Virtual Network Stacks

Ghazi Bouabene, Christophe Jelger, Christian Tschudin
Computer Science Department,
University of Basel Switzerland
ghazi.bouabene@unibas.ch, christophe.jelger@unibas.ch,

christian.tschudin@unibas.ch

ABSTRACT

In this paper, we get inspiration from peer to peer file shar-
ing networks to provide a new way of inter-networking. In
our proposal, nodes having access to multiple network types
can share their networking resources with other peers re-
siding in networks with different protocols and (potentially)
different addressing schemes. Such neighbor nodes will form
a peer to peer overlay backbone; the purpose of it being to
offer to applications and protocols access to remote network
stacks that their running hosts do not implement or have
no direct access to. This creates RPC-like access to foreign
network stacks well in line with a federation approach that
avoids introducing a global overlay for integrating heteroge-
neous networks.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Distributed networks

General Terms
Design.

1. INTRODUCTION

Networks have been used to develop all sorts of distributed
applications such as distributed file systems, databases, grid
computing, etc. Also, many interesting techniques have used
networking services in order to offer hosts access to remote
functionality available through the network. Mechanisms
such as Remote Procedure Calls (RPC), Remote Method
Invocation (RMI) and CORBA, offer the hosts implementing
them the possibility to extend their functionality. Using
such mechanisms, a host can invoke remote services provided
by network peers almost as if the services were available
locally. Although such mechanisms have been widely used
to deploy numerous types of software in a distributed way,
there has been little effort in that sense for core networking
software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PRESTO’08, August 22, 2008, Seattle, Washington, USA.

Copyright 2008 ACM 978-1-60558-181-1/08/08 ...$5.00.

45

Node A

Application

TCP !

Ethernet

D Local Network stack

_ 71\; Virtual Network stack

—<--> Remote procedure calls

Figure 1: Conceptual view: A virtual (and dis-
tributed) network stack

This notion of distributing networking software that blurs
the distinction (in layers) between application and network
logic might be confusing. Indeed, a network is by definition
a distributed system, as it is a collection of remote enti-
ties collaborating to provide a common service. However,
the software i.e., the networking stack, allowing a host to
interact within a certain network, must always be fully im-
plemented within the host. Our intention in this paper is to
apply the functional distribution and virtualization meth-
ods provided by techniques such as RPCs and CORBA, to
networking stacks. Hosts that do not implement a specific
networking protocol will be able, via such mechanisms, to
“transparently” access distant services provided by remote
network peers.

Our proposal basically allows networking hosts to com-
plement their networking functionnality in order to better
support application portability and also offers a new way of
inter-networking in a heterogeneous network environment.

1.1 Basic operation

Our proposal allows applications and protocols to access
networking stacks residing in different hosts. The goal is to
extend the panel of network services a host can use. This ac-
cess should be the most transparent possible to applications
and protocols as well as to the remotely accessed network
stacks. Our idea is to offer the remote network stack ser-
vices through a local virtual networking stack. Such a
virtual stack would present the same interface as the miss-
ing networking stack would. Internally, it will handle the
necessary operations to relay the requested commands to
the remote stack. In our proposal, the entity providing the
virtual networking stack will be inter-operating with the re-
mote networking stack with RPC-like mechanisms.

Application Node B

TCP

Net Sharei

Net Share

—<--> Data path

Figure 2: Implementation view : the Net share ar-

chitecture

Figure 1 illustrates our proposal with a basic example. In
this example we suppose that the administrator of node B is
willing to share the local network X stack, where X stands
for any networking technology (IPv4, IPv6, Bluetooth, etc.),
with other hosts. We then assume that an application on
node A requires a TCP/X networking stack in order to oper-
ate. However, node A does not implement any X networking
module and has no direct access to the X network. As shown
on the figure, our proposal is to offer a virtual X layer to the
TCP module on node A. This virtual layer will use the avail-
able networking resources on node A in order to access the
X stack on node B in an Remote Procedure Call (RPC) like
fashion detailed in the next subsection. Note that this re-
mote procedure execution poses evident security issues since
a host might want to restrict the access to its network stacks.
Although security issues are not covered in this paper, they
could be handled for example by maintaining Access Con-
trol Lists allowing only trusted hosts to access the shared
networking stacks.

