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ABSTRACT 
Despite high potential and flexibility in developing new 
functionalities and mechanisms, as well as the availability of well-
established networking SW, common criticism of Software 
Routers, based on COTS HW elements and open-source SW, is 
mainly focused on performance, especially for issues concerning 
the data plane. In this respect, our contribution is aimed at 
evaluation of architectural bottlenecks limiting the scalability of 
Software Router performance, and identification of SW and HW 
enhancements needed to overcome these limitations. Starting from 
these considerations, we propose a feasible Software Router 
HW/SW solution able to boost data plane performance while 
maintaining the flexibility level typical of a SW approach. 

Categories and Subject Descriptors 
C.2.6 [Routers]: Software Router 

General Terms 
Measurement, Performance, Design, Experimentation. 

Keywords 
Open Router, Multi-Layer Support, Linux Networking.  

1. INTRODUCTION 
Internet growth and its widespread adoption as global public 

multi-service infrastructure have brought about heterogeneous 
service support and new application-specific needs and 
requirements. Unfortunately, the current internet infrastructure is 
composed of interconnection of multi-domain and multi-
administrative clouds, which are only concerned with network 
performance in their own domains, and the responsibility for 
providing advanced service capabilities (if any) for their direct 
customers. This is substantially due to the difficulty of 
establishing business relationships involving multiple 
administrative domains, and consequently hinders the public 
internet infrastructure from deployment and support of end-to-end 
innovative services. 

To go beyond this non-evolution of the internet protocol 
stack in a multi-domain scenario, service architectures over the 
past few years have been moving from the classical client-server 

paradigm to Service Specific Overlay Networks (SSONs) [1], 
with the clear aim of providing end-to-end advanced requirements 
that are not entirely available at the plain internet network layer. 
In detail, SSONs are virtual networks deployed at the application 
layer through logical end-to-end links built on top of existing data 
transport networks, and are devised to provide capabilities not 
natively supported by the underlying network (i.e., advanced 
routing facilities, multicasting, content addressing and caching, 
media distribution, and related compression/transcoding, etc.). 

In this scenario, the development of innovative equipment 
able to simultaneously act both at the network and SSON layers 
(and to intelligently share capabilities between them) will be a key 
point for the evolution and optimization of end-to-end value-
added services. In this respect, Software Router (SR) 
architectures, based on open source software (SW), provide high 
flexibility and modularity levels, and certainly are considered one 
of the most promising candidates for developing such advanced 
multi-layer network nodes. Moreover, when deployed on PC 
hardware (HW), such SR solutions generally have additional 
attractive features, such as multi-vendor availability, low-cost, and 
the ability to continuously update basic parts to ease 
customization. 

In the last few years, growing interest in this kind of 
equipment has driven some well-known projects (e.g., [2] and [3] 
among the others) designed to develop complete IP routing 
platforms on the top of modern open source Operating Systems 
(OSs) with advanced networking capabilities (e.g., Linux and 
OpenBSD). Despite the high potential and flexibility in 
developing new functionalities and mechanisms, as well as the 
availability of well-established networking SW, common 
criticisms against SR are mainly focused on the data plane 
performance. These remarks usually arise from the comparison 
between SRs, which are based on general purpose HW, and 
commercial network equipment architectures, where the more 
intensive and time-critical data plane operations are often 
offloaded to custom HW components, such as network processors 
or ASIC/FPGA chips. Today, as shown in [4], the performance 
gap might be not so large and in any case, is more than justified in 
many scenarios both by the cost difference and by the flexibility 
offered by a SW solution. 

However, it is currently well-known that PC processor 
architectures are rapidly adopting the multi-core paradigm, instead 
of increasing their internal clock or computational capacity, as 
suggested by Moore’s law. Thus, since focusing on squeezing 
more speed out of a single processor could be a dead end, chip 
makers are looking at a new class of processor [5], where from 2 
to 32 cores divide and conquer the computational load. However, 
to exploit this increased computational capacity in a SR, we need 
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a suitable SW platform that allows effective packet parallel 
processing. [6] and [7] show that the forwarding performance 
levels provided by Linux SMP kernels are usually poor, and 
generally are lower with respect to the uni-processor (UP) 
versions. The results reported in [7] underline in greater detail the 
limitations of the standard Linux kernel ability in effectively 
parallelizing the packet forwarding process, and also those of 
exploiting the overall computational capacity of PC multi-
processor systems.  

