives. Thus, 
packet loss rate varies over time at the switch, and if the filter 
update is generally adequate, the resulting packet loss rate 
becomes sufficiently smooth. 

2.6 Application examples of the mechanism 
There are a number of applications for our mechanism. We 

describe some of them below. A useful feature of a bloom filter is 
that key length can be arbitrary. Thus, any key, whether it is, for 
example, a flow ID, source or destination IP address, protocol ID, 
or message ID can be stored in the same filter. This makes our 

mechanism so flexible that many applications can be applied 
simultaneously 

Active queue management (AQM) 
Basically any type of AQM scheme can be written as a 

program on a server. AQM that differentiates per-flow packet loss 
rates can be performed using the bloom filter mechanism. Also 
basic AQM schemes, which use the same packet loss rate for all 
flows, can also be applied by filing bloom filters with “1”. 

Emulation of per-flow packet scheduler 
Per-flow bandwidth control using a per-flow packet 

scheduler like WFQ or DRR can be emulated. By properly 
configuring packet discarder in a switch, a definition of “flow” 
can be flexibly configured. For example, be single TCP/IP flow or 
it can be a group of flows destined for the same IP destination. 

DoS mitigation 
A server program can detect DoS attacks by monitoring 

certain messages in the sampled packets and then configure the 
bloom filters in order to regulate a certain portion of the messages 
to mitigate the attack. When a server controls multiple switches, it 
may send control information to the switches close to the source 
of the attack or the switches close to the victim. 

Call regulation 
During disasters, SIP server failures, or congestion the 

mechanism can be used to regulate calls by probabilistically 
regulating SIP messages. 

3. Application to WFQ Emulation 
In this section, we describe per-flow WFQ emulation as one 

of the applications of a control server. As illustrated in Fig. 4, 
when a sampled packet header arrives at the server, following (1) 
– (3) operations are performed. (1) The server monitors flow 
behaviors using sampled packets and calculates per-flow queue 
length of a corresponding WFQ scheduler. The queue length is 
not a real one but rather it is a virtual queue length calculated as if 
there were a WFQ scheduler. (2) Packet discarding rate is 
calculated using an AQM mechanism and (3) the rate is encoded 
into bloom filters. Then, periodically, independently of a 
reception of a sampled header, one of the filters is picked up and 
sent to the switch. The switch is configured for appropriate 
definition of “flow”, which could be TCP/UDP flow, or MPLS 
flow, or whatever, and discards packets as instructed by the server. 
Therefore, it is expected that the number of packets sent and 
discarded, and thus per-flow throughput, of both proposed 
mechanism and real WFQ scheduler is consistent. 

3.1 Maintaining “virtual” queue 
When the server receives a sampled packet header of a flow, it 

updates the length of a queue allocated to the flow by calculating 
incoming bytes to the queue and outgoing bytes from the queue, as 
follows; 

Qi,j = max(Qi,j-1 + Ii,j – Oi,j, 0), 
 
where Qi,j is the queue length of flow i at the reception of j-th 

Fig. 3: compression of flow table using bloom filter 
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sampled header. Ii,j and Oi,j are the incoming and outgoing bytes 
during the reception of (j-1)-th and j-th sampled headers, 
respectively 

Regarding UDP flows, incoming bytes Ii,j is estimated by 
Ii,j = p SS, 

 
where p is the sampling rate and SS is the segment size of a 
packet. Regarding TCP flows, Ii,j can be obtained more accurately 
using TCP sequence numbers, as follows; 

Ii,j = SNi,j – SNi,j-1, 
where SNi,j is the TCP sequence number shown in j-th  sample. 

Outgoing bytes, Oi,j, during time interval Tj and Tj-1, where Tj 
is the time when j-th sample arrives, is calculated as follows 

Oi,j = Aj (Tj – Tj-1), 
where Aj is the bandwidth allocated to each flow. We assume that 
the target bandwidth, or weight, of each flow is equal and thus 
allocated bandwidth Aj is calculated as follows: 

Aj = B / Cj, 
where B and Cj are capacity of output link and the number of 
active flows. The definition of active flows here is the number of 
flows which has sent at lease one packet during a time interval. 

3.2 Emulation of GPS discipline 
Packet scheduling emulation defined by equations (1) to (5) 

is not work-conserving, i.e. residual bandwidth is not properly 
reused, and thus not WFQ. If there are flows whose sending rate 
is less than the allocated bandwidth, there have to be some 
residual bandwidth on the output link. To follow GPS 
(Generalized Processor Sharing) discipline and hence emulate 
WFQ scheduler, residual bandwidth has to be re-allocated to each 
flow according to their weights.  