1.2 Proposal details

Figure 2 shows in more details how we implement the
remote procedure calls in order to virtualize remote net-
working layers. In this figure, we suppose that both node
A and B support the technology and protocols for network
Y (here again, Y stands for any networking technology) and
that they can reach each other. The RPC-like access arrow
shown in Figure 1 is in fact implemented by two Network
Sharing (NetS) modules running on nodes A and B. These
modules use the services of the Y network in order to com-
municate with each other. The NetS module on node A is
the one virtualizing the remote X stack in the context of
node A. It offers to the higher layer modules on node A the
same interface a local X stack would. This way the applica-
tion interacts (transparently) with the NetS module as if it
was a local X stack. The Network Sharing module on node
A forwards the requests received from the application to its
peer on node B via the Y network.

The NetS module on node B is responsible for presenting
the services of the X stack to the users of the Y network.
Indeed without this module, the X stack on node B has
no interaction with the Y stack and can not be reached by
Y network users. It is this Network Sharing module that
receives the remote procedure calls from its peer in node A,
through the Y stack, and relays them into local X primitive
calls.

46

1.3 Features

Bridging the gap between distributed systems and net-
work architectures, our proposal of virtual network layers
offers three attractive features. First, it has the advantage
of favouring applications portability. Indeed, the ability of
accessing remote networking stacks allows a host to invoke
additional virtual network stacks to complement its local
network functionalities. When running an application re-
quiring a networking stack unavailable locally, the host can
offer a virtual stack with the needed interface to the appli-
cation.

Another feature of our proposal is that it permits to dis-
tribute the networking functionality (stacks). In the exam-
ple of Figure 1, the logical Application/TCP/X stack is di-
vided in two halves running on two separate nodes. Such a
distribution allows to factorize networking stack functional-
ity i.e. identifying the parts common to all host local stacks
and centralize them in one point of the network. For exam-
ple, node A in figure 1 could be a sensor mote accessing a
common IPv4 stack provided by a gateway (node B). Such
a factorization frees the sensor motes, present in the same
network as B, from implementing an IPv4 networking stack.
This factorization has the advantage of easing the manage-
ment and update of deployed networking stacks. Indeed,
modifying a shared networking stack will automatically im-
pact all the hosts using the services of the shared stack. For
example, updating the IPv4 module in the sensor network
gateway example will impact all the motes using its services
remotely.

Finally, our virtual stacks proposal offers a new inter-
networking method. Indeed, when applications transpar-
ently access remote networking stacks, they are in fact trans-
parently accessing remote networks. In fact such mecha-
nisms can be extended to offer access to remote networks
residing “many network hops away”. As we will show in
section 5, these network stack sharing mechanisms create
a global inter-network that does not hide all concatenated
networks with a global addressing overlay (as is the case for
IP).

2. ARCHITECTURAL ABSTRACTIONS

Our proposal is currently being developed in the context of
the Autonomic Network Architecture (ANA) project [1]. To
support the re-configuration and adaptation of networking
components, ANA introduces a flexible framework for com-
posing “network stacks” on demand in a dynamic way. This
framework is based on a small set of networking abstrac-
tions and a communications API which allow the various
components of ANA to interact in a generic manner.

In this section, we introduce the core abstractions and
the communications API of ANA: these concepts are a pre-
requisite for understanding the design of our proposal. The
generic nature of ANA is indeed essential for supporting
all possible and unforeseen interactions between distributed
networking components.

2.1 Basic components of ANA

Functional Blocks.

The functional blocks (FBs) are the result of ANA’s de-
composition of current network stacks: they basically serve
as abstractions for any protocol entities generating, consum-

Internet Networking
Stack

Application|
ANA Information Flow

TCP

" {A,,.,.m.ﬁm,} { e } { w } {Eh}
{ T Tt T }

Presentation Layer
Figure 3: ANA common presentation layer

Ethernet

ing, processing and forwarding information. For example, an
encryption function, an IP stack, or a TCP module, can be
abstracted as a functional block.

