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ABSTRACT
In this paper, we present a declarative perspective on adapt-
able extensible MANET protocols. Our work builds upon
declarative networking, a recent innovation for building ex-
tensible network architectures using declarative languages.
We make the following contributions. First, we demonstrate
that traditional MANET protocols, ranging from proactive,
reactive, to epidemic can be expressed in a compact fash-
ion as declarative networks, and we validate experimentally
the use of declarative techniques to implement traditional
MANETs emulated on a testbed cluster. Second, we show
that the declarative framework enables policy-driven adap-
tation, in which a generic set of declarative rule-based poli-
cies are used to make runtime decisions on the choice of
MANET protocols. Third, we present some initial ideas on
fine-grained protocol composition and adaptation, where a
typical MANET protocol can be composed and adapted from
simpler components.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design, Languages, Management

Keywords
Extensible routing, Declarative queries, Routing languages,
Programmable MANETs

1. INTRODUCTION
In the past decade there has been intense activity on the

development of routing protocols for mobile ad hoc networks
(MANET). The unpredictable wireless channel and mobility
of nodes cause MANETs to be extremely dynamic in nature
and hence very different from the wired networks that con-
stitute the public Internet. Due to a wide range of variability
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in network connectivity and also a wide range of data traf-
fic patterns, a one-size-fits-all MANET routing algorithm
does not exist. Hence a wide variety of routing protocols
have been proposed in the past few years, all with their
own strengths and weaknesses, and all with varying degrees
of success. For example, reactive routing protocols such as
DSR [6] and AODV [11] set up routing state on demand and
hence are ideal for low traffic environments; proactive rout-
ing protocols such as OLSR [2] on the other hand expend
network bandwidth to gather routing state with a purpose
of amortizing this extra cost over multiple traffic flows –
hence these are better for high traffic load environments, in
general. Recently researchers have focused on the disruption
tolerance aspects of MANETs that are at best intermittently
connected, e.g., epidemic routing protocols.

Hybrid routing protocols attempt to address the above
problem by combining features from various pure protocols
of types such as proactive, reactive, and epidemic. While
extant protocols in the hybrid category [4, 8] have system-
atic logic behind their design, they are too restrictive and
are specified in a stove-piped manner. Ideally, we would
like to create generic hybrid protocols by composition of any
number of known protocols provided the policies, rules, and
conditions for switching amongst them are clearly specified.
Recently, there has been some interest in policy-based deci-
sion making at run time in wireless networks, most notably
in the areas of dynamic spectrum access and security; how-
ever, there has been little impact of these on the design of
MANET routing protocols.

Another recent research initiative that attempts to com-
pose complex routing protocols from simpler components at
a finer granularity than hybrid protocols is Component Based
Routing [5]. While their goal is adaptability to the dynamic
environment in MANETs, the focus is on the diagnosis and
the subsequent improvement of a weak protocol component.

In this paper, we present our initial exploration into using
declarative languages for specification of MANET protocols
and the composition rules for creating hybrid protocols that
accommodate policies as first class concerns. The key ad-
vantage is that the policies and network specifications are
in the same declarative framework, suggesting opportunities
for cross-layer optimizations in future.

Our work builds upon declarative networking [9], and makes
the following three contributions. First, we demonstrate that
MANET protocols such as DSR, Link State routing, and
Epidemic can be specified tersely using the NDlog declar-
ative networking [9] language. We validate these proto-
cols by executing them on MANETs (up to 80 nodes) em-
ulated on a testbed cluster. Second, we demonstrate how
policy-based decisions for creating hybrid protocols can be
expressed in the same declarative language, and used to
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switch between protocols. Third, we present some initial
ideas on fine-grained protocol composition by using component-
based abstractions where functionalities are exposed as logi-
cal predicates in the declarative language. These ideas serve
as a building block towards our grand vision of building
adaptive MANET routing protocols from simpler compo-
nents.

