

PC-based Software Routers:
High Performance and Application Service Support

Raffaele Bolla, Roberto Bruschi
DIST, University of Genoa

Via all’Opera Pia 13,
16139, Genoa, Italy

{raffaele.bolla, roberto.bruschi}@unige.it

ABSTRACT
Despite high potential and flexibility in developing new
functionalities and mechanisms, as well as the availability of well-
established networking SW, common criticism of Software
Routers, based on COTS HW elements and open-source SW, is
mainly focused on performance, especially for issues concerning
the data plane. In this respect, our contribution is aimed at
evaluation of architectural bottlenecks limiting the scalability of
Software Router performance, and identification of SW and HW
enhancements needed to overcome these limitations. Starting from
these considerations, we propose a feasible Software Router
HW/SW solution able to boost data plane performance while
maintaining the flexibility level typical of a SW approach.

Categories and Subject Descriptors
C.2.6 [Routers]: Software Router

General Terms
Measurement, Performance, Design, Experimentation.

Keywords
Open Router, Multi-Layer Support, Linux Networking.

1. INTRODUCTION
Internet growth and its widespread adoption as global public

multi-service infrastructure have brought about heterogeneous
service support and new application-specific needs and
requirements. Unfortunately, the current internet infrastructure is
composed of interconnection of multi-domain and multi-
administrative clouds, which are only concerned with network
performance in their own domains, and the responsibility for
providing advanced service capabilities (if any) for their direct
customers. This is substantially due to the difficulty of
establishing business relationships involving multiple
administrative domains, and consequently hinders the public
internet infrastructure from deployment and support of end-to-end
innovative services.

To go beyond this non-evolution of the internet protocol
stack in a multi-domain scenario, service architectures over the
past few years have been moving from the classical client-server

paradigm to Service Specific Overlay Networks (SSONs) [1],
with the clear aim of providing end-to-end advanced requirements
that are not entirely available at the plain internet network layer.
In detail, SSONs are virtual networks deployed at the application
layer through logical end-to-end links built on top of existing data
transport networks, and are devised to provide capabilities not
natively supported by the underlying network (i.e., advanced
routing facilities, multicasting, content addressing and caching,
media distribution, and related compression/transcoding, etc.).

In this scenario, the development of innovative equipment
able to simultaneously act both at the network and SSON layers
(and to intelligently share capabilities between them) will be a key
point for the evolution and optimization of end-to-end value-
added services. In this respect, Software Router (SR)
architectures, based on open source software (SW), provide high
flexibility and modularity levels, and certainly are considered one
of the most promising candidates for developing such advanced
multi-layer network nodes. Moreover, when deployed on PC
hardware (HW), such SR solutions generally have additional
attractive features, such as multi-vendor availability, low-cost, and
the ability to continuously update basic parts to ease
customization.

In the last few years, growing interest in this kind of
equipment has driven some well-known projects (e.g., [2] and [3]
among the others) designed to develop complete IP routing
platforms on the top of modern open source Operating Systems
(OSs) with advanced networking capabilities (e.g., Linux and
OpenBSD). Despite the high potential and flexibility in
developing new functionalities and mechanisms, as well as the
availability of well-established networking SW, common
criticisms against SR are mainly focused on the data plane
performance. These remarks usually arise from the comparison
between SRs, which are based on general purpose HW, and
commercial network equipment architectures, where the more
intensive and time-critical data plane operations are often
offloaded to custom HW components, such as network processors
or ASIC/FPGA chips. Today, as shown in [4], the performance
gap might be not so large and in any case, is more than justified in
many scenarios both by the cost difference and by the flexibility
offered by a SW solution.

However, it is currently well-known that PC processor
architectures are rapidly adopting the multi-core paradigm, instead
of increasing their internal clock or computational capacity, as
suggested by Moore’s law. Thus, since focusing on squeezing
more speed out of a single processor could be a dead end, chip
makers are looking at a new class of processor [5], where from 2
to 32 cores divide and conquer the computational load. However,
to exploit this increased computational capacity in a SR, we need

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PRESTO’08, August 22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-181-1/08/08...$5.00.

27

a suitable SW platform that allows effective packet parallel
processing. [6] and [7] show that the forwarding performance
levels provided by Linux SMP kernels are usually poor, and
generally are lower with respect to the uni-processor (UP)
versions. The results reported in [7] underline in greater detail the
limitations of the standard Linux kernel ability in effectively
parallelizing the packet forwarding process, and also those of
exploiting the overall computational capacity of PC multi-
processor systems.