Therefore, the aim of this work is to show how an 
appropriate SR founded on recent PC HW can effectively support 
advanced application layer services while maintaining a high level 
of performance in the data plane. In detail, we describe and 
extensively test a Linux-based networking SW system able to 
correctly deploy a multi-CPU/core PC architecture. Moreover, we 
show that this approach can flexibly preserve portions of PC 
computational power for the application layer, so that the different 
equipment networking functionalities (namely forwarding, 
control, and services support) can independently operate with 
scalable performance. Essentially, the approach is based on a 
smart CPU/core allocation method (exploiting some new features 
of recent Intel network boards) that can flexibly distribute the data 
load on a predefined sub-set of available CPUs/cores. This 
approach gives the possibility of scaling performance with the 
CPU/core number and of configuring the SR for a) always having 
enough-residual power for application services support, and/or b) 
explicitly reserving specific CPU/cores for the application (and 
control) layer operations. 

   The paper is organized as follows. The next section summarizes 
the Linux approach to the networking data plane. Section 3 
describes the main bottlenecks of a PC-based SR, and Section 4 
presents the flexible load distribution system and its main aspects. 
Section 5 reports the results of a set of performance tests 
demonstrated on conventional and modified SRs, with a specific 
focus on application layer support and on its interaction with the 
data plane performance. Finally, the conclusions are summarized 
in Section 6. 

2. THE LINUX DATA PLANE 
The packet processing architecture of Linux (and of many 

other OSs) is generally triggered by HW interrupts: network 
boards signal the kernel upon packet reception or transmission 
through HW interrupts. Each HW interrupt (IRQ) is served as 
soon as possible by a handling routine, which suspends the 
operations currently being processed by the CPU. The IRQ 
handlers are designed to be very short, while all time-consuming 
tasks are performed by the so-called “Software IRQs” (SoftIRQs) 
afterwards. SoftIRQs differ from HW IRQs mainly in that a 
SoftIRQ is scheduled for execution by a kernel activity, such as an 
HW IRQ routine, and has to wait until it is called by the 
scheduler. SoftIRQs can be interrupted only by HW IRQ routines.  

The forwarding process is triggered by an HW IRQ 
generated from a network device, which signals the reception or 
the transmission of packets. Then, the corresponding routine 
performs some fast checks, and schedules the correct SoftIRQ, 
which is activated by the kernel scheduler as soon as possible. 
When the SoftIRQ is finally executed, it performs all the packet 
processing operations by accessing two special RAM regions, 

called the TxRing and RxRing1, which are used by the DMA to 
transfer or receive packets from the network board. 

In particular, a SoftIRQ executes two main tasks on the 
related board, pertaining to packet reception and transmission, 
respectively. The first task is the de-allocation of already-
transmitted packets placed in the TxRing, while the second task 
includes all the real packet forwarding operations. In fact, the 
latter task handles the received packets in the RxRing with the 
NAPI procedure [8], and performs all of the following L2 and L3 
delivery operations up to the routing decision and to the 
backlogging in the TxRing of the selected output interface. Major 
details on the Linux networking architecture can be found in [4]. 

With regard to Linux and Multi-CPU support in data plane 
operations, the 2.6 kernels have reached a high optimization level. 
The key to these improvements mainly deal with both the 
optimization and refinement of code locking (to serialize accesses 
on shared data), and the capacity of binding a process/activity to a 
specific CPU, called “CPU affinity”, thus maintaining very 
effective use of the processor/core cache.  