Information Dispatch Points.

The information dispatch points (IDPs) play a fundamen-
tal role in providing the generic communication hooks be-
tween functional blocks. Somehow similar to Unix file de-
scriptors, IDPs are ANA’s abstraction of access means to
networking resources. In practice, IDPs are identified by
flat labels that have a meaning only locally to an ANA node.
Once a channel to a remote peer or local FB is obtained, an
IDP is assigned and bound to the communication or the FB.
All further communication is then performed via the local
IDP. Note that the binding of an IDP is dynamic and can
change over time as the “network stack” is re-configured.

Common Presentation Layer.

This layer plays an important role in providing generic
data representation between functional blocks. As shown in
figure 3, in ANA all functional blocks are using this layer and
all communications between the functional blocks are going
through it. The presentation layer basically defines a pro-
tocol (internal to an ANA node) that allows the functional
blocks to exchange commands and arguments. This proto-
col is similar to RPC’s XDR [2] protocol in the sense that it
provides a minimal semantic description of the commands
and arguments being exchanged by functional blocks.

Although this level of indirection in the communication
between network modules can affect the performance of the
system, we consiously trade-off performance for the greater
flexibility offered by such an indirection (cross-layer opti-
mizations, dynamic adaptation, evolvability, etc.).

Network Compartments.

In ANA, communication channels across ANA nodes are
provided by network compartments. The concept of network
compartment is similar to the notion of context as proposed
in Plutarch [3] where “a context describes a region of the
network that is homogeneous in some regard with respect to
addresses, packet formats, transport protocols, naming ser-
vices, etc”. For example in ANA, typical network compart-
ments are: an Ethernet segment, the public IPv4 Internet,
a private IPv4 subnet, the DNS, peer-to-peer systems like
Skype, and distributed web caching networks like Akamai.

Typically in each network compartment, protocol entities
collaborate in order to provide communication services to
other compartments and applications. The access to the
communication services of a given compartment is provided

47

on each ANA node by the corresponding builder functional
block which supports the generic communications API de-
scribed in the next section.

Node compartment.

The ANA architecture has the additional particularity of
pushing networking abstractions inside the network hosts.
We indeed consider a networking host to be itself a network
composed by the functional blocks running on the host. Asa
result, every ANA node is organised as a node compartment
which supports the generic communications API described
below. In particular, this permits functional blocks to dis-
cover each other and interact inside the node compartment
in the same manner as with any other network compartment.

2.2 Generic communications API

In ANA, every network compartment builder uses the pre-
sentation layer to support a common and generic API for ac-
cessing communication services. The generic API is ANA’s
understanding of the biggest common subset of services of-
fered by today’s networks. The API has the following primi-
tives described below with some C-style function prototypes.

e IDP, publish(IDP., CONTEXT, SERVICE)

e int unpublish(IDP., IDP;)

e IDP; resolve(IDP., CONTEXT, SERVICE, IDP,)
e void* lookup(IDP., CONTEXT, SERVICE, IDP,)

e int send(IDPs, DATA)

Similar to Plutarch [3], the API follows a publish/resolve
communication model in which a service is published within
a certain compartment’s contert. A published service can
then be resolved into a communication channel (identified by
an IDP) that can further be used to send data to the resolved
service. Beside resolution, one can also lookup a service to
obtain further reachability information but not instantiate a
communication channel to the service. For example, looking
up a name via the DNS compartment typically returns an
IP address (and not a communication channel).

In the prototypes we just introduced, the IDP. identifies
the functional block providing access to the network com-
partment services. The SERVICE is typically what is being
published or looked up, while the CONTEXT defines some
scope inside the compartment. The IDP; is used to refer to
a published or resolved service, while the IDP, specifies the
IDP on which the response to some request is expected (re-
mind that communication via the presentation layer is via
message passing).