Therefore, the aim of this work is to show how an
appropriate SR founded on recent PC HW can effectively support
advanced application layer services while maintaining a high level
of performance in the data plane. In detail, we describe and
extensively test a Linux-based networking SW system able to
correctly deploy a multi-CPU/core PC architecture. Moreover, we
show that this approach can flexibly preserve portions of PC
computational power for the application layer, so that the different
equipment networking functionalities (namely forwarding,
control, and services support) can independently operate with
scalable performance. Essentially, the approach is based on a
smart CPU/core allocation method (exploiting some new features
of recent Intel network boards) that can flexibly distribute the data
load on a predefined sub-set of available CPUs/cores. This
approach gives the possibility of scaling performance with the
CPU/core number and of configuring the SR for a) always having
enough-residual power for application services support, and/or b)
explicitly reserving specific CPU/cores for the application (and
control) layer operations.

 The paper is organized as follows. The next section summarizes
the Linux approach to the networking data plane. Section 3
describes the main bottlenecks of a PC-based SR, and Section 4
presents the flexible load distribution system and its main aspects.
Section 5 reports the results of a set of performance tests
demonstrated on conventional and modified SRs, with a specific
focus on application layer support and on its interaction with the
data plane performance. Finally, the conclusions are summarized
in Section 6.

2. THE LINUX DATA PLANE
The packet processing architecture of Linux (and of many

other OSs) is generally triggered by HW interrupts: network
boards signal the kernel upon packet reception or transmission
through HW interrupts. Each HW interrupt (IRQ) is served as
soon as possible by a handling routine, which suspends the
operations currently being processed by the CPU. The IRQ
handlers are designed to be very short, while all time-consuming
tasks are performed by the so-called “Software IRQs” (SoftIRQs)
afterwards. SoftIRQs differ from HW IRQs mainly in that a
SoftIRQ is scheduled for execution by a kernel activity, such as an
HW IRQ routine, and has to wait until it is called by the
scheduler. SoftIRQs can be interrupted only by HW IRQ routines.

The forwarding process is triggered by an HW IRQ
generated from a network device, which signals the reception or
the transmission of packets. Then, the corresponding routine
performs some fast checks, and schedules the correct SoftIRQ,
which is activated by the kernel scheduler as soon as possible.
When the SoftIRQ is finally executed, it performs all the packet
processing operations by accessing two special RAM regions,

called the TxRing and RxRing1, which are used by the DMA to
transfer or receive packets from the network board.

In particular, a SoftIRQ executes two main tasks on the
related board, pertaining to packet reception and transmission,
respectively. The first task is the de-allocation of already-
transmitted packets placed in the TxRing, while the second task
includes all the real packet forwarding operations. In fact, the
latter task handles the received packets in the RxRing with the
NAPI procedure [8], and performs all of the following L2 and L3
delivery operations up to the routing decision and to the
backlogging in the TxRing of the selected output interface. Major
details on the Linux networking architecture can be found in [4].

With regard to Linux and Multi-CPU support in data plane
operations, the 2.6 kernels have reached a high optimization level.
The key to these improvements mainly deal with both the
optimization and refinement of code locking (to serialize accesses
on shared data), and the capacity of binding a process/activity to a
specific CPU, called “CPU affinity”, thus maintaining very
effective use of the processor/core cache.

In addition, the Linux kernel allows the assignment of certain
IRQs to specific CPUs/cores through the so-called “IRQ affinity”.
This has a strong impact on the SR data plane, since it allows
control of which CPU/core must process the HW IRQ handling
routines (and the following SoftIRQs) for the corresponding
network board. Thus, each CPU/Core performs both the de-
allocation of packets transmitted by the bound network cards, and
the forwarding operations for all packets received by the same
boards.

3. ARCHITECTURAL BOTTLENECKS
As shown in [4], when an SR architecture based on a single

CPU/core is used, the data plane performance can be substantially
limited by only two key factors: the SR computational capacity
and the bandwidth/latency of I/O busses. While the latter affects
the maximum throughput in terms of bits per second, the former
limits the rate of packet headers that can be processed by the
CPU.