In addition, the Linux kernel allows the assignment of certain 
IRQs to specific CPUs/cores through the so-called “IRQ affinity”. 
This has a strong impact on the SR data plane, since it allows  
control of which CPU/core must process the HW IRQ handling 
routines (and the following SoftIRQs) for the corresponding 
network board. Thus, each CPU/Core performs both the de-
allocation of packets transmitted by the bound network cards, and 
the forwarding operations for all packets received by the same 
boards. 

3. ARCHITECTURAL BOTTLENECKS 
As shown in [4], when an SR architecture based on a single 

CPU/core is used, the data plane performance can be substantially 
limited by only two key factors: the SR computational capacity 
and the bandwidth/latency of I/O busses. While the latter affects 
the maximum throughput in terms of bits per second, the former  
limits the rate of packet headers that can be processed by the 
CPU.  

In this respect, while the PCI-express adoption provides a 
wide I/O bandwidth, multiprocessor architectures such as SMP 
and NUMA considerably increase the overall computational 
capacity, since they both allow parallel processing on multiple 
CPUs/cores. However, to effectively exploit this kind of HW 
platform, we need a suitable SW architecture able to parallelize 
the computational load as much as possible. Typical performance 
issues, which may sap parallelization gain, are raised when tasks 
on different CPUs share some data. This generally leads to two 
issues, namely data accessing serialization and CPU/core cache 
coherence, which both introduce costly latency times in accessing 
and in processing shared data. 

Starting from the Linux data plane description in the 
previous section, we can see that TxRings clearly represent data 
structures shared among the SoftIRQs running on all CPUs/cores 
involved in the packet forwarding. In fact, the TxRing of a 
specific board is filled by all CPUs/cores delivering traffic toward 
that port, while it is only served by the specific CPU bound to its 
HW IRQ.  

                                                                 
1 In general, there is one Tx and one Rx Ring for each network 
adapter. 
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In detail, the SoftIRQ accesses to each TxRing are serialized 
by a code locking procedure, which is based on the “spin-lock” 
function. This lock (called “LLTX” lock) guarantees that each 
TxRing can be read or modified by only one SoftIRQ at a time. 
When a SoftIRQ gains access to the TxRing, it temporarily stops 
the following SoftIRQs, which must wait for the TxRing 
availability. The LLTX lock contention obviously causes 
computational capacity waste (due to the lock waiting times), 
especially when several CPUs/cores are involved in the 
forwarding process.  

Moreover, additional performance waste is caused by 
CPU/core cache management: shared data can be kept in only one 
processor's cache at a time, otherwise the CPU/core cache may 
drift out of synchronization (i.e., some processors may work on 
data that is not up-to-date). Consequently, whenever a CPU/core 
loads a TxRing to its local cache, all of the other processors also 
caching it must invalidate their cache copies. Thus, this 
invalidation is very costly, since shared data can only be cached 
by one CPU/core at time, but also, it forces the data to be loaded 
from the RAM every time the processing CPU/core changes. This 
obviously introduces a non-negligible memory accessing 
overhead. 

The performance analysis in Sub-section 5.1, carried out with 
both external and internal measurements, clearly shows that 
LLTX lock and multi-CPU/core cache management cause a  
heavy SR performance waste that is enough to cancel all the 
positive effects of using parallel CPUs/cores. 

4. MULTI-CPU/CORE ENHANCEMENTS 
To go beyond the standard PC-based SW architecture, we 

need both HW and SW architectural enhancements that allow us 
to effectively and scalably exploit multi-CPU/core PC systems. 
This section is divided into three parts. In the first, we introduce 
some existing HW components that can be used to evolve SR 
architecture. In the second part, we analyze how the Linux SW 
architecture may optimally support these HW enhancements for 
achieving high performance. Finally, in the third part, we provide 
suggestions for how a SR can effectively include advanced 
services and network control applications. 