2. BACKGROUND
We first begin with a brief overview of declarative net-

working. The high level goal of declarative networks is to
build extensible architectures that achieve a good balance
of flexibility, performance and safety. Declarative networks
are specified using Network Datalog (NDlog), which is a dis-
tributed recursive query language for querying networks.

Declarative queries such as NDlog are a natural and com-
pact way to implement a variety of routing protocols and
overlay networks. For example, traditional routing proto-
cols such as the path vector and distance-vector protocols
can be expressed in a few lines of code [9], and the Chord
distributed hash table in 47 lines of code. When compiled
and executed, these declarative networks perform efficiently
relative to imperative implementations.

NDlog is based on Datalog [12]: a Datalog program con-
sists of a set of declarative rules. Each rule has the form
p :- q1, q2, ..., qn., which can be read informally as “q1
and q2 and ... and qn implies p”. Here, p is the head of the
rule, and q1, q2,...,qn is a list of literals that constitutes the
body of the rule. Literals are either predicates with attributes
(which are bound to variables or constants by the query), or
boolean expressions that involve function symbols (including
arithmetic) applied to attributes.

Datalog rules can refer to one another in a mutually re-
cursive fashion. The order in which the rules are presented
in a program is semantically immaterial; likewise, the order
predicates appear in a rule is not semantically meaningful.
Commas are interpreted as logical conjunctions (AND). The
names of predicates, function symbols, and constants begin
with a lowercase letter, while variable names begin with an
uppercase letter. Function calls are additionally prepended
by f_. Aggregate constructs are represented as functions
with attribute variables within angle brackets (<>). We il-
lustrate NDlog using a simple example of two rules that com-
putes all pairs of reachable nodes:

r1 reachable(@S,N) :- link(@S,N).
r2 reachable(@S,D) :- link(@S,N), reachable(@N,D).

The rules r1 and r2 specify a distributed transitive clo-
sure computation, where rule r1 computes all pairs of nodes
reachable within a single hop from all input links (denoted
by the neighbor, and rule r2 expresses that “if there is a
link from S to N, and N can reach D, then S can reach D.” By
modifying this simple example, we can construct more com-
plex routing protocols, such as the distance vector and path
vector routing protocols.

NDlog supports a location specifier in each predicate, ex-
pressed with the @ symbol followed by an attribute. This
attribute is used to denote the source location of each corre-
sponding tuple. For example, all reachable and link tuples
are stored based on the @S address field. The output of in-
terest is the set of all reachable(@S,D) tuples, representing
reachable pairs of nodes from S to D.

2.1 Dataflow Execution and Tables
NDlog queries are compiled and executed as distributed

dataflows by the query processor to implement various net-
work protocols. These dataflows share a similar execution

model with the Click modular router [7], which consists of
elements that are connected together to implement a vari-
ety of network and flow control components. In addition,
elements include database operators (such as joins, aggre-
gation, selections, and projects) that are directly generated
from the NDlog rules. Messages flow among dataflows exe-
cuted at different nodes, resulting in updates to local tables,
or query results that are returned to the mobile hosts that
issued the queries. The local tables store the state of in-
termediate and computed query results, which include the
network state of various network protocols.

Predicates refer to tables which themselves are declared
as soft-state with lifetimes. Event predicates (denoted with
an additional “e” in this paper) are used to denote transient
tables which are used as input to rules but not stored. For
example, utilizing P2’s [1] built-in periodic keyword , node
X periodically generates a ePing event every 10 seconds to its
neighbor Y denoted in the link(@X,Y) predicate:

ePing(@Y,X) :- periodic(@X,10), link(@X,Y).