In this respect, while the PCI-express adoption provides a
wide I/O bandwidth, multiprocessor architectures such as SMP
and NUMA considerably increase the overall computational
capacity, since they both allow parallel processing on multiple
CPUs/cores. However, to effectively exploit this kind of HW
platform, we need a suitable SW architecture able to parallelize
the computational load as much as possible. Typical performance
issues, which may sap parallelization gain, are raised when tasks
on different CPUs share some data. This generally leads to two
issues, namely data accessing serialization and CPU/core cache
coherence, which both introduce costly latency times in accessing
and in processing shared data.

Starting from the Linux data plane description in the
previous section, we can see that TxRings clearly represent data
structures shared among the SoftIRQs running on all CPUs/cores
involved in the packet forwarding. In fact, the TxRing of a
specific board is filled by all CPUs/cores delivering traffic toward
that port, while it is only served by the specific CPU bound to its
HW IRQ.

1 In general, there is one Tx and one Rx Ring for each network
adapter.

28

In detail, the SoftIRQ accesses to each TxRing are serialized
by a code locking procedure, which is based on the “spin-lock”
function. This lock (called “LLTX” lock) guarantees that each
TxRing can be read or modified by only one SoftIRQ at a time.
When a SoftIRQ gains access to the TxRing, it temporarily stops
the following SoftIRQs, which must wait for the TxRing
availability. The LLTX lock contention obviously causes
computational capacity waste (due to the lock waiting times),
especially when several CPUs/cores are involved in the
forwarding process.

Moreover, additional performance waste is caused by
CPU/core cache management: shared data can be kept in only one
processor's cache at a time, otherwise the CPU/core cache may
drift out of synchronization (i.e., some processors may work on
data that is not up-to-date). Consequently, whenever a CPU/core
loads a TxRing to its local cache, all of the other processors also
caching it must invalidate their cache copies. Thus, this
invalidation is very costly, since shared data can only be cached
by one CPU/core at time, but also, it forces the data to be loaded
from the RAM every time the processing CPU/core changes. This
obviously introduces a non-negligible memory accessing
overhead.

The performance analysis in Sub-section 5.1, carried out with
both external and internal measurements, clearly shows that
LLTX lock and multi-CPU/core cache management cause a
heavy SR performance waste that is enough to cancel all the
positive effects of using parallel CPUs/cores.

4. MULTI-CPU/CORE ENHANCEMENTS
To go beyond the standard PC-based SW architecture, we

need both HW and SW architectural enhancements that allow us
to effectively and scalably exploit multi-CPU/core PC systems.
This section is divided into three parts. In the first, we introduce
some existing HW components that can be used to evolve SR
architecture. In the second part, we analyze how the Linux SW
architecture may optimally support these HW enhancements for
achieving high performance. Finally, in the third part, we provide
suggestions for how a SR can effectively include advanced
services and network control applications.

4.1 HW evolution
From the HW point of view, Intel has recently proposed two

interesting mechanisms that can be effectively adopted to reduce
performance issues as much as possible in multi-processor
systems. The first one is called “Intel® Advanced Smart Cache”
[9], and consists of a mechanism that allows level 2 cache-sharing
among all the cores in the same processor2. One of the clear
advantages offered by this mechanism is the reduction of cache
invalidation effects, since, when data (e.g., the TxRing) is shared
among a set of cores placed in the same processor, it allows them
to avoid unnecessary cache invalidations, and consequently
reduces the number of slow memory accesses to RAM.

The second mechanism used to effectively support multi-
CPU/core systems pertains to the network board. In fact, Intel
PRO 1000 adapters (with MAC chip 82571 and higher) support
multiple Tx- and Rx Rings and multiple HW IRQs3 per network
interface [10]. This is particularly useful in achieving higher

2 Note that in standard multi-core processors, each core has its

own independent level 2 cache.
3 A large number of “IRQ channels” is possible by using MSI-X.

parallelization levels when different CPUs/cores have to transmit
or receive large traffic volumes. This mechanism allows each
CPU/core to bind to its own Tx and Rx Rings, reducing the
sharing among CPU/cores and avoiding the LLTX lock
contention. The traffic multiplexing between the network interface
and the Tx/Rx rings is directly managed by the board HW. With
regard to multiplexing at traffic reception, this is substantially
driven by a hardware-based smart Rx filtering scheme, which can
be programmed by the driver (i.e., the driver sends the HW
filtering scheme the rules used to associate certain packets to a
specific RxRing).