The CONTEXT argument defines the publication or reso-
lution scope “inside” a compartment. For example, in an IP
compartment one uses [P addresses as CONTEXT values,
while in a DNS compartment the CONTEXT is used to spec-
ify record types (e.g., A, MX). ANA also mandates that all
network compartments understand two generic CONTEXT
values. The generic CONTEXT "#" specifies the largest
possible scope as interpreted by the compartment, while the
"." CONTEXT restricts the scope to node-local operations.

The SERVICE argument is a description of the service to
be published, and is typically not interpreted by the com-
partment provider FB. The type of the SERVICE argument

is not fixed: this argument can be a port or protocol num-
ber, a string (e.g., URL or filename), an IP address, a hash
value, etc.

As previously stated, all compartments in ANA must sup-
port this generic communications API: it basically provides
the “glue” for all possible and unforeseen interactions within
ANA. In particular, the API and the generic data represen-
tation permit to deploy advanced network services in a very
simple way.

3. REMOTE STACK INTERACTIONS

In this section we will demonstrate how to make use of the
architectural abstractions and more specifically the common
generic API provided by the ANA architecture to implement
the stack virtualization mechanisms described in section 2.
Figure 4 maps the example case depicted in figure 2 into the
ANA architecture.

Here the services of the Y and X networks are provided
by the corresponding Functional Blocks present on node A
and B. These functional blocks support the generic API
described in the previous section. We will now detail the
steps allowing the user application and TCP functional block
present on node A to interact with the remote X functional
block as if it was available locally on node A.

3.1 Accessing the remote stack

Upon startup, as it is intended to work over the X net-
work, the TCP FB will query its node compartment for a
functional block fitting the X description®. This can be done
by addressing a generic resolve command to the node com-
partment. Since the node A does not run an X functional
block, this resolve command would normally fail. At this
point, two possible ways for accessing the remote network
stack are possible.

The first method is that the TCP module explicitly asks
the Network Sharing funtional block on node A to instanti-
ate a virtual X stack. This access method does not change
the way the TCP module would interact with the remote
stack but still requires a change of behaviour from protocols
and applications. A second and more implicit way of provid-
ing the remote access is that the NetS functional block on
node A intercepts the resolve command addressed by the
TCP module to the node compartment. It then offers an
IDP to reach the virtual remote stack as if the answer came
from the node compartment. This way the TCP module will
be accessing a remote stack exactly as if it was available on
its node (no change of behaviour required).

Independently of the chosen access method, once the NetS
FB on node A receives the resolve command for a remote X
FB, it transmits it to its NetS peer in node B via the Y net-
work. Using the node compartment services (by addressing
a resolve command), the NetS functional block on node B
can discover the local X functional block. At this point, both
NetS funtional blocks use the services of the Y network to
build a communication channel leading from IDP t in node
A towards IDP p in node B.

The NetS FB on node A will then return the IDP label
t to the TCP FB as a response to its resolve request. Note
that at this level the TCP functional block will be accessing
the remote X FB exactly as if it was available locally.

!This description is indicated in the SERVICE argument of
the resolve command addressed to the node compartment

48

() Functional Block (FB)
—e IDP

— PDU sending

= Interface calls

---» Net share tunnel

Figure 4: Remote stack access mechanisms

3.2 Remote interactions

Offering services through a remote stack.

Now we assume that an application wants to make a ser-
vice, reachable locally via IDP s attached to the TCP FB,
available to X users. For doing so, The TCP FB uses the
generic publish command and addresses it to the IDP la-
bel t leading to the virtual X stack. Here again we insist
that the TCP functional block is behaving exactly in the
same way as if the X FB was running on its host. The
network sharing functional block on node A then forwards
the publish command to its peer through the Y communica-
tion channel. Before relaying the publish command to the X
functional block, the NetS FB on node B creates a communi-
cation channel leading towards the IDP s in node A through
the Y network. This channel is accessible in the context of
node B via the IDP q. The NetS FB on node B then relays
the publish command to the X FB by substituting the IDP
label s with q.

At this point, all data received by the X FB and destined
towards the published service will be forwarded locally to
the IDP q and then automatically tunneled through the Y
network towards IDP s in node A.