2.2 Modularity and Composability
In order to support network functionality composition and

code reuse, we recently proposed language extensions to ND-
log provide support for Composable Virtual Views (CViews) [10],
which define rule groups that, when executed together, per-
form a specific functionality. The syntax of CViews is as
follows:

viewName(K1,K2,...,Kn, &R1,&R2,...,&Rm)

Each CView predicate has an initial set of attributes K1,K2,
...Kn which are already bound to input values read from an-
other predicate (intuitively, these are like input parameters
to a function call). The remaining attributes, &R1,&R2,...,&Rm,
represent the return values from invoking the predicate given
the input values. We illustrate using a view definition for the
following CView predicate ePing(@SrcAddr, DestAddr, &RTT):

def ePing(@Src,Dest,&RTT) {
p1 this.eReq(@Dest,Src,T) :-

this.init(@Src,Dest), T=f_now().
p2 this.eResp(@Src,T) :- this.eReq(@Dest,Src,T).
p3 this.return(RTT) :-

this.eResp(@Src,T), RTT=f_now()-T. }

Any rule that must compute the RTT between two nodes
can simply include the ePing event predicate in the rule
body. this is a keyword used to express the context of the
CView. All predicates beginning with this are valid only
locally within the ePing CView. There are two new built-in
events/actions: this.init and this.return. Rule p1, upon
receiving event this.init along with the query keys Src and
Dest, takes the current timestamp T, and passes the data to
the host Dest as a ping request. After the destination node
receives it in rule p2, a ping response event is immediately
sent back to the source with the timestamp. In rule p3,
the source node computes the round trip time based on the
timestamp and issues a this.return action that finishes the
query processing.

3. DECLARATIVE ROUTING IN MANETS
In this section, we demonstrate how a variety of MANET

protocols, ranging from proactive, reactive, to epidemic pro-
tocols can be expressed using the declarative framework.
This section sets the stage for Section 4 where we discuss
policies for hybridizing and switching between different pro-
tocols.
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3.1 Proactive Protocol: Link State
A well-known proactive MANET protocol is OLSR (Op-

timized Link State Protocol) [2]. We show an example for
network-wide flooding of link-state (LS) updates, as expressed
by the following NDlog rules:

ls1 lsu(@S,S,N,C,S) :- link(@S,N,C)
ls2 lsu(@M,S,N,C,Z) :- link(@Z,M,C1),

lsu(@Z,S,N,C,W), M!=W.

lsu(@M,S,N,C,Z) is a link state update (LSU) correspond-
ing to link(S,N,C). This tuple is flooded in the network start-
ing from source node S. During the flooding process, node M

is the current node it is flooded to, while node Z is the node
that forwarded this tuple to node M.

Rule ls1 generates a lsu tuple for every link at each node.
Rule ls2 states that each node Z that receives a lsu tuple
recursively forwards the tuple to all neighbors M except the
node W that it received the tuple from. Datalog tables are
set-valued, meaning that duplicate tuples are not considered
for computation twice. This ensures that no similar lsu tuple
is forwarded twice.

To flood the LSUs periodically, one can utilize the periodic

keyword, to flood once in every period. Also, if efficient
flooding is desired (as in OLSR), the following rules olsr1-

2 are modified from the previous two rules to only forward
LSUs to a subset of neighbors known as multipoint relays
(MPR)1, denoted as mpr predicates (M is an MPR of Z)
which themselves could be defined with additional rules, but
are omitted here due to paucity of space.

olsr1 lsu(@S,S,N,C,S) :- periodic(@S,10),
link(@S,N,C).

olsr2 lsu(@M,S,N,C,Z) :- mpr(@Z,M,C1),
lsu(@Z,S,N,C,W), M!=W.

Once the entire network topology, i.e., all the links, are
available at each node, additional rules are required in order
to compute the shortest paths with minimum cost C for each
source S and destination D. These rules take as input the
local lsu tuples generated, and essentially result in the ex-
ecution of the Dijkstra’s algorithm locally. They are shown
as follows:

bp1 path(@M,S,N,P,C) :- lsu(@M,S,N,C,W),
P=f_init(S,N).

bp2 path(@M,S,D,P,C) :- lsu(@M,S,N,C1,W),
path(@M,N,D,P2,C2),
C=C1+C2, P=f_concatPath(S,P2).

bp3 bestPathCost(@M,S,D,min<C>) :- path(@M,S,D,P,C).
bp4 bestPath(@M,S,D,P,C) :- bestPathCost(@M,S,D,C),

path(@M,S,D,P,C).