4.2 SW architecture
To exploit the HW mechanisms introduced in the previous

sub-section, we need to evolve the SR SW platform with custom
developments and a suitable configuration. While the custom SW
developments designed to support HW enhancements are already
provided in the Intel drivers and were recently included in the
official Linux kernel tree (e.g., the code patch supporting multi-
queuing adapters written by P.J. Waskiewicz [10] was included in
the 2.6.24 kernel), the general SR SW configuration requires a
deeper discussion.

In particular, the main objectives of a SR architecture
optimized for a multi-CPU/core environment can be summarized
by the following :
• to entirely bind all operations carried out in forwarding a

packet to a single CPU (minimizing cache invalidations),
• to reduce LLTX lock contention as much as possible,
• to equally distribute the computational load among all the

processors/cores in the system.
In this scenario, to achieve these goals, we can play with

CPU/core binding to Tx- and RxRings.

CPU/core binding to TxRing: As shown in Section 3, TxRings
represent the real weak point for standard SR architecture. They
are shared data structures, causing both a high rate of cache
invalidations among CPUs/cores and heavy LLTX lock
contentions. The optimal solution is clearly to bind each CPU/core
to a different TxRing on each output device. If an adapter does not
include enough TxRings, the same TxRing can be assigned to a
set of cores sharing the L2 cache; even if this sub-optimal solution
does not mitigate LLTX lock contention, the core cache sharing
minimizes the rate of cache invalidations, and consequently, of
slow RAM accesses.

CPU/core binding to RxRing: Each CPU/core is characterized by
a certain computational capacity, which limits the maximum
processing throughput of packet headers. Observing the
performance measurement in Section 5, we can note that a single
Xeon core allows the processing of about 1 Mpkt/s, which is too
low a value to manage a gigabit Ethernet interface at line speed
(1.488 Mpkt/s with 64B sized frames), while it is enough to
manage more than six Fast Ethernet interfaces (148.8 kpkt/s with
64B sized frames). Starting with these considerations, a suitable
approach would be to assign enough processing capacity to each
network interface to achieve its maximum theoretical speed. Thus,
we can bind a single CPU/core to a set of “slow-speed” interfaces,
while we have to bind multiple cores to the same Rx board in the
presence of high speed interfaces (1 or 10 Gbps). The first case
corresponds to the standard Linux behavior, since we do not need
multiple RxRings per interface. Alternatively, for high-speed
network adapters, we have to enable multiple RxRings, binding
each one to a different CPU/core.

29

Thus, as shown in Fig. 1, a SR architecture fully optimized
for multi-CPUs/cores environment must provide:
• a number of CPUs/cores per Rx port that guarantees enough

computational capacity to process incoming traffic
• a number of TxRings per interface equal to the number of

CPUs/cores involved in traffic forwarding
• multiple RxRings per high-speed interface (ideally equal to

the number of CPUs/cores need to achieve the maximum
theoretical packet rate).

Note that when multiple RxRings are used, the smart Rx
filtering scheme embedded in the high-speed adapter has to
balance the traffic load among all the enabled RxRings with a
suitable mechanism. In particular, to avoid out-of-order packet
delivery, it must assign to the same RxRing all packets of a
certain flow, while at same time equally distributing the traffic
load on all RxRings.

R
x

B
oa

rd
Tx

 B
oa

rd
C

P
U

s/
co

re
s

MUX MUX MUX MUX MUX

Rx Filtering Rx Filtering

TxRings

RxRings

Fig. 1. Overview of the enhanced SR architecture.

4.3 Application service support
To develop a multi-layer node, the SR has to include SW

modules in its architecture to support SSON functionalities. These
advanced functionalities, as well as classical applicative services
and network control applications (e.g., [3]) are usually realized in
the user-space as applications. The interaction among user-space
and the lower layers is often effectively performed through
sockets, which flexibly allow access to the network protocol
stack, and also through other well-known APIs provided by the
OS.

Notwithstanding, PC-based architectures are the most
obvious environment used to support applications, and the
coexistence between these activities and Linux data plane
operations may be critical. This arises from the packet forwarding
process, which is fully realized as SoftIRQ activity in kernel-
space, and consequently behaves as a higher priority task with
respect to other activities (e.g., SR services and applications in
user-space). Therefore, as shown in Sub-section 5.3, when all of
the CPUs/cores in the system perform intensive forwarding
operations, SR services and applications may not receive enough
computational capacity for correct operation. To address these
considerations, a viable and safe solution consists of allocating a
suitable number of CPUs/cores to the SR services and
applications. In the 2.6 kernels, this can be fulfilled through non-
binding of these CPUs/cores to any network board; the kernel

scheduler will automatically place services and applications on
free CPUs/cores.