We use the idea of virtual time [16]. Virtual time elapses 
faster than real time when there is residual bandwidth so that 
more packets are transmitted from the queues and the link is fully 
utilized. Virtual time Tv

j, which correspond to real time Tj, is 
updated upon an arrival of a sampled header of flow i, as follows: 

Tv
j = Tv

j-1 + (Tj – Tj-1) (B / ∑ imax(Aj, Rv
i)), 

Rv
i = Ii,j / (Tv

j – Tv
j-1), 

where Rv
i is the receiving rate of flow i in virtual time domain. 

Then virtual time is applied to Eq. (4) and we have: 
Oi,j = Aj (Tv

j – Tv
j-1). 

These equations show that if the link is not fully utilized, 
residual bandwidth is allocated to each queue by accelerating the 
decrement of queue length. For example, if the link utilization is 
50%, virtual time elapses two times faster than real time so that 
two times more bytes are reduced from the queue, therefore 
throughput of each flow doubles and the link is fully utilized. 

3.3 Discarding rate calculation 
Based on the queue length updated using above equations, 

packet discarding rate Di,j of flow i is calculated using random 
early discarding algorithm, as shown in the following equation: 

Di,j = (Qi,j – Qmin/Cj) / (Qmax/Cj – Qmin/Cj), 
where Qmin and Qmax are queue thresholds for minimum and 
maximum discarding rate, respectively. The thresholds are divided 
by the number of active flows so that the buffer capacity is 
appropriately shared by the flows. 

3.4 Bloom filter generation 
Packet discarding rate of all flows is encoded into multiple 

bloom filters as explained in the previous sections. 

4. Simulation Results 
In this section, we show some of simulation results of the WFQ 

emulation example. Due to lack of the space, we only show a few 
typical results. Variety of simulation results using web-like on-off 
flows, for example, will appear in the future paper. 

4.1 Evaluation model 
Figure 5 shows the network model used for this simulation 

study. The model is a dumb-bell topology and link capacity is 100 
Mbps. A control server is attached to the switches and dedicated 
links are provided for their communication. The number of flows is 
100 and each flow uses either TCP-NewReno with SACK option or 
constant bit rate UDP. Propagation delay between sender and 
receiver ranges 1msec to 126msec. 

We compared three different traffic management mechanisms; 
(1) FIFO + tail drop, (2) FIFO + proposed WFQ emulation, and (3) 
per-flow queue + DRR scheduler. For (1) and (2), the switches have 
a single queue shared by all flows and the buffer capacity is 500KB. 
For (3), the switches have separate per-flow queues and the buffer 
capacity is either 500 KB (5 KB per queue) or 50 MB (500 KB per 
queue). 

We set (Bmin, Bmax) = (500 KB, 5 MB) for TCP flows to allow 
more burstiness of TCP flows, and (Bmin, Bmax) = (50 KB, 500 KB) 
for UDP flows. In this experiment, we assume that there’s no 
collisions of hash functions, thus bloom filter size is 100 bit. The 
control server maintains 100 bloom filters and its update for the 
switches is 100 times per second. We used NS2 simulator [17]. 

4.2 Evaluation on sampling rate 
Most of control server operations including WFQ and RED 

emulation, as well as bloom filter generation, are performed when a 
sampled packet header arrives. Therefore, sampling rate is a key 
factor that determines server performance. Smaller sampling rate is 
necessary for higher server performance, but it may deteriorate link 
utilization, stability, and fairness among flows. 

Figure 6 shows link utilization for different sampling rates. In 
this case, two scenarios are examined; (1) 25 TCP flows whose RTT 
ranges 1msec to 126msec with 5msec interval, (2) 4 sets of scenario 
(1) flows. This figure shows that sampling rate has to be more 
frequent than 1/100 to stabilize traffic control. If sampling rate is 
less frequent than that, arriving rate is sometimes overestimated 

Fig. 4: example; WFQ emulation 
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and packet discarding rate tends to be higher, which results in 
throughput degradation. 

4.3 Evaluation using TCP flows 
Figure 7 shows average throughput of individual flows for 

the case where 100 TCP flows compete. In this case, fair share 
throughput of a flow is 1 Mbps. RTT ranges 1msec to 126msec 
with 5msec interval and each RTT group has 4 TCP flows. As a 
nature of TCP, flows with shorter RTTs tend to obtain higher 
throughput than longer RTT flows. 

Jain’s fairness index of Proposed, DRR (50MB), DRR 
(500KB), and Drop-tail are 0.996, 0.999, 0.365, and 0.800, 
respectively. This figure shows that DRR with a huge buffer 
achieves best fairness among flows. Highest throughput is just 1.1 
times larger than lowest throughput. However, if the buffer 
capacity is 500KB, same as other FIFO cases, DRR shows the 
worst fairness because buffer capacity of each queue becomes too 
small. This is because the buffer capacity is strictly separated for 
each flow and no statistical multiplexing gain is expected. Drop-
tail is somewhat better than DRR with small buffer, but the 
throughout difference is still large and highest throughput is 4 
times larger than lowest throughput. Our mechanism achieves 
good fairness even with small buffer capacity. By setting Bmax 
larger than the actual buffer capacity, the buffer is efficiently 
shared. As a result, per-flow fairness of the proposed mechanism 
is comparable with a DRR scheduler. 