4.1 HW evolution 
From the HW point of view, Intel has recently proposed two 

interesting mechanisms that can be effectively adopted to reduce 
performance issues as much as possible in multi-processor 
systems. The first one is called “Intel® Advanced Smart Cache” 
[9], and consists of a mechanism that allows level 2 cache-sharing 
among all the cores in the same processor2. One of the clear 
advantages offered by this mechanism is the reduction of cache 
invalidation effects, since, when data (e.g., the TxRing) is shared 
among a set of cores placed in the same processor, it allows them 
to avoid unnecessary cache invalidations, and consequently 
reduces the number of slow memory accesses to RAM. 

The second mechanism used to effectively support multi-
CPU/core systems pertains to the network board. In fact, Intel 
PRO 1000 adapters (with MAC chip 82571 and higher) support 
multiple Tx- and Rx Rings and multiple HW IRQs3 per network 
interface [10]. This is particularly useful in achieving higher 
                                                                 
2 Note that in standard multi-core processors, each core has its 

own independent level 2 cache.  
3 A large number of “IRQ channels” is possible by using MSI-X. 

parallelization levels when different CPUs/cores have to transmit 
or receive large traffic volumes. This mechanism allows each 
CPU/core to bind to its own Tx and Rx Rings, reducing the 
sharing among CPU/cores and avoiding the LLTX lock 
contention. The traffic multiplexing between the network interface 
and the Tx/Rx rings is directly managed by the board HW. With 
regard to multiplexing at traffic reception, this is substantially 
driven by a hardware-based smart Rx filtering scheme, which can 
be programmed by the driver (i.e., the driver sends the HW 
filtering scheme the rules used to associate certain packets to a 
specific RxRing). 

4.2 SW architecture 
To exploit the HW mechanisms introduced in the previous 

sub-section, we need to evolve the SR SW platform with custom 
developments and a suitable configuration. While the custom SW 
developments designed to support HW enhancements are already 
provided in the Intel drivers and were recently included in the 
official Linux kernel tree (e.g., the code patch supporting multi-
queuing adapters written by P.J. Waskiewicz [10] was included in 
the 2.6.24 kernel), the general SR SW configuration requires a 
deeper discussion.  

In particular, the main objectives of a SR architecture 
optimized for a multi-CPU/core environment can be summarized 
by the following : 
• to entirely bind all operations carried out in forwarding a 

packet to a single CPU (minimizing cache invalidations),  
• to reduce LLTX lock contention as much as possible, 
• to equally distribute the computational load among all the 

processors/cores in the system. 
In this scenario, to achieve these goals, we can play with 

CPU/core binding to Tx- and RxRings. 

CPU/core binding to TxRing: As shown in Section 3, TxRings 
represent the real weak point for standard SR architecture. They 
are shared data structures, causing both a high rate of cache 
invalidations among CPUs/cores and heavy LLTX lock 
contentions. The optimal solution is clearly to bind each CPU/core 
to a different TxRing on each output device. If an adapter does not 
include enough TxRings, the same TxRing can be assigned to a 
set of cores sharing the L2 cache; even if this sub-optimal solution 
does not mitigate LLTX lock contention, the core cache sharing 
minimizes the rate of cache invalidations, and consequently, of 
slow RAM accesses. 

CPU/core binding to RxRing: Each CPU/core is characterized by 
a certain computational capacity, which limits the maximum 
processing throughput of packet headers. Observing the 
performance measurement in Section 5, we can note that a single 
Xeon core allows the processing of about 1 Mpkt/s, which is too 
low a value to manage a gigabit Ethernet interface at line speed 
(1.488 Mpkt/s with 64B sized frames), while it is enough to 
manage more than six Fast Ethernet interfaces (148.8 kpkt/s with 
64B sized frames). Starting with these considerations, a suitable 
approach would be to assign enough processing capacity to each 
network interface to achieve its maximum theoretical speed. Thus, 
we can bind a single CPU/core to a set of “slow-speed” interfaces, 
while we have to bind multiple cores to the same Rx board in the 
presence of high speed interfaces (1 or 10 Gbps). The first case 
corresponds to the standard Linux behavior, since we do not need 
multiple RxRings per interface. Alternatively, for high-speed 
network adapters, we have to enable multiple RxRings, binding 
each one to a different CPU/core.  
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Thus, as shown in Fig. 1, a SR architecture fully optimized 
for multi-CPUs/cores environment must provide:  
• a number of CPUs/cores per Rx port that guarantees enough 

computational capacity to process incoming traffic 
• a number of TxRings per interface equal to the number of 

CPUs/cores involved in traffic forwarding 
• multiple RxRings per high-speed interface (ideally equal to 

the number of CPUs/cores need to achieve the maximum 
theoretical packet rate).  