5. PERFORMANCE EVALUATION
This section reports a set of benchmark results obtained by

analyzing and evaluating the performance of the standard and
enhanced SR architectures. In greater detail, the studied
architectures are based on a custom 2.6.24 Linux kernel, which
includes a set of “ad-hoc” optimizations, already studied and
introduced in our previous works [4].

During benchmarking activities, we used both external and
internal measurement tools. To measure SR throughput and
latency performance, we adopted professional equipment, namely
an Agilent N2X router tester, while for internal measures we
utilized Oprofile [11].

This section is organized in three different parts, which
report the performance of standard SR architecture and bottleneck
characterization, the performance provided by the enhanced SR,
and a benchmarking session used to evaluate the SR support for
multi-layer services and applications.

5.1 Standard SR architecture
 This benchmarking session consisted of a forwarding
performance evaluation of standard SR architecture without any
HW and SW enhancements. We used two different SMP kernel
setups in a very simple environment: we consider only traffic flow
crossing the SR among two gigabit Ethernet interfaces. The
packet size is fixed to 64B, since computational capacity is one of
the major performance bottlenecks. The kernel setups used are: 1)
SMP 1-CPU: in this kernel configuration, both the crossed
network adapters are bound to the same CPU; 2) SMP 2-CPU: in
such a case, the two network adapters are assigned to different
CPUs. While the former (SMP 1-CPU) attempts to maximize the
CPU affinity of the forwarding process, the latter (SMP 2-CPU)
performs load balancing among all CPUs. The performance
results obtained with a uni-processor (UP) kernel are used for
comparison. Fig. 2 shows the throughput and latency values
obtained with all studied kernel setups. While the UP kernel
forwards at about the full gigabit speed, the SMP kernel versions
show lower performance values: the SMP 1-CPU achieves a
maximum forwarding rate equal to about 1020 kPkt/s, while the
SMP 2-CPU performs to about 40% of gigabit speed. We can
justify the performance gap among SMP and UP kernels with the
additional complexity overhead required with SMP kernels (e.g.,
needed to manage kernel spinlock, etc.). However, there is a clear
performance gap between the SMP setups as well: the performed
tests show that load balancing of the forwarding processes among
different CPUs generally leads to a substantial performance
decay. Fig. 2 shows the number of cache misses (that obviously
depend on the cache invalidation rate) and the average spinlock
waiting time (where a significant contribution is provided by the
LLTX lock), both obtained with Oprofile and for all three SW
setups. Observing these figures, we can highlight how the number
of cache misses and spinlock waiting times are notably larger in
the SMP 2-CPU setups. This confirms what was introduced in
Section 3 regarding the cache invalidation bottleneck: when
packets cross the SR among interfaces bound to different CPUs,
they cause a large number of cache invalidations and a consequent
memory access slowing down. For spinlock waiting times, we can
see that in the SMP 2-CPU they double their average value with
respect to the SMP 1-CPU, in the presence of only two concurrent
CPUs at the LLTX lock.

30

0
200
400
600
800

1000
1200
1400
1600

UP SMP 1CPU SMP 2CPUs

Throughput [kPkts/s] Latency [us]

99%

68%

40%

Fig. 2. Maximum throughput and latency values with L2 64 B

sized packets.

0
20
40
60
80

100
120
140
160
180

UP SMP 1CPU SMP 2CPUs

Cache Miss [#/kPkts] Spinlock Waiting Time [us]

Fig. 3. Number of cache misses and average spinlock waiting
times per forwarded kPkts.

5.2 Enhanced SR architecture
This sub-section reports results from benchmarking sessions

carried out to analyze the enhanced SR architecture. The SR HW
is based on a dual 64 Xeon system, where each Xeon provides
four cores, and on an Intel Gigabit adapter based on the 82575
chipset, which provides four Tx- and Rx-Rings per port.