In rule bp1, paths with two hops are built from every link,
while in rule bp2 paths are recursively constructed by con-
catenating shorter path with links. Rule bp3 computes the
minimum cost for paths with same sources and destinations,
and rule bp4 finally computes the best path.

3.2 Reactive Protocol: Source Routing
Next, we demonstrate a reactive protocol based on DSR.

The following set of rules show the route discovery of DSR
(rules dsr1-4) followed by the route response (rules dsr5-6)
traversing the best reverse path from destination to source.

dsr1 eRouteReq(@N,S,D,P,C) :- eQuery(@S,D),
link(@S,N,C), P=f_init(S).

dsr2 eRouteReq(@Z,S,D,P,C):-
shortestRoute(@N,S,D,P1,C1),
link(@N,Z,C2),
C=C1+C2, P=f_concatPath(P1,S).

dsr3 minCost(@N,S,D,min<C>) :-

1The union of the neighbor sets of MPRs of any node X is
equal to the set of 2-hop neighbors of X.

routeReq(@N,S,D,P,C).
dsr4 shortestRoute(@N,S,D,P,C) :-

minCost(@N,S,D,C),
routeReq(@N,S,D,P,C).

dsr5 eRouteReply(@Z,S,D,P2,P1,C) :-
eRouteReq(@N,S,D,P2,C), N==D,
Z=f_last(P2),P1=f_removeLast(P2).

dsr6 eRouteReply(@Z,S,D,P,P1,C) :-
eRouteReply(@Z,S,D,P,P2,C), Z=f_last(P2),
f_size(P2)>0, P1=f_removeLast(P2),

In DSR, a requesting node S issues an initial route request,
denoted by eQuery(@S,D) event in rule dsr1. This results in
a eRouteReq message tuples that is generated and recursively
forwarded along all links (rules dsr2). The routeReq table is
used to cache current route requests. To prune unnecessary
paths, rules dsr3-4 ensures that only the shortest path from
the initial node S to the intermediate node N is maintained.

Upon reaching the destination node D, rule dsr5 generates
a eRouteReply message that is then sent back recursively via
rule dsr6 along the computed best reverse path back to the
requesting node S. The functions f_last and f_removeLast

returns and removes the last node from a path respectively.
Rule dsr6 reaches the initial requesting node S when the
remaining path is of length 0.

The rules for AODV [11] share similarities with DSR above,
where only the next hop rather than the entire path is main-
tained.

3.3 Epidemic Protocols
Epidemic routing [16] and its variants such as PREP [13]

have been proposed for reliable delivery in intermittently
connected MANETs2. A key reliability component of such
protocols is the summary vector exchange as illustrated by
the rules e1-4 below:

e1 eBitVecReq(@Y,X,V):- summaryVec(@X,V),
eDetectNewLink(@X,Y).

e2 eBitVecReply(@X,Y,V):- eBitVecReq(@Y,X,V1),
summaryVec(@Y,V2),
V=f_vec_AND(V1,f_vec_NOT(V2)).

e3 eNewMsg(@Y,I,S,D):- eBitVecReply(@X,Y,V),
msgs(@X,I,S,D),
f_vec_in(V,I)==true.

e4 msgs(@Y,I,S,D):- eNewMsg(@Y,I,S,D).

In rule e1, node X detects that a new link comes to be
available, then it retrieves its local (summaryVec) table, con-
sisting a bit vector where the ith bit denotes the receipt of
the ith message, and then generates a eBitVecReq request to
the neighbor Y connected by the new link. Upon receiving
the request, node Y performs a bitwise AND operation be-
tween the incoming summary vector V1 and the negation of
local summary vector V2 to generate a new vector V which
is sent back to X. This new vector V denotes messages seen
by X but not Y. Rules e3-4 then enables node X to filter lo-
cal messages to be sent based on the bit vector V stored in
the reply, which are then buffered in the local msgs table for
transmission.