Note that when multiple RxRings are used, the smart Rx 
filtering scheme embedded in the high-speed adapter has to 
balance the traffic load among all the enabled RxRings with a 
suitable mechanism. In particular, to avoid out-of-order packet 
delivery, it must assign to the same RxRing all packets of a 
certain flow, while at same time equally distributing the traffic 
load on all  RxRings. 
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Fig. 1. Overview of the enhanced SR architecture. 

4.3 Application service support 
To develop a multi-layer node, the SR has to include SW 

modules in its architecture to support SSON functionalities. These 
advanced functionalities, as well as classical applicative services 
and network control applications (e.g., [3]) are usually realized in 
the user-space as applications. The interaction among user-space 
and the lower layers is often effectively performed through 
sockets, which flexibly allow access to the network protocol 
stack, and also through other well-known APIs provided by the 
OS.  

Notwithstanding, PC-based architectures are the most 
obvious environment used to support applications, and the 
coexistence between these activities and Linux data plane 
operations may be critical. This arises from the packet forwarding 
process, which is fully realized as SoftIRQ activity in kernel-
space, and consequently behaves as a higher priority task with 
respect to other activities (e.g., SR services and applications in 
user-space). Therefore, as shown in Sub-section 5.3, when all of 
the CPUs/cores in the system perform intensive forwarding 
operations, SR services and applications may not receive enough 
computational capacity for correct operation. To address these 
considerations, a viable and safe solution consists of allocating a 
suitable number of CPUs/cores to the SR services and 
applications. In the 2.6 kernels, this can be fulfilled through non- 
binding of these CPUs/cores to any network board; the kernel 

scheduler will automatically place services and applications on 
free CPUs/cores. 

5. PERFORMANCE EVALUATION 
This section reports a set of benchmark results obtained by 

analyzing and evaluating the performance of the standard and 
enhanced SR architectures. In greater detail, the studied 
architectures are based on a custom 2.6.24 Linux kernel, which 
includes a set of “ad-hoc” optimizations, already studied and 
introduced in our previous works [4]. 

During benchmarking activities, we used both external and 
internal measurement tools. To measure SR throughput and 
latency performance, we adopted professional equipment, namely 
an Agilent N2X router tester, while for internal measures we 
utilized Oprofile [11]. 

This section is organized in three different parts, which 
report the performance of standard SR architecture and bottleneck 
characterization, the performance provided by the enhanced SR, 
and a benchmarking session used to evaluate the SR support for 
multi-layer services and applications.  