We performed four different benchmarking sessions
according to an increasing number of cores and gigabit interfaces
involved in the forwarding process: for every two cores, we added
a Rx and Tx gigabit interface. In particular, for each Rx gigabit
network interface, we bound two cores, each one to a different
RxRing. Where possible, a TxRing is associated with a single core
on every Tx network interface. However, since the network board
only supports up to four TxRings per interface, when we use more
than four cores, we bound some TxRings to two cores. Thus, in
the benchmarking sessions with two and four cores, we have a
fully optimized SR architecture (i.e., each Tx and Rx Ring is only
bound to a single core), while in the sessions with six and eight
cores, we can only realize a sub-optimal SR configuration, since
some TxRings are shared among two cores. For the test traffic, we
used a partially meshed matrix composed of unidirectional flows
that cross the SR from each Rx interface to each Tx. The load on
each Rx port saturates the gigabit link with L2 64B sized packets,
and is equally distributed among the traffic flows. Note that we
only utilized L2 64B sized packets, since we want to focus on
how the enhanced SR architecture can handle the computational
bottleneck (in terms of processed packet headers per second) with
respect to the standard architecture.

Fig. 4 shows the maximum throughput in terms of kPkts/s,
for both the enhanced and standard SR architectures, obtained in
all the setups. From this figure, we note that the enhanced SR
provides very high performance with respect to the standard one.
In detail, while the standard SR holds about the same packet
forwarding throughput (i.e., about 500-600 kPkts/s) independent
from the number of active CPUs and network interfaces, the
enhanced architecture seems to offer a quasi-linear performance
scalability. The setups with two and four cores (i.e., the fully

optimal configurations) achieve the maximum theoretical rate on
one and two gigabit Ethernet interfaces, respectively. The sup-
optimal configurations (with six and eight cores), where we have
three and four couples of Rx and Tx gigabit interfaces, show a
performance decay; with six cores we achieve a maximum
throughput equal to about 4.4 MPkts/s, while the SR forwards up
to 5.9 MPkts/s in the setup with eight cores, which corresponds to
about the 70% of the maximum theoretical throughput. Thus,
while optimal SR configurations can achieve the full rate speeds,
even the sub-optimal configurations guarantee a high performance
level.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

2 Cores 4 Cores 6 Cores 8 Cores

M
ax

im
um

 T
hr

ou
gh

pu
t [

kP
kt

s/
s]

enhanced SR standard SR

100%

100%

84%
70%

40% 18% 12% 9%

Fig. 4. Maximum throughput for both the enhanced and the

standard RS with according to 2, 3 and 4 core setups.

1

10

100

1000

10000

2 Cores 4 Cores 6 Cores 8 Cores

M
ax

im
um

 L
at

en
cy

 [u
s]

enhanced SR standard SR

Fig. 5. Maximum latency values for both enhanced and
standard RS with according to 2, 3 and 4 core setups.

0

200

400

600

800

1000

1200

1400

2 Cores 4 Cores 6 Cores 8 Cores

C
ac

he
 M

is
s

[#
/k

Pk
ts

]

enhanced SR standard SR

Fig. 6. Cache miss rate for both enhanced and standard RS

with according to 2, 3 and 4 core setups.
Fig. 5 reports the maximum latency times measured in all
performed setups for the standard and enhanced architectures. The
results are consistent with respect to those related to the maximum
throughput in Fig. 4; the enhanced SR guarantees lower latency
times than the standard one. This is a clear indication that TxRing
un-sharing (especially in the optimal configurations with two and
four cores) and Rx balancing among multiple cores help to lower
the average processing time of forwarded packets. Finally, the
results concerning the cache miss per forwarded KPkt, are
reported in Fig. 6. As highlighted in the figure, the enhanced
architecture limits the number of cache invalidations and also
cache misses. In the standard SR architecture, the number of
cache misses seems to increase linearly according to the number
of cores involved in the forwarding process.

31

5.3 Multi-layer service support
As sketched in Sub-section 4.3, the coexistence of

applicative services and the Linux data plane may be critical,
since kernel level operations have a higher priority than user-
space activities. To this purpose, we decided to perform several
internal measurements, aimed at estimation and quantification of
the impact of the forwarding process impacts on performance of
service applications.

Fig. 7 shows the SW profiling of a SR (obtained with
Oprofile), where the data plane and the applicative services are
forced to work on the same CPU. The tests have been carried out
against different loads (up to 1 Gbps with 64B sized packets).
Among several interesting observations related to SR data-plane
internal dynamics (for major details see [4]), Fig. 7 clearly
outlines that the applicative services, namely “User-Space”,
rapidly decrease their computational occupancy as the load
increases and kernel activities become more intensive. In detail,
when the traffic load exceeds 300 Mbps, the applicative services
exploit less than the 2% of the overall CPU capacity. With the aim
of verifying the solution proposed in Sub-section 4.3 (to guarantee
at least a free CPU to applicative services), we conducted further
SW profiling sessions, similar to the previous one, but with an
additional CPU not involved in data-plane operations. In such a
case, as we can observe in Fig. 8, even if the service and data-
plane processes initially share the same core (the worst case
condition), when traffic load reaches 10%, the Linux kernel
scheduler decides to move all the service applications to the free
core, which can consequently exploits 70-75% of CPU time.

