# Growth of the Flickr Social Network

Alan Mislove<sup>†‡</sup> Hema Swetha Koppula<sup>¶</sup> Krishna Gummadi<sup>†</sup> Peter Druschel<sup>†</sup> Bobby Bhattacharjee<sup>§</sup>

> <sup>†</sup>MPI-SWS <sup>‡</sup>Rice University

<sup>¶</sup>IIT Kharagpur <sup>§</sup>University of Maryland

WOSN 2008

# Online social networks

- Popular way to connect, share content
  - Among most visited sites on Web
  - Users: Orkut (60 M), LiveJournal (5 M)

 Unique opportunity to dynamics of large, complex social networks



# Why study social network growth?

- Online social networks share many structural properties
  - Significant clustering, small diameter, power-law degrees
  - Similar underlying growth processes?
- Proper understanding of growth can
  - Provide insights into structure
  - Predict future growth
  - Model arbitrary-sized networks
- Most work to-date relies on theoretical models
  - Not known if they predict actual growth

# flick

- This work
- Use a measurement-driven approach to understand growth
- Present large-scale measurement of Flickr network growth
  - ~I M new users, ~I0 M new links
- Look for underlying cause of structural characteristics
  - High symmetry
  - Power-law node degree
  - Significant local clustering

### Contributions

- Methodology to collect large-scale network growth data
  - Measured both Flickr and YouTube

- Make data available to researchers
  - Much larger scale, higher granularity than existing data sets
  - Already in use

- Initial analysis
  - Examine high-level properties of growth data
  - Test whether data is consistent with existing models

# Rest of the talk

- Measuring social network growth
- Analyzing growth properties
- Related work

#### Crawling social networks

- Flickr reluctant to give out data
  - Cannot enumerate user list
  - Instead, performed crawls of user graph
- Picked known seed user
  - Crawled all of his friends
  - Added new users to list
- Continued until all reachable users crawled
- Effectively performed a BFS of graph

#### Crawling social networks



- Flickr reluctant to give out data
  - Cannot enumerate user list
  - Instead, performed crawls of user graph
- Picked known seed user
  - Crawled all of his friends
  - Added new users to list
- Continued until all reachable users crawled
- Effectively performed a BFS of graph

# Observing growth

- Crawls subject to rate-limiting
  - Discovered appropriate rate
- Crawled using cluster of 58 machines
  - Using Flickr API
- Result: could complete crawl in 1 day
- Repeated daily for 3 months
  - Revisited all previously discovered users
  - Looked for new links, users



# How much were we able to crawl?



- Users don't necessarily form single WCC
  - Disconnected users

- Estimate coverage by selecting random users
  - Result: 27% coverage

- But, disconnected users have very low degree
  - 90% have no outgoing links

# How much were we able to crawl?



- Users don't necessarily form single WCC
  - Disconnected users

- Estimate coverage by selecting random users
  - Result: 27% coverage

- But, disconnected users have very low degree
  - 90% have no outgoing links

# Limitations to growth data

- Newly discovered users may have existing links
  - Don't know when existing links were created
  - Only count links we observed being created

- Crawls have resolution of I day
  - Can't tell order of link creation within a day



## Limitations to growth data

- Newly discovered users may have existing links
  - Don't know when existing links were created
  - Only count links we observed being created

- Crawls have resolution of I day
  - Can't tell order of link creation within a day



# Rest of the talk

- Measuring social network growth
- Analyzing growth properties
- Related work

#### Growth data characteristics

- Crawled Flickr daily for over 3 months
  - Nov. 2 Dec. 3, 2006 and Feb. 3 May 18, 2007
- Observed ~I M new users and ~I0 M new links
  - Network grew from 17 M to 33 M links
  - Growth rate of 455% per year
- Link addition dominates removal
  - 2.43:1 ratio (conservative)
  - Focus only on link addition

# Network growth questions

- How does growth lead to observed structural properties?
- Is growth consistent with a known model?
- Networks have high symmetry
  - What causes symmetric links to form?
- Networks follow power-laws
  - Which users create and receive new links?
  - Does it happen via preferential attachment?
- Networks have significant local clustering
  - Much higher than random power-law graphs
  - How do users select new destinations?

# How quickly do symmetric links form?



• Over 80% of symmetric links created within 48 hours

# Reciprocity

- Users can create link in response to incoming link
  - "Out of courtesy"
  - Known in sociology
- Flickr emails users about new incoming links
- Data consistent with *reciprocity* causing high level of link symmetry



# Preferential attachment

- Model for creating power-law networks
  - Known as "cumulative advantage" or "rich get richer"

 New links go preferentially to nodes with many links

- For directed networks, we define
  - Preferential creation
  - Preferential reception

# Is preferential attachment happening?



- Yes, linear correlation between
  - Links created and outdegree (preferential creation)
  - Links received and indegree (preferential reception)
- Is this consistent with a known model?
  - Both global and local models have been proposed

Alan Mislove

# Barabasi-Albert (BA) model

 Well-known model for creating power-law networks

- Uses global preferential attachment
  - Destination selected using global weighted ranking



- Is data consistent with such a global process?
  - Look for evidence using distance between source and destination

### Does proximity matter?



- New friends much closer than BA model predicts
  - Models which take into account local rules may be more accurate

Alan Mislove

# Implications of network growth

- Observed growth of a large, complex social network
- Found multiple growth processes at work
  - Reciprocity leads to high symmetry
  - Preferential attachment leads to power-law degrees
  - Proximity bias leads to local clustering
- But, data inconsistent with global BA model
- Future work: Modeling complex network growth
  - Based on local rules
  - Verify consistency of data with other proposed models

Alan Mislove

# Related work

#### • Growth models

- Preferential attachment [Science'99]
- Random walks [Phya.A'04]
- Common neighbors [Phys.Rev.E'01]

#### • Small-scale empirical studies

- Scientific collaboration networks [Phys.Rev.E'01,Euro.Phy.Ltrs'04]
- Email networks [Science'06]
- Movie actor networks [J.Stat.Mech.'06]

# Summary

- Presented first large-scale study of online social network growth
- Collected data covering ~I M new users, ~I0 M new links
- Found high-level growth processes at play
  - Growth via local, rather than global, processes
- Data sets are available to researchers
  - Many already using data (72 researchers, including sociologists!)
  - Also have growth data for YouTube network



#### Data sets available from:

#### http://socialnetworks.mpi-sws.org