5.1 Standard SR architecture 
         This benchmarking session consisted of a forwarding 
performance evaluation of standard SR architecture without any 
HW and SW enhancements. We used two different SMP kernel 
setups in a very simple environment: we consider only traffic flow 
crossing the SR among two gigabit Ethernet interfaces. The 
packet size is fixed to 64B, since computational capacity is one of 
the major performance bottlenecks. The kernel setups used are: 1) 
SMP 1-CPU: in this kernel configuration, both the crossed 
network adapters are bound to the same CPU; 2) SMP 2-CPU: in 
such a case, the two network adapters are assigned to different 
CPUs. While the former (SMP 1-CPU) attempts to maximize the 
CPU affinity of the forwarding process, the latter (SMP 2-CPU) 
performs load balancing among all CPUs. The performance 
results obtained with a uni-processor (UP) kernel are used for 
comparison. Fig. 2 shows the throughput and latency values 
obtained with all studied kernel setups. While the UP kernel 
forwards at about the full gigabit speed, the SMP kernel versions 
show lower performance values: the SMP 1-CPU achieves a 
maximum forwarding rate equal to about 1020 kPkt/s, while the 
SMP 2-CPU performs to about 40% of gigabit speed. We can 
justify the performance gap among SMP and UP kernels with the 
additional complexity overhead required with SMP kernels (e.g., 
needed to manage kernel spinlock, etc.). However, there is a clear 
performance gap between the SMP setups as well: the performed 
tests show that load balancing of the forwarding processes among 
different CPUs generally leads to a substantial performance 
decay. Fig. 2 shows the number of cache misses (that obviously 
depend on the cache invalidation rate) and the average spinlock 
waiting time (where a significant contribution is provided by the 
LLTX lock), both obtained with Oprofile and for all three SW 
setups. Observing these figures, we can highlight how the number 
of cache misses and spinlock waiting times are notably larger in 
the SMP 2-CPU setups. This confirms what was introduced in 
Section 3 regarding the cache invalidation bottleneck: when 
packets cross the SR among interfaces bound to different CPUs, 
they cause a large number of cache invalidations and a consequent 
memory access slowing down. For spinlock waiting times, we can 
see that in the SMP 2-CPU they double their average value with 
respect to the SMP 1-CPU, in the presence of only two concurrent 
CPUs at the LLTX lock. 
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Fig. 2. Maximum throughput and latency values with L2 64 B 

sized packets. 
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5.2 Enhanced SR architecture 
This sub-section reports results from benchmarking sessions 

carried out to analyze the enhanced SR architecture. The SR HW 
is based on a dual 64 Xeon system, where each Xeon provides 
four cores, and on an Intel Gigabit adapter based on the 82575 
chipset, which provides four Tx- and Rx-Rings per port. 

We performed four different benchmarking sessions 
according to an increasing number of cores and gigabit interfaces 
involved in the forwarding process: for every two cores, we added 
a Rx and Tx gigabit interface. In particular, for each Rx gigabit 
network interface, we bound two cores, each one to a different 
RxRing. Where possible, a TxRing is associated with a single core 
on every Tx network interface. However, since the network board 
only supports up to four TxRings per interface, when we use more 
than four cores, we bound some TxRings to two cores. Thus, in 
the benchmarking sessions with two and four cores, we have a 
fully optimized SR architecture (i.e., each Tx and Rx Ring is only 
bound to a single core), while in the sessions with six and eight 
cores, we can only realize a sub-optimal SR configuration, since 
some TxRings are shared among two cores. For the test traffic, we 
used a partially meshed matrix composed of unidirectional flows 
that cross the SR from each Rx interface to each Tx. The load on 
each Rx port saturates the gigabit link with L2 64B sized packets, 
and is equally distributed among the traffic flows. Note that we 
only utilized L2 64B sized packets, since we want to focus on 
how the enhanced SR architecture can handle the computational 
bottleneck (in terms of processed packet headers per second) with 
respect to the standard architecture.  

Fig. 4 shows the maximum throughput in terms of kPkts/s, 
for both the enhanced and standard SR architectures, obtained in 
all the setups. From this figure, we note that the enhanced SR 
provides very high performance with respect to the standard one. 
In detail, while the standard SR holds about the same packet 
forwarding throughput (i.e., about 500-600 kPkts/s) independent 
from the number of active CPUs and network interfaces, the 
enhanced architecture seems to offer a quasi-linear performance 
scalability. The setups with two and four cores (i.e., the fully 

optimal configurations) achieve the maximum theoretical rate on 
one and two gigabit Ethernet interfaces, respectively. The sup-
optimal configurations (with six and eight cores), where we have 
three and four couples of Rx and Tx gigabit interfaces, show a 
performance decay; with six cores we achieve a maximum 
throughput equal to about 4.4 MPkts/s, while the SR forwards up 
to 5.9 MPkts/s in the setup with eight cores, which corresponds to 
about the 70% of the maximum theoretical throughput. Thus, 
while optimal SR configurations can achieve the full rate speeds, 
even the sub-optimal configurations guarantee a high performance 
level.  
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Fig. 4. Maximum throughput for both the enhanced and the 