PREP is an extension of the basic epidemic protocol, where
transmissions of messages are prioritized based on the re-
maining lifetimes of individual messages. This can be done
elegantly in NDlog by sorting the msg table based on a user-
defined ranking function, and then have forwarding rules
that take the msgs table as input, and transmit based on
the sorted order.

3.4 Preliminary Evaluation
We perform an initial evaluation of the three classes of

MANET protocols described above: proactive LS (Section 3.1),

2These are a class of disruption tolerant networks or DTNs.
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reactive DSR (Section 3.2), and epidemic (Section 3.3). We
base our evaluation on the P2 declarative networking sys-
tem [1]. We focus on evaluating the aggregate bandwidth
utilization for all protocols, and in the case of the epidemic
protocol, we additionally measured the message delivery time
given a disconnected network. The experiment for our eval-
uation is carried out on a local cluster with eight Pentium
IV 2.8GHz PCs with 2GB RAM running Fedora Core 6 with
kernel version 2.6.20, which are interconnected by high-speed
Gigabit Ethernet. When executing the LS and DSR proto-
cols, we emulate connectivity in a wireless environment by
initializing the link table of each node such that every node
has three neighbors. This setup allows us to validate the
scalability trends (in terms of bandwidth utilization)) of each
protocol. As future work, we intend to experiment with exe-
cuting our system on a wireless testbed such as ORBIT [15].
On an actual testbed, the rules to be executed remain the
same, with the main difference being that the link table at
each node will be determined by actual wireless connectivity.
We summarize our results as follows:
Link-state protocol: In our first experiment, we execute
the LS protocol as described in Section 3.1. In our proto-
col, we measure the aggregate communication overhead re-
quired for each node to propagate all its LSUs to all other
nodes. Upon receiving the LSUs, each node then executes
rules for computing the shortest paths. Figure 1 shows that
the per-node communication overhead increases linearly as
the network size increases, a scalability trend that one would
expect in a link state protocol.
Dynamic source routing: In our second experiment, we
execute the DSR protocol as described in Section 3.2. Given
a network size of 20, we generated route request queries from
random sources to destinations. Figure 2 shows that, as
expected, the per-node communication overhead increases
linearly as the number of route request increases. We note a
similar linear trend when we fix the number of queries, but
increase the network size.
Epidemic: In our final experiment, we measured the av-
erage message delivery latency of the epidemic protocol as
described in Section 3.3. In our experimental setup, we emu-
lated a partially connected network by ensuring that at any
point in time, only 10% of all possible links are available,
and periodically, changing the availability of links. Given
the constant churn of link availability, messages are injected
into network from random sources and epidemically routed
until reaching their destinations. For each message, we mea-
sured the delivery latency, which is determined by the time
lag between message injection and arrival at the destina-
tion. Figure 3 shows the average message delivery latency
where five messages are injected every second. The aver-
age latency increases approximately linearly as the network

size increases. As we increase the rate at which messages
are injected, the graph becomes quadratic as queuing delays
increase the time for messages to be routed to destinations.

4. ADAPTIVE ROUTING IN MANETS
Building upon the basic declarative MANET protocols in

the previous section, we demonstrate the construction of
composite protocol behaviors by applying appropriate poli-
cies to available declarative protocol code. Such protocol
behaviors are often necessary in MANETs for adapting to a
wide range of network and traffic conditions. We describe
two mechanisms for achieving this: policy-driven hybrid pro-
tocols and component-based routing.

4.1 Policy-Driven Hybrid Protocols
Hybrid protocols attempt to combine the best features

from various pure protocols and attempt to operate in one of
the constituent modes depending on the network dynamics,
traffic conditions, and other requirements such as reliability,
security etc. If there were a perfect oracle that could learn
about the entire network state, it would be easy to write
switching rules for representing hybrid protocols in the sense
that a node could decide to always run the optimal protocol
that is most appropriate for the current scenario.