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

C
P
U

T
i
m
e

A
l
l
o
c
a
t
i
o
n

[
%
]

Offered Load [%]

Idle
Scheduler

Memory
IP Processing

Userspace
Driver IN

Driver OUT
IRQ
ETH

OProfile
Driver MGMT

Fig. 7. Single core processing data plane operations and

applicative services: CPU utilization against the offered load.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

C
P
U

T
i
m
e

A
l
l
o
c
a
t
i
o
n

[
%
]

Offered Load [%]

Idle
Scheduler

Memory
IP Processing

Userspace
Driver IN

Driver OUT
IRQ
ETH

OProfile
Driver MGMT

Fig. 8. Multiple cores processing data plane operations and

applicative services: CPU utilization against the offered load.

Conclusion
In this contribution, we reported an in-depth study of a PC-

based SR architecture, focusing on the SW/HW enhancements

that can be used to achieve high performance and to
simultaneously support applicative services.

We described and extensively tested a Linux-based
networking SW system, able to correctly deploy multi-CPU/core
PC architecture. The approach, based on a smart CPU/core
allocation to multiple network board Rx and Tx buffers, gives the
possibility of scaling performance and effectively supporting a
certain number of high speed devices (we achieved a maximum
throughput equal to about 4MPkts/s).

Moreover, this approach allows us to flexibly preserve
portions of the PC computational power for the application layer,
so that different equipment networking functionalities can
independently operate with scalable performance.

6. ACKNOWLEDGMENTS
Thanks to P.J. Waskiewicz for his kindly support.

7. REFERENCES
[1] Duan, Z., Zhang, Z. and Hou, Y. T., 2002. Service Overlay

Networks: SLAs, QoS and Bandwidth Provisioning. In Proc.
of the 10th IEEE Int. Conf. on Network Protocols (ICNP’02),
Paris, France, 1-10.

[2] Kohler, E., Morris, R., Chen, B., Jannotti, J. and Kaashoek,
M. F., 2000. The Click modular router. ACM Trans. on
Computer Systems 18, 3 (Aug. 2000), 263-297.

[3] Handley, M., Hodson, O. and Kohler, E., 2003. XORP: an
open platform for network research. ACM SIGCOMM
Computer Communication Review 33, 1 (Jan 2003), 53-57.

[4] Bolla, R. and Bruschi, R., 2007. Linux Software Router:
Data Plane Optimization and Performance Evaluation
Journal of Networks (JNW) 2, 3, Academy Publisher, 6-11.

[5] Geer, D., 2005. Chip makers turn to multicore processors.
Computer 38, 5 (2005), 11-13.

[6] Bolla, R. and Bruschi, R., 2008. An Effective Forwarding
Architecture for SMP Linux Routers. Proc. of the 4th Int.
Telecom. Networking Workshop on QoS in Multiservice IP
Networks (QoS-IP 2008), Venice, Italy, 210-216.

[7] Bolla, R. and Bruschi, R., 2006. IP forwarding Performance
Analysis in presence of Control Plane Functionalities in a
PC-based Open Router. In Distributed Cooperative
Laboratories: Networking, Instrumentation, and
Measurements, Springer, Norwell, MA, 143-158.

[8] Salim, J. H., Olsson, R., and Kuznetsov, A., 2001. Beyond
Softnet. Proc. of the 5th annual Linux Showcase & Conf.,
Oakland, CA, USA.

[9] Doweck, J., 2006. Intel Smart Memory Access: Minimizing
Latency on Intel Core Microarchitecture. Technology Intel
Magazine, Sept. 2006, 1-7.

[10] Yi, Z. and Waskiewicz, P.J., 2007. Enabling Linux Network
Support of Hardware Multiqueue Devices. Proc. of 2007
Linux Symposium, Ottawa, Canada, June 2007, 305-310.

[11] Oprofile, http://oprofile.sourceforge.net/.

32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