4.4 Evaluation using TCP and UDP flows 
Figure 8 shows average throughput of individual flows for 

the case where 10 UDP flows and 90 TCP competes, thus fair 
share throughput is 1 Mbps. RTT of each TCP flow is fixed at 
20msec. Sending rate of UDP flows ranges from 1 Mbps to 10 
Mbps with 1 Mbps interval. 

In this case, Jain’s fairness index of Proposed, DRR (50MB), 
DRR (500KB), and Drop-tail are 0.998, 0.999, 0.100, and 0.317, 

respectively. DRR with huge buffer and our mechanism shows 
good per-flow fairness. With drop-tail, UDP flows obtain larger 
throughput and throughput of TCP flows are about half of the fair 
share throughput.  DRR with small buffer results in very poor 
fairness and link utilization. Since buffer capacity allocated to 
each flow is very small, retransmission timeout frequently occurs 
and thus throughput is seriously degraded. 

5. Discussions on Implementation Issues 

5.1 Flow table size 
Bloom filters have a possibility of false positive, and there is 

a tradeoff between false positive ratio and bloom filter size. False 
positive ratio f can be calculated by the following equation: 

 
 

where α, β, and C is the ratio of large flows (i.e. flows needs to be 
controlled) to the entire flows, average packet discarding rate of 
large flows, and maximum member of concurrent active flows. 
For example, if we assume that number of entire flows, 
concurrent active flows, and large flows, is 1 million, 0.1 million, 
and 0.1 million, respectively, and that 10% packet discard is 
enough to slow down TCP flows, we obtain a false positive ratio 
shown in Fig. 9 for various filter sizes and number of hash 
functions. 

If we assume that false positive ratio is 0.001, this means 
0.1% of innocent flows suffer from improper packet discard. It 
may be possible to spread the risk of inappropriate damage by 
frequently changing hash functions. In this case, 0.001 false 
positive ratio can be understood that many flows get very small 
level of false packet discard. If this is acceptable, bloom filter size 
and flow table size become 17 Kbit with K=5. On the other hand, 
if we assume to have a flow table with 5-tuple, one entry size is 

Fig. 5: evaluation model 
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32+32+8+16+16=104 bit for an IPv4 flow. And thus a size of a 
flow table with 0.1 million flow entry becomes 10 Mbit. 
Therefore, in this particular example, flow table size is 
compressed 600 times smaller by using bloom filters. 

5.2 Processing capability of a switch 
Memory size for a flow table is small enough to be located 

on a corner of a logic LSI or FPGA, and there is no need to add 
external SRAM or CAM. Thus, access latency to the flow table 
can be as small as one or two clock cycles. If we assume that 
clock cycle of a FPGA is 100 MHz, 64 byte packets are processed 
in every 5 clock cycles at 10 Gbps links. Since the number of 
memory accesses with K=5 is 5 times per packet, we can 
conclude that our mechanism can be applied to switches having 
more than 10 Gbps links. 

5.3 Processing capability of a control server 
In our evaluation, we found that it is OK that sampling rate is 

1/100 and bloom filter update frequency is 100 times a second. 
Assuming that a packet size is 1.5 KB, the number of packet 
headers sampled from a 10 Gbps link is 8300 per second. 
Therefore, the server updates packet discarding rate 8300 times a 
second and sends bloom filter 100 times a second, which would 
be small enough for modern CPU capability. 

5.4 Communication bandwidth between 
server and switch 

Assuming that header length is 40 bytes and the switch sends 
8300 samples a second, the bandwidth consumed by sFlow 
packets is 2.7 Mbps. Also, assuming that bloom filter size is 15 
Kbit and its update frequency is 100 times a second, the 
bandwidth consumed by the filter update is 1.5 Mbps. These 
communication bandwidths should be reasonably small compared 
to the link capacity. 

6. Conclusion 
In this paper, we proposed a programmable and scalable 

traffic management mechanism that can handle more than 10 
Gbps and more than 1 million flows. The proposed mechanism 
consists of control server software, which enables programmable 
traffic management, and a hardware packet discarder for high-
speed switches. We also proposed a flow table mechanism that 

uses a time series of bloom filters, which compresses the flow 
table by 1/600. We tested the proposed mechanism with a per-
flow WFQ emulation and the results ware promising, although we 
need more evaluations of the cases where there are a large number 
of short-lived flows that can not be captured by sampling. More 
importantly, evaluation of the mechanism using more appropriate 
applications like regulating heavy hitters or mitigating DoS attack 
packets are our important future work. 
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Fig. 9: false positive ratio of bloom filters 
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