Opportunistic Spatial Gossip over Mobile Social Networks

A. Chaintreau, P. Fraigniaud, E. Lebhar Thomson & CNRS-Université Paris Diderot

Monday, August 18th 2008, talk @ workshop WOSN

Objectives of this talk

- Discuss the future of Social Networks Applications
 - emphasis on mobile users and peer to peer architecture

- Present one main result:
 - Mobility helps maintaining favorable structural properties

Structure of this talk

- Mobile social network applications
- Model and opportunistic connection scheme
- Application to resource location
- Concluding remarks

In a near future ...

- Most users may access OSNs (and the Internet) through a mobile devices
- Their respective locations become relevant
 - "who is my closest friend and where he/she is?"
 - "what is the closest event happening?"

- Infrastructure may exist and perhaps remains expensive
- Opportunistic contacts with users and APs explode

Ma

Challenges: the role of mobility

- Is mobility only a troublemaker? Can it be helpful?
 - may increase ad-hoc capacity [Grossglauser/Tse 01]
 - Can random mobility induces favorable structural properties?

 Add a small number of links, used by routing incidentally such that O(polylog d) steps?
 [Kleinberg00].

Structure of this talk

- Mobile social network applications
- Model and opportunistic connection scheme
- Application to resource location
- Concluding remarks

Our network assumptions

- Nodes are located on a lattice (dimension k)
 - Static: fixed access points
 - Mobile: mutually independent random walks

- Opportunistic connections
 - Each static/mobile node has a small number m of mates, chosen as nodes that are met opportunistically.
 - A node may contact any of its mate later
 - A mate with age $a\geq 0$ is forgotten with probability $\phi(a)$ e.g. such that the age distribution of a mate is $\pi(a)=\frac{c}{a^{
 u}}$

Why such opportunistic scheme for OSNs?

- (Physicist):
 - Understand mobile social networks.
 - Simple ageing scheme.
- (Computer scientist):
 - easy to enforce as a p2p augmentation scheme
- (Economist):
 - Can be done inside community of interest

Structure of this talk

- Mobile Social Network Applications
- Model and Opportunistic connection scheme
- Application to resource location
- Concluding remarks

Key building block

- Navigation [Kleinberg00], Spatial gossip [Kempe-Kleinberg-Demers01] exploits specific random shorcuts
 - For any $\rho \ge 1$, shortcuts length distribution as $\frac{1}{d\rho \cdot k}$
- For any $\rho \geq 1$, there exists a forget function ϕ_{ρ} such that the shortcuts length distribution satisfies

$$\frac{c}{||\mathbf{d}||^{\rho k}} \le f(\mathbf{d}) \le \frac{c' \cdot \ln^{k\rho/2} ||\mathbf{d}||}{||\mathbf{d}||^{\rho k}}.$$

- Proof follows from properties of symmetric random walks
- It corresponds to $\, \nu = 1 + \frac{k(\rho-1)}{2} \,$

Application to Resource Iocation

- The goal is to locate the nearest item
 - a copy of a file, or a node with a given property.

• With this scheme, gossiping with mates finds the item using $O(\ln^2 d)$ steps (d is the distance to the nearest item).

Concluding remarks

- Social Network Applications can exploit mobility
 - To answer efficiently locality aware query.
 - Key result: benefit from favorable augmentation topology
- Future steps:
 - Gossiping with mates among mobile nodes only
 - How different mobility affects the forgetting distribution?
 - Can we use the same property without infrastructure?

Thank you!