standard RS with according to 2, 3 and 4 core setups.  
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Fig. 5. Maximum latency values for both enhanced and 
standard RS with according to 2, 3 and 4 core setups.  
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Fig. 6. Cache miss rate for both enhanced and standard RS 

with according to 2, 3 and 4 core setups.  
Fig. 5 reports the maximum latency times measured in all 
performed setups for the standard and enhanced architectures. The 
results are consistent with respect to those related to the maximum 
throughput in Fig. 4; the enhanced SR guarantees lower latency 
times than the standard one. This is a clear indication that TxRing 
un-sharing (especially in the optimal configurations with two and 
four cores) and Rx balancing among multiple cores help to lower 
the average processing time of forwarded packets. Finally, the 
results concerning the cache miss per forwarded KPkt, are 
reported in Fig. 6. As highlighted in the figure, the enhanced 
architecture limits the number of cache invalidations and also 
cache misses. In the standard SR architecture, the number of 
cache misses seems to increase linearly according to the number 
of cores involved in the forwarding process. 
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5.3 Multi-layer service support 
As sketched in Sub-section 4.3, the coexistence of 

applicative services and the Linux data plane may be critical, 
since kernel level operations have a higher priority than user-
space activities. To this purpose, we decided to perform several 
internal measurements, aimed at estimation and quantification of 
the impact of the forwarding process impacts on performance of 
service applications.  

Fig. 7 shows the SW profiling of a SR (obtained with 
Oprofile), where the data plane and the applicative services are 
forced to work on the same CPU. The tests have been carried out 
against different loads (up to 1 Gbps with 64B sized packets). 
Among several interesting observations related to SR data-plane 
internal dynamics (for major details see [4]), Fig. 7 clearly 
outlines that the applicative services, namely “User-Space”, 
rapidly decrease their computational occupancy as the load 
increases and kernel activities become more intensive. In detail, 
when the traffic load exceeds 300 Mbps, the applicative services 
exploit less than the 2% of the overall CPU capacity. With the aim 
of verifying the solution proposed in Sub-section 4.3 (to guarantee 
at least a free CPU to applicative services), we conducted further 
SW profiling sessions, similar to the previous one, but with an 
additional CPU not involved in data-plane operations. In such a 
case, as we can observe in Fig. 8, even if the service and data-
plane processes initially share the same core (the worst case 
condition), when traffic load reaches 10%, the Linux kernel 
scheduler decides to move all the service applications to the free 
core, which can consequently exploits 70-75% of CPU time.  

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

C
P
U
 
T
i
m
e
 
A
l
l
o
c
a
t
i
o
n
 
[
%
]

Offered Load [%]

Idle
Scheduler

Memory
IP Processing

Userspace
Driver IN

Driver OUT
IRQ
ETH

OProfile
Driver MGMT

 
Fig. 7. Single core processing data plane operations and 

applicative services: CPU utilization against the offered load. 
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Fig. 8. Multiple cores processing data plane operations and 

applicative services: CPU utilization against the offered load. 

Conclusion 
In this contribution, we reported an in-depth study of a PC-

based SR architecture, focusing on the SW/HW enhancements 

that can be used to achieve high performance and to 
simultaneously support applicative services.  

We described and extensively tested a Linux-based 
networking SW system, able to correctly deploy multi-CPU/core 
PC architecture. The approach, based on a smart CPU/core 
allocation to multiple network board Rx and Tx buffers, gives the 
possibility of scaling performance and effectively supporting a 
certain number of high speed devices (we achieved a maximum 
throughput equal to about 4MPkts/s).  

Moreover, this approach allows us to flexibly preserve 
portions of the PC computational power for the application layer, 
so that different equipment networking functionalities can 
independently operate with scalable performance. 
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