Accessing remote services via a remote stack.

Suppose an application asks the TCP functional block on
node A to establish a communication channel towards a par-
ticular X host. This can be done by addressing a generic
resolve command to the X stack (i.e. to IDP t) with the
target X address as a CONTEXT. The network sharing func-
tional block on node A receives the command and transmits
it to its peer on node B that in turn relays it to the X FB
on node B. The X functional block then instantiates a com-
munication channel towards the requested peer and returns
the resulting label r to the NetS FB on node B. Now, both
NetS functional blocks on node A and B collaborate to in-
stantiate a communication channel leading from the newly
created IDP u on node A towards IDP r on node B. The
NetS functional block on node A then returns the IDP la-
bel u to the TCP FB as a result of the resolve request. At
this point, all data sent by the TCP FB on IDP u will be
tunneled through the Y network and then forwarded to the
X FB on its IDP r. The X functional block then adds the

received data into an appropriate X packet and sends it to
the destination address.

4. NETWORK SHARING OVERLAY

In this section we show how to construct an overlay com-
partment (network), that will help protocols and applica-
tions reach networks that they do not have direct access to
or that their nodes do not implement. To relate to the pre-
vious section, we will describe here how to build a network
based on Network Sharing functional blocks similar to the
ones described before. The goal is to offer access to remote
network stacks residing in different networks from the host.

4.1 Components of the overlay

The network sharing overlay is composed of two entities:

e Core members: the components forming the core of
our overlay are network sharing functional blocks sim-
ilar to the one on node B in figure 4. Core members
are the nodes sharing networking resources and ex-
changing network capabilities information with other
core peers. Given that the network sharing functional
block on node B relies only on generic API calls to
operate, the same module can be used for sharing all
sorts of networks. However, in order to adapt to dif-
ferent (new) networks, our NetS core functional blocks
should not depend on any pre-established structure.
Therefore we prefer a decentralized and incrementally
growing structure for our network sharing overlay. In
our proposal, the NetS core members will build the
core of the overlay on a peer to peer basis.

e User members : users of the overlay are nodes similar
to the NetS block on node A of Figure 4. These mem-
bers are needed for handling the tunneling interactions
with the core members and offering a virtual stack to
applications. They do not perform any sharing activ-
ity and have therefore the advantage of simplifying the
client code that hosts willing to use the overlay have
to support.

4.2 Core formation

On startup, the core network sharing functional blocks try
to discover the networking capabilities of their local hosts.
This can be done with a generic lookup(n, ".", "compart-
ment", r), where n is the IDP label of the node compart-
ment and r the IDP label to handle the response. Doing so,
a core NetS functional block obtains a list and description
of all the host-local Functional Blocks providing access to
networks.

The next step in the bootstrap process is to discover and
interact with other NetS core peers reachable via the avail-
able networks. Therefore, for every FB x providing network-
ing functionality, the core NetS functional block will execute
the two following commands :

e resolve(x, "*", "net share", r) : where z is to be
subsequently replaced by the IDP labels of the previ-
ously discovered FBs. As a result, the compartment
provider FB will return an IDP to reach all possible
NetS peers in its interpretation of the "*" CONTEXT.

e publish(x, "*", "net share", s): where z is again
to be replaced by the IDP labels to reach the network

49

providing functional blocks. This will make the core
NetS FB visible in the context of the network i.e. dis-
coverable by other NetS core peers and overlay user
members.

Note that the described bootstrap procedure relies only
on generic API primitives, which allows the NetS core FB
to interact within all networks providing the API.

4.3 Addressing and routing

Once it can interact with its peers, a NetS core functional
block will request to join the core of the overlay. Typically,
this means obtaining an identifier (name or address) and
routing information. Note that this identifier is transparent
to the applications taking advantage of the network sharing
overlay. Indeed, user applications keep their local network
identifiers and need only to provide a description of their
target network. At the status of our proposal, we do not
specify any naming (addressing) nor routing conventions.
Our only concern (requirement) in this matter is that the
naming and routing procedures can be fully decentralized
and automated (i.e. no human intervention). In fact, many
existing techniques with e.g. flat routing and DHTs [4, 5]
can be applied here.