In the absence of this global information at every node in
the network, it is still possible to write a generic set of poli-
cies that can allow run-time adaptation based on local state
available at each node. However, characterizing the opti-
mality and stability of such composite protocols in a general
sense is an open and orthogonal problem. In this paper, we
focus on demonstrating how hybrid composition could be
facilitated with little effort using the declarative paradigm.
Stability and optimality analysis is an interesting topic for
future research.

4.1.1 Hybrid Link State Routing
A well-known LS routing variant for handling moderate

to high rate of change in network topology is Hazy Sighted
Link State routing (HSLS) [14]. This protocol attempts to
control the scope and frequency of its LSU broadcast scheme
based on the topology of the network. The basic principle
of HSLS is that a node should not be affected significantly
by link dynamics due to mobility or failure in a portion of
network that is far away from it. Hence unlike the pure LS
protocol which performs a network wide flood of all LSUs,
HSLS sends LSUs to the 2k hop neighbors of a node with a
period equal to 2kTe, where Te is a nominal period. If link
dynamics are high, pure LS starts thrashing because remote
nodes could receive an LSU corresponding to a link that has
long vanished.

Policy rules used in HSLS are expressed as follows:
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hsls1 lsu(@S,S,N,C,S,TTL) :- periodic(@S,T),
link(@S,N,C), T=f_pow(2,K)*Te,
TTL=f_pow(2,K), K=range[1,10].

hsls2 lsu(@M,S,N,C,Z,K-1) :- lsu(@Z,S,N,C,W,K),
link(@Z,M,C1), K>0, M!=W.

The primary disadvantages of HSLS is that it sacrifices op-
timality in routing to the need for scalability. This is because
it gathers imperfect information about the network topology
and computes routes on this topology. Imperfect topology
knowledge may result in computation of suboptimal routes,
and this effect can be pronounced in somewhat dynamic but
sparsely connected topologies. Hence, if the link average
availabilities (AA) [13] (a metric that is described in detail
in Section 4.2) stop fluctuating wildly in most parts of the
network as indicated by gathered LSUs, one may decide to
revert back to pure LS routing since that may yield near-
optimal routes with a lower stretch. Rule hsls1 is periodi-
cally fired, and the period of execution depends on 2K−1.

Based on the HSLS rules above, one can further define
a generic policy that allow us to switch between HSLS and
LS based on the computed average AA of all links collected
in the network. The average AA threshold below which to
switch to pure LS is a configuration parameter that is set
either by analysis or experimentation.
#include ls1, ls2, hsls1, hsls2
#define THRES 0.5
s1 averageLinkAvail(@M,AVG<AA>) :-

lsu(@M,S,N,AA,Z,K).
s2 useHSLS(@M) :- averageLinkAvail(@M,AA), AA>THRES.
s3 useLS(@M) :- averageLinkAvail(@M,AA), AA<=THRES.

#include is a macro used to include earlier rules. Rule s1

computes at node M, the average AA of all links gathered
from the different LSUs that pass through M. Rules s2-3

generate useHSLS and useLS predicates which are then added
to rules hsls1 and ls1, respectively.

To encode a new policy (e.g. use LS instead of HSLS when
the network is sparse with high frequency of link updates),
one only needs to modify the above rules to generate useHSLS

and useLS without having to change the rules for the indi-
vidual protocols themselves. The main point is not whether
one policy is superior to another, but rather that the declar-
ative framework makes such policy specifications concise and
flexible.

4.1.2 Hybrid Proactive-Epidemic
As an alternative example, one can utilize a hybrid proactive-

epidemic protocol, useful in a disruption-tolerant setting.
This hybrid protocol switches between two modes of oper-
ation: (1) single path LS routing in well connected parts
of the network, and (2) multi-path epidemic style routing
in disrupted parts of the network. This is similar to the
Anxiety-Prone Link-State (APLS) protocol [8] developed for
the SPINDLE DTN project. The following set of rules demon-
strate the ease at which these policies are implemented:
#include bp1, bp2, bp3, bp4
#define THRES 1.2
pe1 useEpidemic(@M,S,D) :- bestPath(@M,S,D,P,C),

C>THRES.
pe2 useLS(@M,S,D) :- bestPath(@M,S,D,P,C), C<=THRES.

In the rules above, at any node M, bestPath computes the
cost of the shortest path between S and D, which is then used
by rules pe1-2 to determine whether to use LS or epidemic
routing. Intuitively, low values of path cost indicate that S
and D are in a connected component whereas high values
indicate that link availability is low, or LS information is
unavailable or stale, hence an epidemic protocol is desired
under those circumstances to improve delivery probability.

Note that while the first example illustrates switching the
underlying dissemination scheme, the latter illustrates how

to switch the route computation and forwarding. The declar-
ative framework and compact specifications make it easy to
write other (more intelligent) switching rules in this scenario.

4.2 Component Based Routing
In the second aspect of adaptive MANETs, we describe

how components of certain routing protocols, if specified
declaratively, could become useful in protocol composition.
We utilize the CView functionality described in Section 2.2
for composing rules into modular groups. Using CViews, a
set of basic components that are used by proactive, reactive,
or epidemic routing protocols can become declarative build-
ing blocks and could be shared across a multitude of adap-
tive protocols. The components could be executed upon oc-
currence of certain events (like in the event-condition-action
paradigm). The vision is that a routing protocol can evolve
depending on network and traffic conditions rather than be-
ing stove-piped as they currently are. Examples of such com-
ponents include neighbor discovery by periodic heartbeats,
path discovery by scoped flooding, path computation and
maintenance on local topology database, and epidemic syn-
chronization of data among neighbors using summary vec-
tors. We illustrate two such components below. A protocol
designer can use such components in bodies of rules similar
to the ones shown in Section 4.1 and develop new adaptive
MANET routing protocols.

4.2.1 Link Availability Component
Short for average availabilities, AA [13] is a novel metric

of link used to measure the average fraction of time in the
near future that the link will be available for use. AA is cal-
culated as the total time since a link was detected divided by
the total time that link’s status is up. AA can be encapsu-
lated as a neighbor discovery module, which may be the most
straightforward sharable component reusable across multiple
protocols. We present a more complex linkAA CView exam-
ple as following rules for computing link availability used in
our earlier discussion of hybrid protocols.

def linkAA(@S,N,&AA,&Status) {
aa1 this.return(AA,Status):-

this.init(@S,N), link(@S,N,UP,T_b,T_p,T_up),
AA=(T_up+f_now()-T_p)/(f_now()-T_b), Status=UP.

aa2 this.return(AA,Status):-
this.init(@S,N), link(@S,N,DOWN,T_b,T_p,T_up),
AA=T_up/(f_now()-T_b), Status=DOWN.

aa3 link(@S,N,UP,f_now(),f_now(),0):-
eDetectNewLink(@S,N).

aa4 link(@S,N,UP,T_b,f_now(),T_up):-
eDetectOldLink(@S,N),
link(@S,N,DOWN,T_b,T_p,T_up).

aa5 link(@S,N,DOWN,T_b,f_now(),T_up1):-
eDetectFailLink(@S,N),
link(@S,N,UP,T_b,T_p,T_up),
T_up1=T_up +(f_now()-T_p). }

For each node S, the linkAA CView takes as input the
neighbor N, and returns the AA metric and status Status for
the link from S to N. The link table contains six attributes to
store link information: (1) where this link is stored, (2) the
neighbor endpoint of the link, (3) link’s status which can be
up or down denoted by UP and DOWN, (4) T_b which means the
time when this link was originally detected, (5) T_p which
means the most recent time when link’s status changed, and
(6) T_up which means the total link uptime.

When the linkAA CView is used as input in a rule body, if
link’s status is up, its total uptime will be T up plus current
time minus T_p, thus in rule aa1 AA will be calculated as
the total time since this link was detected divided by the
total uptime. If link’s status is down, its total uptime will
be T_up, and this situation is stated in rule aa2. In rule aa3,
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when the node detects a new link which has never been seen
before, it will be put into link table by setting T_b and T_p

to be current time and T_up to be zero. In rule aa4, if the
node detects an old link which was down but comes to be
available again, it only needs to set T_p to be current time.
In rule aa5, if the node detects a link which becomes down,
it updates T_up and sets T_p to be current time.