4.4 Information sharing

Once a NetS core functional block has joined the overlay,
it can start exchanging network capability information with
its peers. It will use a global information sharing mechanism
to announce the description of the networks available on its
host. Note that this networking capability information can
be tuned by policies or a human administrator to include
only a subset of the functionnality that a host is willing to
share.

Here again, at the current state of the proposal, we do not
specify a particular information sharing mechanism. How-
ever, considering our requirement for decentralization, peer
to peer information sharing mechanisms [6, 7] are good can-
didates for this task.

5. RELATED WORK AND DISCUSSIONS

To summarize, we propose in this paper a set of mecha-
nisms allowing a host to access remote networking stacks and
virtualize their functionality to local applications. Beside
enhancing applications portability and factorizing function-
ality, these techniques also support a new inter-networking
model. This model consists of a peer-to-peer overlay des-
tined for sharing network stack functionality. This overlay
allows hosts residing in different and distant networks to
communicate without imposing global networking seman-
tics. Indeed, our inter-networking model does not intro-
duce a new global namespace federating all interconnected
networks as it is the case for IP. Also, our deployed over-
lay does not “hide” the underlying networks by integrating
them (as for IP), but rather offers a backbone network to
make them globally visible. This ability of accessing a re-
mote network stack has the advantage of confining service
access/publication to a specific part of the global network.
For example, offering a service to a peer in a private network
becomes possible by accessing a remote networking stack re-
siding in the private network and publishing (creating the
access point) the service in the context of the private net-
work only.

Our proposed work can be confused with gatewaying and
tunneling techniques. Indeed, a Net Share module linking
two networking stacks such as the one on node B in Fig-
ure 2 resembles service adaptation (interface adaptation)
gatewaying techniques. A major difference of our proposal
is that our network sharing modules do not translate the
services of a network N into those of N’ as it is the case
for service adaptation gatewaying [8, 9]. Instead, the NetS
modules simply use the services of the network N in order
to transport remote procedure calls towards a stack imple-
menting the network functionalities of N’.

Our proposal can also be confused with protocol tunnel-
ing techniques. Indeed, the example of Figure 2 can be in-
terpreted as a mechanism for tunneling X packets through a
network Y. However, a major difference of our proposal from
protocol tunneling techniques is that we do not encapsulate
the packets of a network N’ inside those of a network N as it
is the case for protocol tunneling techniques [10]. We rather
relay the user data (or PDU) from a packet N towards a
packet N’ (and vice versa) at the border of the networks.
Indeed, in our example of Figure 2, there are no X pack-
ets circulating in the traversed Y network. Only PDUs are
relayed between X and Y packets at the level of the NetS
module in node B (border between the two networks).

Solutions similar to our proposal actually exist. In [11], a
remote access to X.25 network services is offered for nodes
only having an Internet connection. This solution uses RPC
to tunnel X.25 API calls and data over an IP network. In
[12], communication capabilities of several hosts in a lab are
merged using inter-process communication mechanisms over
a Cambridge Ring. While these techniques are similar to
our proposal, they are very specific to particular networking
technologies. In contrast, our proposal is fully generic: first,
our network sharing overlay can create peerings on top of
any underlying network technology and second, the overlay
can be used to share any kind of network stack as long as it
supports our generic communications API.

6. FUTURE WORK

A central assumption of our work is that, to be remotely
accessible, a network stack must support our proposed com-
munications API and presentation layer. However while
looking at the very few primitives of the API, one may sus-
pect that the API is too restrictive and may not permit to
“express” advanced communication services. Actually like
others [3, 13], we believe that the richness of an API does
not depend on the number of primitives it offers. In our
proposal, the expressiveness of the API is actually tied to
the SERVICE and CONTEXT arguments which permit to
specify what is being published or resolved and where/how
this should be done.