4.2.2 Parameterized Flood Component
Flooding is a necessary component that is useful in most

MANET routing protocols, although each protocol performs
flooding slightly differently. For example, pure LS routing
floods LSUs to all nodes; OLSR floods LSUs via MPRs;
HSLS alters the rate and scope of flooded LSUs; Gossip pro-
tocols add a probabilistic aspect to flooding to trade off cov-
erage and overhead; Epidemic algorithms add a reliability
component by means of summary vectors.

Despite these different uses, the important aspects that
characterize a flooding scheme in the context of routing are:
what is being flooded, which nodes are participating, how far
a flooded packet goes and when it is initiated. We present a
CView for flooding that captures the above concerns as argu-
ments such that the component is usable by several routing
protocols with different instantiations. This requires an ex-
tension to the P2 system so that table names can be passed
as argument parameters to the CView.

def flood(@S,TTL,Payload,Nbr,Sched) {
f1 floodMsg(@S,S,TTL,Payload,Nbr,Sched,T) :-

this.init(@S,S,TTL,Payload,Nbr,Sched,T),
Sched(@S,TTL,0,T).

f2 floodMsg(@N,S,TTL-1,Payload,Nbr,Sched,T) :-
floodMsg(@M,S,TTL,Payload,Nbr,Sched,T1),
Nbr(@M,N,C1), TTL>0, Sched(@M,TTL,T1,T). }

The flood CView is initiated at node S, taking as input
payload Payload, scope TTL, and table names represented by
variables Nbr and Sched. Nbr determines which neighbors
should receive the flooded message, and Sched determines
the conditions when the flood happens. Rule f1 initiates the
flooding at node S given the input parameters of the CView.
Executing rule f2 will recursively flood the Payload up to TTL

hops in a subgraph sketched out by the Nbr predicate in the
manner dictated by Sched. Examples of Nbr include link (if
we want to flood everywhere) and mpr (if we only want to
flood via MPRs); Sched may be set such that floods are fired
upon link UP events, or periodically by HSLS rules etc. Note
that Payload can be regular data or neighbor table fragments.
Optimizations proposed in OLSR [2] such as flooding only
the MPR links are possible by passing the appropriate tuples
here.

The flood CView can be used by DSR for flooding route
requests, and by LS for flooding LSUs. Interestingly, one can
also write a CView on epidemic forwarding using summary
vectors (basically encapsulate the rules e1-4 in Section 3.3
into a CView), which can be used by both DSR and LS for
propagating route requests and LSUs respectively in a more
disconnected setting. The choice of using the epidemic or
traditional flood CView can then be determined using policy
rules. Alternatively, one can call the summary vector CView
from inside the flood CView to get the desired behavior. We
have not shown those rules here due to space constraints.

5. CONCLUSION
In this paper, we present a declarative perspective on

adaptive MANET routing. We demonstrate that a variety
of MANET protocols can be specified tersely using the ND-
log declarative networking language. Moreover, policy-based
decisions can be expressed within the declarative framework

for runtime switching amongst protocols. We further present
initial ideas on fine-grained protocol composition using com-
ponent based abstractions where functionalities are exposed
as logical predicates in the declarative language.

Our immediate steps include experimentation on existing
wireless testbeds [15] as well as emulation software [8] that
enables us to evaluate our system in emulated wireless and
DTN settings. Beyond experimentation, we plan to investi-
gate techniques for analyzing stability and correctness of the
composed protocols under a different network dynamics and
traffic patterns. We believe that our declarative framework
is ideal for exploring this complex space. We plan to further
investigate integrating our techniques with recent attempts
at building verifiable network specifications [3], especially
in the context of stability and optimality analysis of hybrid
MANETS. We also plan to explore cross-layer decision mak-
ing in cognitive radio architectures.
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