In practice, we are currently assessing how existing “net-
work types” can be mapped into our proposed API. Our
current approach is to use human readable strings to encode
the SERVICE and CONTEXT arguments. This for exam-
ple permits to encode simple contexts such as "10.1.2.3",
"224.0.0.9", "2001::1", or "MX", as well as simple services
like "tcp:80", "www.example.com", or "some_song.mp3".
Our current work is actually to establish a clear mapping be-
tween the most popular existing protocols and our commu-
nications API, and to understand if each derived semantic
is rich enough to cover all the features of the corresponding
protocol. For example, an IPv4 source route could be ex-

50

pressed with a CONTEXT containing a list of IP addresses
(e.g., "10.1.2.3/10.1.3.4[10.1.4.5"), but one might also
want to extend this semantic to enforce only a partial source
route (e.g., to choose an outgoing path in a multi-homed
network).

Finally, while continuing the implementation effort on the
ANA architecture and the network sharing mechanisms, fo-
cus will be put on identifying information sharing, routing
and naming schemes for our overlay that offer the best trade-
off between global communications efficiency and flexibility.
The impact of this tradeoff will be measured via performance
evaluation comparing our architecture to already deployed
networking solutions as well as to other novel network ar-
chitectures.

7. ACKNOWLEDGEMENT

Still running until the end of 2009, this work is carried
out in the context of the ANA project [1] (FP6-IST-27489)
funded by the European Commission under the proactive

initiative on “Situated and Autonomic Communications” (SAC).

8. REFERENCES
(1] Autonomic Network Architecture - EU Project (2006-2009).

http://www.ana-project.org.

[2] R. Srinivasan. RFC-1832 - XDR: External Data
Representation Standard, 1995.

[3] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and

A. Warfield. Plutarch: an argument for network pluralism.

In FDNA ’08: Proceedings of the ACM SIGCOMM

workshop on Future directions in network architecture,

pages 258—-266, New York, NY, USA, 2003. ACM.

Matthew Caesar, Tyson Condie, Jayanthkumar Kannan,

Karthik Lakshminarayanan, and Ion Stoica. ROFL: routing

on flat labels. SIGCOMM Comput. Commun. Rev.,

36(4):363-374, 2006.

Matthew Caesar, Miguel Castro, Edmund B. Nightingale,

Greg O’Shea, and Antony Rowstron. Virtual ring routing:

network routing inspired by DHTs. In SIGCOMM ’06:

Proceedings of the 2006 conference on Applications,

technologies, architectures, and protocols for computer

communications, pages 351-362, New York, NY, USA,

2006. ACM.

Ton Stoica, Robert Morris, David Karger, M. Frans

Kaashoek, and Hari Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications.

SIGCOMM Comput. Commun. Rev., 31(4):149-160, 2001.

Antony I. T. Rowstron and Peter Druschel. Pastry:

Scalable, Decentralized Object Location, and Routing for

Large-Scale Peer-to-Peer Systems. pages 329-350, 2001.

[8] M. Gien and H. Zimmermann. Design principles for
network interconnection. In SIGCOMM ’79: Proceedings of
the sizth symposium on Data communications, pages
109-119, New York, NY, USA, 1979. ACM.

9] G. V. Bochmann and P. Mondain-Monval. Design

principles for communication gateways. Selected Areas in

Communications, IEEE Journal on, 8(1):12-21, Jan 1990.

R. Gilligan and E. Nordmark. RFC-2893 - Transition

Mechanisms for IPv6 Hosts and Routers, 2000.

Advanced Relay and LayGO toolkit.

http://www.advancedrelay.com/.

R. Braden, R. Cole, P. Higginson, and P. Lloyd. A

distributed approach to the interconnection of

heterogeneous computer networks. SIGCOMM Comput.

Commun. Rev., 13(2):254-259, 1983.

M. Demmer, K. Fall, T. Koponen, and S. Shenker. Towards

a Modern Communications API. In Proceedings of Fifth

ACM Workshop on Hot Topics in Networks (HotNets-VI),

November 2007. Atlanta, USA.

[4

(5

(6

(7

(10]
(11]

12]

(13]

